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Abstract 10 

The urges of reducing energy use and carbon footprint in buildings have prompted the 11 

developments of regenerative evaporative coolers (RECs). However, the physical dimensions 12 

of RECs have to be designed enormous in order to deliver a large amount of supply airflow rate 13 

and cooling capacity. To tackle the issue, this paper develops a large-scale counter-flow REC 14 

with compact heat exchanger through dedicated numerical modelling, optimal design, 15 

fabrication and experimentation. Using modified ε-NTU method, a finite element model is 16 

established in Engineering Equation Solver environment to optimise the cooler’s geometric and 17 

operating parameters. Based on modelling prediction, the cooler’s experimental prototype was 18 

optimally designed and constructed to evaluate operating performance. The experiment results 19 

show that the cooler’s attained wet-bulb effectiveness ranges from 0.96 to 1.07, the cooling 20 

capacity and energy efficiency ratio from 3.9 to 8.5 kW and 10.6 to 19.7 respectively. It can 21 

provide sub-wet bulb cooling while operating at high intake channel air velocities of 3.04-3.60 22 

m/s. The superiority of proposed cooler’s performance is disclosed by comparing with different 23 

RECs under similar operating conditions. Both the cooler’s cooling capacity per unit volume 24 

and per unit airflow rate are found to be 62-108% and 21.6% higher respectively.  25 
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Building energy consumption in China had increased by 40% from 1990 to 2009 as the 1 

incomes rise and urbanisation advances [1]. The energy consumed by space cooling accounts 2 

for around 10% of total building energy use in 2012 [2]. With global warming and rising 3 

demand for comfort levels, this share has been increasing continuously. Due to the 4 

participations of compressor and refrigerant, the dominant vapour compression refrigeration/air 5 

conditioning systems consume large amounts of electrical energy and cause heavy 6 

environmental impact. In comparison, Indirect Evaporative Cooling systems (IECs) utilise 7 

latent heat of water vaporisation to remove the heat from supply airflow and retain the moisture 8 

constant without using compressors and refrigerants that have great potentials in energy saving 9 

and associated carbon emissions reduction [3]. However, conventional IECs haven’t been 10 

widely applied because the ultimate temperature for the IECs’ supply air is the wet-bulb 11 

temperature of ambient air, which could hardly be achieved in practice. According to Ref. [4], it 12 

is thought that only 40 to 80 per cent of temperature difference between ambient air dry-bulb 13 

and wet-bulb could be reached in typical indirect evaporative coolers.  14 

Regenerative or Recuperator Evaporative Cooler (REC), as the IECs with closed-loop 15 

configuration, has the ability of providing supply air at a temperature below the wet-bulb 16 

towards the dew-point temperature of inlet air theoretically [5-7]. According to the estimates 17 

[8], a counter-flow REC could annually reduce 13-58% of the total electrical power consumed 18 

by conventional compression air conditioners for various climates in China.  19 

Predominantly, there are two types of regenerative evaporative coolers including 20 

single-stage counter-flow and multi-stage M-cycle cross-flow configurations [9]. Fig.1 21 

demonstrates the working principles of their basic heat and mass exchanger structure and the 22 

psychrometric charts representing thermal process of airflows in dry and wet channels. In the 23 

counter-flow regenerative configuration, the intake airflow is circulated through the dry 24 

channel, a portion of the airflow is used as cooled product/supply airflow to be delivered to 25 

indoors, while being extracted through the perforations, the remaining airflow, as the working 26 

air, is re-circulated through the wet channel and is subsequently discarded to the outside. 27 

During this thermal process, the product air is cooled along the dry channel without any 28 

humidity increase whereas the working air is initially cooled to the minimal temperature with 29 

moisture additions at a certain distance from the entrance due to the effect of water evaporation. 30 

The temperature of working air subsequently begins to increase with minor moisture increase 31 

when the sensible heat transfer from product air in the dry channel exceeds the effect of 32 

evaporation cooling [10]. In the remainder of the wet channel, the working air has already 33 
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reached saturation and has gradually heated under this condition. Eventually, the working air 1 

can be heated and humidified towards a temperature a bit higher than the wet-bulb of intake air 2 

before it’s exhausted. This counter-flow recirculation arrangement allows the working air to be 3 

fully cooled before entering the wet channel, thus leading to increased temperature difference 4 

and heat transfer between the working and product airflows. 5 

 6 

Fig. 1. Graphs showing working principle and psychrometric process of (a) M-cycle 7 

multi-stage regenerative HMX [ref] (b) single-stage regenerative HMX.  8 

 9 

In the M-cycle regenerative configuration, part of the dry surface is designed for the 10 

product airflow to pass through while the rest is allocated to the working airflow. Both the 11 

(b) 

(a) 
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product and working air flows parallel along the dry channel. A few perforations are evenly 1 

distributed over the surface where the working air is contained. Through the small holes, all of 2 

the air passing along the working dry channel is gradually diverted to the wet surface, to be used 3 

as working air. This portion of airflow is pre-cooled before entering the wet channel by losing 4 

heat to the adjacent wet surface. The working air flowing over the wet surface absorbs heat 5 

from the product and working air on dry surface. During the thermal process, the product air 6 

temperature is reduced with constant moisture, while the working air is partially pre-cooled, 7 

humidified and heated in multi-stage process (1-2'-2'wb-3', 2'-2''-2''wb-3'', 2''-2'''-2'''wb-3''', 8 

2'''-2-2wb-3) and is finally exhausted to the outside. Compared to the single-stage counter-flow 9 

cooler with equivalent physical size and operating conditions, this cross-flow cooler allows the 10 

working air to be cooled in multi-stage, thereby leading to 15-23% lower cooling effectiveness 11 

and around 20% smaller cooling capacity but 10% higher energy efficiency theoretically [11].  12 

More recently, there have been growing interests on developing the single stage 13 

counter-flow and M-cycle regenerative evaporative coolers by analytical, numerical and 14 

experimental/field-testing methods. The analytical models being developed are normally based 15 

on conventional ε-NTU method when proper alternations are made by redefining the potential 16 

gradients, transfer coefficient, heat capacity rate parameters and assuming a linear saturation 17 

temperature-enthalpy relation of air. Through making these adjustments, the established 18 

analytical models can be used to determine the optimal operating and geometrical parameters of 19 

RECs for design problems, as well as to predict or compare the performance of RECs with 20 

different airflow patterns including parallel-flow, counter-flow, cross-flow and regenerative 21 

flow [10, 12-14]. Usually the analytical models were simplified to achieve acceptable results by 22 

making some assumptions, such as: 1) longitudinal thermal conduction in the wall is negligible; 23 

2) Lewis number is unity, 3) heat and mass transfer coefficients inside each channel are 24 

constants; 4) water film is uniform and continuous, etc. [5, 13]. By contrast, some sophisticated 25 

models can provide more accurate predictions by considering a set of variables including Lewis 26 

factor, surface wettability, spray water temperature, and spray water enthalpy change [10, 12].  27 

A few one-dimensional numerical models of counter-flow and two-dimensional models of 28 

M-cycle cross-flow RECs have been developed to predict/compare their performance and to 29 

analyse the effects of operating and geometrical parameters. The governing differential 30 

equations of these models were discretised with finite difference [15, 16] or finite element 31 

scheme [7, 11, 17] and solved using Newton iterative method or Eulerian-Lagrangian method 32 

[18]. The results of these modelling show that the RECs’ performance strongly depends upon 33 
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the parameters including intake air temperature and humidity, intake air velocity, 1 

working-to-intake airflow ratio, channel size of heat exchanger, feed water flow rate and 2 

uniformity of water film, but depends less on thermal conductivity of heat transfer sheets and 3 

feed water temperature [7, 19].  4 

Additionally, a few experimental/fielding-testing studies have been conducted on 5 

counter-flow and M-cycle RECs aiming to 1) validate the numerical or analytical modelling 6 

results [16, 20], to 2) study the effects of operating parameters [16, 19, 21], to 3) achieve the 7 

internal air temperature and humidity distributions for dry and wet channels [22] and to 4) 8 

prove the cooler’s technical viability through examining operating performance under various 9 

conditions [19, 23]. Most of those regenerative coolers developed are lab scale prototypes that 10 

can only provide sub-wet bulb cooling while operating at small intake channel air velocities 11 

lower than 1.0 m/s [16, 21]. As the intake air velocity increased from 1.0 to 4.0 m/s, the cooler’s 12 

effectiveness dramatically declined by nearly 100% [18]. Therefore, to achieve desirable 13 

cooing effectiveness or outlet air temperature, the regenerative coolers are suggested to operate 14 

under the intake air velocity less than 1.0 m/s. In that case, the physical dimensions of the 15 

regenerative coolers have to be designed rather huge in order to deliver a large amount of 16 

supply airflow rate or cooling capacity. The question then arises: how to determine the 17 

geometric and operating parameters of the heat exchanger for accomplishing the REC optimal 18 

performance subject to specified design constraints such as certain cooling requirement and 19 

confined geometrical volume. 20 

Aiming at solving the problem, this paper develops a computational model based on 21 

modified ε-NTU numerical method to determine the optimal geometrical and operating 22 

parameters of a new counter-flow regenerative evaporative cooler designed for buildings. The 23 

technical viability of the proposed cooler is confirmed by constructing a dedicated 24 

experimental prototype and testing it under various operating conditions in an air-conditioned 25 

chamber. The overall performance of the prototype examined in this study includes cooling 26 

effectiveness, cooling capacity, and energy efficiency as well as supply air temperature. The 27 

cooler’s unit performance indicators include cooling capacity per unit volume and per airflow 28 

rate. Additionally, the paper experimentally and numerically analyses and compares the factors 29 

that affecting the cooler’s overall performance, including intake air temperature, humidity, 30 

airflow rate and working-to-intake air ratio. To reveal the superior performance of the proposed 31 

cooler, the paper finally makes comparisons with those regenerative cooler found in previous 32 

studies in terms of overall/unit performance indicators under similar operating conditions. 33 
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2. Description of the developed counter-flow regenerative evaporative cooler 1 

As depicted in Fig. 2, the regenerative evaporative cooler developed in this study is a 2 

self-contained device, mainly composed of a core heat and mass exchanger, a centrifugal fan, a 3 

water distributing/recirculating system and an outer casing. Ambient air is drawn into the 4 

cooler by the centrifugal fan, and is primarily filtered before entering the heat exchanger. In the 5 

exchanger where the thermal process going through by the process air is equivalent to that 6 

shown on the psychrometric charts in Fig. 1(b): The process air consisting of product and 7 

working air is cooled along the dry channels without moisture increase and subsequently 8 

discharged from the right side. Through the perforations located on the end of channels, a 9 

portion of the process air (as the working air) is diverted into the adjacent wet channels. 10 

Flowing in counter direction to the process air in dry channels, the working air of wet channels 11 

is humidified, heated and finally exhausted to outside. Meanwhile the remainder of process air 12 

(as the product air) is purified by a filtration again before it is supplied to outside. A damper was 13 

equipped to regulate the ratio of working to product airflow rate. A top water distributor enables 14 

water spread evenly across the wet surfaces of heat exchanger. Non-evaporated water is 15 

collected in the bottom reservoir and re-circulated to the top reservoir periodically through an 16 

electrical pump. When a certain amount of water is consumed, more fresh water is supplied to 17 

the top reservoir with a solenoid valve.  18 

 19 

Fig. 2. Schematic diagram of the counter-flow regenerative evaporative cooler 20 

 21 
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3. Theoretical design of heat and mass exchanger  1 

3.1. Overall and unit performance indicators  2 

Wet-bulb effectiveness of the regenerative cooler, given by Eq. (1), is defined as the ratio 3 

of temperature reduction of inlet and outlet air dry-bulb to that of inlet air dry-bulb and 4 

wet-bulb.  5 

 
(1) 

The cooler’s sensible cooling capacity is determined by Eq. (2) derived from ASHRAE 6 

Standard 143 [24], when outside ambient air is used as the inlet air. 7 
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Energy Efficiency Ratio (EER) of the evaporative cooler, calculated by Eq. (3), is 8 

described as the ratio of sensible cooling capacity to total power consumption of the cooler, i.e. 9 

electricity consumption by the air fan and water pump. 10 

                                                         (3) 11 

The cooler’s unit performance indicators includes cooling capacity per unit volume and per 12 

unit airflow rate, which are the sensible cooling capacity determined by Eq. (2) divided by the 13 

cooler’s geometric volume and supply airflow rate respectively. 14 

3.2. Descriptions of the design problem  15 

The design problem of heat and mass exchanger is complex that involves our 16 

comprehensive concerns on the exchanger’s intended purpose, geometrical dimensions, capital 17 

investment and operating cost. In this study, the following design criteria were considered as a 18 

guideline:  19 

 High cooling effectiveness (counter-flow pattern) 20 

 Low pressure drop of airflows, i.e. low fan power consumption  21 

 Compact size of exchanger, i.e. the exchanger’s total length and depth are limited 22 

within 0.9 and 1.1 m respectively. 23 

 Simple production and construction  24 

To satisfy these needs, we designed a compact counter-flow plate-type heat and mass 25 

exchanger. The schematic of the exchanger is shown in Fig. 3. The exchanger comprises a stack 26 
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of thin cellulose fibre coated plastic sheets, separated by Nch channel gaps. The width (b) and 1 

depth (e) of each dry/wet channel gap is set to 3.0 mm and 45.8 mm (>15 times the width) 2 

respectively to achieve better heat transfer. The total width of effective heat transfer surface (W) 3 

is 0.458 m regardless of the supporting rods between the channels. The thickness of heat 4 

exchanger sheets (δ) is 0.375 mm. Therefore, the total depth of exchanger is H=bNch+(Nch+1)δ. 5 

The intake air design temperature is set to th,in =37.78 
o
C dry bulb and th,in,wb=21.11 

o
C wet bulb 6 

(Australian standard rating condition, see Ref. [25]). The exchanger is required to provide 7 

Qcooling=8303 W of cooling capacity with 1530 m
3
/h supply/product airflow volumetric rate 8 

(Vh-Vc). It’s able to supply sufficient air change rate by 1530 m
3
/h due to 100% fresh air input, 9 

which totally fulfils the demands of the UK’s building code [26] (the necessary air change rate 10 

for most types of buildings ranges from 4 to 10 ach for 100 m
2
 floor area, which is equivalent to 11 

400-1000 m
3
/h approximately). Calculated by Eqs. (1) and (2) respectively, the exchanger’s 12 

wet bulb effectiveness (εwb) and product air temperature were yield, i.e. εwb=0.977, th,out=21.5 13 

o
C,  which are the known parameters for this design problem. 14 

To meet the aforementioned design criteria, the exchanger’s optimal geometrical and operating 15 

parameters should be determined that incorporate dry/wet channel length and depth (L, H), dry 16 

and wet channel numbers (Nch), working-to-intake airflow ratio (R) and intake air velocity or 17 

intake airflow volumetric rate  (Vh). A numerical computer model based on modified ε-NTU 18 

method is developed as follows to accomplish the purpose. 19 

 20 

Fig. 3. Schematic of the counter-flow plate-type heat and mass exchanger 21 

3.3. Modified effectiveness-NTU method 22 

3.3.1. Mathematical equations and computational modelling method  23 

The method applied for obtaining a numerical solution to the counter-flow heat and mass 24 
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exchanger problem is to divide the entire heat exchanger into N numbers of computational 1 

elements. Fig. 4 illustrates the diagrams of computational element for the numerical modelling 2 

with the modified thermal profiles of the entire heat exchanger. A one-dimensional numerical 3 

model is developed by applying the modified ε-NTU method to each element of the exchanger 4 

and requiring that the boundary conditions associated with each element are consistent with the 5 

adjacent element. The numerical problem is coded in Engineering Equation Solver (EES) 6 

software and solved by Newton's alternative method. Some assumptions are made to simplify 7 

the solutions: 1) the exchanger is assumed to be well insulated to the surrounding; 2) 8 

longitudinal thermal conduction in the wall sheet is neglected; 3) fouling resistance of the 9 

exchanger is neglected; 4) heat and mass transfer coefficients as well as fluid properties inside 10 

each element of the model are constants; 5) Reynolds analogy between heat and mass transfer is 11 

valid and the Lewis number is unity; 6) the air-water interface offers a negligible resistance to 12 

heat transfer so that the interface temperature is saturated at the water film temperature.  13 

In the modified ε-NTU method, the differential governing equations are directly given 14 

below regardless of the mathematical derivation, as the related study is well presented in Ref. 15 

[13]. In those equations, proper adjustment is made by redefining some terms stated in typical 16 

ε-NTU method, which include: 1) the enthalpy potential gradient for driving the energy transfer 17 

between the product air in dry channel and working air in wet channel; 2) the overall heat 18 

transfer coefficient and 3) the heat capacity rate parameters.  19 

 20 

(a) 21 

 22 

(b) 23 
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Fig. 4. Schematic diagrams illustrating (a) computational element for the numerical modelling 1 

and (b) modified thermal profiles of the counter-flow heat and mass exchanger 2 

Based on the energy balance on the product air in dry side, the heat transfer rate for each 3 

computational element of the exchanger is given by Eq. (4): 4 

 (4) 

5 

where ih,1and ih,2 represent the specific enthalpy of the process/primary air at the inlet and outlet 
6 

states of each element respectively. An energy balance on the working air in wet side for each 
7 

element is expressed as Eq. (5):  
8 

 (5) 
9 

where ic,1and ic,2 denote the specific enthalpy of the working air at the outlet and inlet states of 
10 

each element respectively. For the regenerative cooler, the outlet thermal condition of the air in 
11 

dry channel is equal to the inlet thermal condition of air in wet channel i.e. ih,out =ic,in and 
12 

th,out=tc,in. 
13 

The heat transfer equation between the product air in the dry channel and the working air in 14 

the wet channel for the element can be given by Eq. (6): 
 

15 

 
(6) 16 

Where the unique enthalpy gradient is(th)-i(tc) is the driven force making this energy transfer 17 

occur. The overall conductance of the heat exchanger is expressed in Eq. (7):  18 

 

(7) 19 

whereσis the surface wetting factor defined as the ratio of wetting area to the total area of heat 20 

transfer, which stands for surface incomplete wetting condition. It varies from 0 to 1 depending 21 

on surface wettability, water spraying condition and operating condition. In this study, a typical 22 

value of 0.8 was selected for this variable to carry out the modelling [12]. k and kw symbolise 23 

the thermal conductivity of exchanger wall and water film.δw represents the thickness of water 24 

film, which was assumed to be 0.3 mm.  25 

The enthalpy of air is assumed to have a linear relation with saturation temperature, which 26 

can be defined as Eq. (8).  27 
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Where a is the slope of the temperature-enthalpy saturation line and c is a constant in this 1 

equation.  2 

The heat capacity rate of primary air (Ch) and secondary/working air (Cc) can be redefined 3 

by establishing the heat balance on the air in dry channel and wet channel, which are given in 4 

Eqs. (9) and (10) respectively:   5 

  (9) 6 

    (10) 7 

Rearranging the Eq. (9) gives: 8 

  (11) 9 

Where a can be determined by the ratio of enthalpy difference to the temperature difference 10 

between inlet and outlet air in each element of dry channel.  11 

Rearranging the Eq. (10) gives: 12 

   (12) 13 

The maximum possible heat transfer rate (qmax) for the exchanger can be achieved 14 

theoretically as the overall conductance (UA) approaches infinity. The fluid with the minimum 15 

capacity rate (Cmin) will experience the maximum possible enthalpy gradient and the maximum 16 

heat transfer rate, which can be written as Eq. (13):  17 

    (13) 18 

Where    (14) 19 

The effectiveness of each computational element (ε) is the ratio of the actual heat transfer 20 

rate to the maximum possible heat transfer rate: 21 

  (15) 22 

Substituting for dqmax from Eq. (13) into Eq. (15) yields: 23 

 

(16) 24 

The number of transfer units and the capacity ratio is expressed as Eqs. (17) and (18) 25 

respectively: 26 
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  (17) 1 

  (18)  2 

Where    (19) 3 

For a counter-flow exchanger, the effectiveness is determined by Eq. (20) [27]:  4 

  (20) 5 

where Cr<1 6 

3.3.2. Heat and mass transfer coefficients   7 

In the Eq. (7), the convective heat transfer coefficient (hc) of the product air in dry channel 8 

can be determined as follows. The air velocities in dry and wet channels are calculated by Eqs. 9 

(21) and (22) respectively: 10 

  (21) 11 

  (22) 12 

Calculating the hydraulic diameter of dry and wet channels yields: 13 

  (23) 14 

For each computational element of heat exchanger, Reynolds number (Re) of the primary 15 

and secondary air in dry and wet channels is calculated by Eqs. (24) and (25) respectively:  16 

 (24) 17 

 (25) 18 

Where νh and νc denote the kinematic viscosity of process and working air evaluated at average 19 

temperature in each element. The Reynolds numbers calculated by above equations are less 20 

than 2300, which indicates both the process and working airstreams are laminar flow.  21 

The local convective heat transfer coefficients from process and working air to exchanger 22 

walls are decided by Eqs. (26) and (27) respectively:  23 
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 (26) 1 

 

(27)

 

2 

where kh and kc respectively denote the thermal conductivity of process and working air 

3 

evaluated at average temperature in each element. To obtain the conservative solution, NuT,h 

4 

represents the lower bound of local Nusselt number for a laminar, hydrodynamically and 

5 

thermally fully developed flow in a rectangular duct that is exposed to an uniform wall 

6 

temperature, which is given by Eq. (28) [28]  

7 

  (28) 
8 

where b/e=0.066 is defined by the aspect ratio of the minimum to the maximum dimensions of 

9 

rectangular duct. While the local Nusslet number for a simultaneously developing flow in the 

10 

rectangular duct as a function of dimensionless position, L/(DhRePr), was predicted by EES 

11 

procedure, i.e. DuctFlow_N_local [29], which interpolated a table of data provided by Ref. [30]. 

12 

Assuming that the Lewis number for air and water mixture is unity, the mass transfer 

13 

coefficient between working air and water film can be obtained by the following equation: 

14 

 (29) 15 

Where Cp,c is the specific heat capacity of moist air assessed at average temperature of working 16 

air in each element.  17 

3.3.3. Pressure drop of airflows  18 

The total pressure drop of the process and working air, consisting of friction and minor loss, 19 

can be described in Eqs. (30) and (31) respectively. 20 

 (30) 
21 

 (31)
 

22 

where the friction loss of product air (ΔPf,h) and working air (ΔPf,c) in each element are 23 

calculated using the Eqs. (32) and (33) respectively [27]: 24 
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1 

where the average friction factor (f) of each modelling element is computed by the empirical 2 

correlations expressed as Eq.(34) [28], for laminar flow in rectangular duct including the 3 

simultaneously developing and fully developed regions. 4 

 (34)

 
5 

where L
+
=L/(DhRe) is the dimensionless length for a hydro dynamically developing internal 6 

flow. The friction factor (ffd) for the fully developed laminar flow in rectangular duct can be 7 

determined by the correlation given in Eq. (35) [28]:  8 

 (35) 

9 

The minor loss of product and working air in Eqs. (30) and (31) are calculated by Eqs. (36) 10 

and (37) respectively: 

 

11 

 (36) 
12 

 (37) 
13 

where Σζh and Σζc denote the total minor loss coefficients of the product and working airflow in 
14 

dry and wet side respectively. ζin,h and ζexit indicate the resistance coefficients for a sharped 
15 

edged duct inlet and exit respectively. ζtee,straight and ζtee,branched are the resistance coefficients for 
16 

standard T with flow straight through and primarily through branch respectively. ζcontraction and 
17 

ζexpansion represent the resistance coefficients for an abrupt contraction and expansion processes 
18 

respectively. ζfilter and ζbend symbolise the resistance coefficients for an air filter and a 90 degree 
19 

bend.  
20 

The actual fan power consumption is the ratio of the total theoretical energy use to the fan 21 

efficiency (η), which is given by Eq. (38): 22 
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where uh,out =(Vh-Vc)/(0.5WbNch), which is the outlet air velocity in dry channel. 

 1 

3.4. Results and discussion of numerical modelling 2 

 3 

 4 

Fig. 5. Channel length and fan power consumption as a function of the number of 5 

computational elements 6 

Fig. 5 plots the channel length predicted by the numerical model as a function of the 7 

number of computational elements. The result shows that the accurate results of channel length 8 

and power consumption can be achieved if the number of computational elements is larger than 9 

20, which are 0.86 m and 394 W respectively.   10 

 11 

Fig. 6. Channel length and fan power consumption as a function of working-to-intake air ratio 12 

Fig. 6 shows the effects of the ratio of working to intake airflow rate on channel length and 13 

fan power consumption. The predicted power consumption reaches minimum with the 14 

working-to-intake air ratio varied between 0.35 and 0.45. Also, the predicted channel length 15 

drops rapidly with the working-to-intake air ratio smaller than 0.44 and then it gradually 16 
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decreases without changing too much. Therefore, to reduce the exchanger’s capital and 1 

operating costs, its working-to-intake air ratio should be set around 0.44.  2 

  3 

 4 

(a) 5 

 6 

(b) 7 

Fig. 7. Effects of number of channel gaps on (a) channel length, depth and fan power 8 

consumption; (b) volume size and heat transfer area of heat exchanger 9 

Fig. 7 indicates the geometrical parameters (channel length and depth) and fan power 10 

consumption of the heat exchanger as a function of channel gaps number. With increasing the 11 

channel gap number from 100 to 600, the predicted channel length decreases from 1.96 to 0.46 12 

m and the channel depth increases from 0.34 to 2.02 m. Meanwhile, It is shown that the 13 
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prediction of fan power consumption reduces dramatically with the channel number increasing 1 

from 100 to 300 and nearly keeping constant from 300 to 600. The calculated volume size and 2 

heat transfer area of the exchanger doesn’t vary too much while the channel number increasing 3 

from 200 to 600. All in all, the number of 320 channel gaps was determined by 4 

comprehensively considering design criteria including simple manufacturing, low energy 5 

consumption and limited geometry. The total depth of exchanger is 1.08 m derived from the 6 

number of channel gaps. In summary, Table 1 presents the geometrical and operating 7 

parameters of the heat exchanger, including the known design conditions and predicted results.  8 

Table 1. Known and predicted design parameters of heat and mass exchanger 9 

Design parameter  Symbol  Unit Value 

Intake air dry-bulb temperature  th,in 
o
C 37.78 

Intake air wet-bulb temperature th,in,wb 
o
C 21.11 

Intake air humidity ratio ω g/kg 9.05 

Product air volumetric flow rate  Vh-Vc m
3
/h 1530 

Intake air volumetric flow rate Vh m
3
/h 2737 

Cooling capacity  Qcooling W 8303 

Fan power consumption P W 394 

Product air dry-bulb temperature  th,out 
o
C 21.5 

Wet-bulb effectiveness εwb - 0.977 

Thickness of thin sheets  δ mm 0.375 

Thickness of water film δw mm 0.3 

Dry/wet channel height  b mm 3.0 

Dry/wet channel width  e mm 45.8 

Dry/wet channel length L m 0.86 

Total width of heat transfer surface W m 0.458 

Total depth of the exchanger H m 1.08 

Thermal conductivity of wall sheet k W/(m•K) 0.375 

Thermal conductivity of water film kw W/(m•K) 0.3 

Fan efficiency  η  0.65 

Working-to-intake air ratio R - 0.44 

Number of dry and wet channels Nch - 320 

 10 
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Figs. 8 and 9 respectively depict the effects of channel length and intake airflow rate on 1 

overall performance of the cooler while retaining other geometrical and operating parameters 2 

the same as shown in Table 1. They indicate that the model developed here can be used to 3 

determine the heat exchange’s channel length and intake airflow rate if the required cooling 4 

effectiveness, cooling capacity and power consumption are known in advance. 5 

 6 

 7 

Fig. 8. Calculated wet bulb effectiveness and product air temperature as a function of channel 8 

length  9 

 10 
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 1 

(b) 2 

Fig. 9. Effects of intake air flow rate on (a) wet-bulb effectiveness and product air temperature; 3 

(b) cooling capacity and fan power consumption  4 

 5 

4. Fabrication of the regenerative evaporative cooler  6 

4.1. Heat and mass exchanger 7 

The heat and mass exchanger was designed, fabricated and constructed as specifications 8 

summarised in Table 1. As seen in Fig. 10, the exchanger was stacked together using 160 pairs 9 

of dry and wet channels. The dry and wet channels were formed with moisture impervious 10 

polymer films and cellulose-blended wicking fibre films, which has superior water absorption 11 

and retention abilities compared to other hydrophilic materials [8]. Each dry or wet channel is 12 

separated by 10 pieces of long plastic rods having the dimensions of 2×3×860 mm and 13 

2×3×695 mm respectively. These rods were arranged in parallel rows to form long paths with 14 

rectangular cross-section (3×45.8 mm), which are designed to guide the passing product and 15 

working airflows. Moreover, both two sides of the rods in between wet channels were coated 16 

with the same wicking fibre in order to enhance surface wetting condition. Aluminium strips (in 17 

3×10×665 mm) coated with the same wicking fibre material were also constructed at the top of 18 

each wet channel to facilitate surface water distribution. It is found that the evaporation surfaces 19 

were completely wetted within 5 minutes with assistance of the strips.  20 
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 1 

Fig. 10. Photographs showing the fabricated (a) exchanger, (b) dry/wet wall and (c) 2 

regenerative evaporative cooler  3 

4.2. Regenerative evaporative cooler  4 

The prototype of regenerative evaporative cooler was mainly assembled using the heat and 5 

mass exchanger, a centrifugal fan (manufacturer: ebm-papst, type: K3G355-AI62-06), a water 6 

distributor and collector as depicted in Fig. 2. A high efficiency filter made of fibrous materials, 7 

being installed between the fan and the inlet of exchanger, is used to remove solid particulates 8 

(such as dust, mould and bacteria) from process air and to make the intake air of exchanger 9 

distribute more uniformly. Another filter placing at the outlet of heat exchanger, not only to 10 

further purify the product air but also to block and divert portions of process air into the 11 

adjacent wet channels through the terminal perforations. Evaporation water is supplied from the 12 

top water distributor to the top of wet channels through 160 pieces of copper tubes in 2.6 mm 13 

outer diameter, located at internals of 6 mm, which is the distance between adjacent wet 14 

channels. Unused water is collected in bottom reservoir and recirculated to the top water 15 

distributor through an electrical pump (manufacturer: Xin Wei Cheng tech., type: 16 

WKA1300-12V). When the water level in the top distributor falls below the lower limit, a water 17 

level switch (manufacturer: Cynergy3, type: SSF211X100) can detect the level change and 18 

open a joint solenoid valve (manufacturer: COVNA, type: 2W31-15GBN). As a consequence, 19 

(b) 

(c) 

(a) 
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more fresh water will be supplied to the distributor until the upper limit is reached. The capital 1 

cost of the cooling unit was calculated by summing up the prices of the components contained 2 

in the unit, taking into account an appropriate rate of labour cost in China. It should be stressed 3 

that the prices of the components were quoted from the selected product catalogue and the 4 

labour cost was estimated on the basis of mass production premise. Details of the calculation 5 

are presented in Table 2.  6 

Table 2. Estimated capital cost of the cooling unit 7 

Component Unit Price (CNY) Quantity Cost (CNY) 

Centrifugal fan 10994 1 [piece] 10994 

Electrical pump 495 1 [piece] 495 

Air filter 100 2[piece] 200 

Water distributor 100 1[piece] 100 

Water collector 50 1[piece] 50 

Solenoid valve 95 1[piece] 95 

Supply air damper 80 1[piece] 80 

Level switch 570 1[piece] 570 

Outer casing                              330 1[piece] 330 

Heat exchanger 3700 1[piece] 3700 

Labour cost 20 80[hours] 1600 

Total 18214 

5. Experimental set-up  8 

5.1. Experimental instrumentation and measurement method  9 

Fig. 11 demonstrates a layout of the experimental facility for testing the fabricated 10 

regenerative evaporative cooler’s performance. The cooler was placed in an environmentally 11 

controlled room, which is conditioned by an Air Handling Unit (AHU) consisting of a 12 

pre-heater, a humidifier, a cooling coil, a re-heater and an air blower. The AHU was adjusted to 13 

vary the temperature and humidity of the entering air to the cooler. Both the supply and exhaust 14 

airflows of the evaporative cooler were connected to the separate airflow measurement 15 

chambers, which are composed of square tunnels with several flow nozzles in the middle. The 16 
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supply or exhaust airflow rate given in Eq. (39), is obtained by measuring the difference in 1 

pressure across the taps at upstream and downstream of the nozzle plate using micro 2 

manometers (measurement range：0-1500 Pa, accuracy：0.01 mmH2O).  3 

 (39) 4 

Where, qv symbolises volumetric flow rate, m
3
/s; C denotes orifice flow coefficient, i.e. 0.6, A 5 

is the cross-sectional area of the orifice hole, m
2
; ρ is the air density, kg/m

3
; P1 and P2 represent 6 

air pressures measured at upstream and downstream of the orifice plate respectively, Pa.  7 

A variable-speed fan located at the outlet of each airflow chambers is used to maintain the 8 

required outlet static pressure and compensate for the additional resistance of the pipework and 9 

measurement system. The cooler’s intake air flow rate was varied by the inlet fan, while its 10 

dry-bulb and wet-bulb temperatures were measured by dry-bulb and wet-bulb mercury 11 

thermometers (measurement range: -25-50 
o
C, accuracy:±0.2 

o
C) respectively, placed at the 12 

inlet of the air cooler. Small portions of the supply airflow were drawn by a blower to a 13 

visualised plastic box, where mercury thermometers (measurement range： 0-50 
o
C, accuracy：14 

±0.1 
o
C) were positioned to measure its dry-bulb and wet-bulb temperature. Meanwhile, the 15 

cooler’s exhaust air dry-bulb and wet-bulb temperatures were tested using the same method. 16 

The cooler’s energy consumption was gauged using a power meter (measurement range: 17 

0-1000 W, accuracy: ±0.01 W).   18 

The measured data were analysed under steady states, which was defined as the period 19 

when the dry-bulb and wet-bulb temperature variations are within 0.1 
o
C for 10 minutes. Once 20 

steady state had been achieved, the dry-bulb, wet-bulb temperatures and pressures used for 21 

performance analysis were attained by taking algebraic average of the measured data over 22 

10-minute intervals. The data collected enabled a number of performance indicators to be 23 

determined including wet-bulb effectiveness, cooling capacity, power consumption and EER.  24 

 v 1 2

2
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
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 1 

 2 

Fig. 11. Graphs showing (a) schematic and (b) photograph of the evaporative cooling system 3 

experimental set-up  4 

5.2. Uncertainty analysis of experimental results 5 

The accuracy of experimental results was examined by evaluating energy balance 6 

between the cooler’s product air and the working air. The energy changes in product and 7 

working airflows are determined by Eqs. (40) and (41) respectively. Fig. 12 depicts the 8 

(b) 

(a) 
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comparison of energy changes in product and working air for all experimental data conducted 1 

in this work. It is shown that, for most of cases, the energy changes agree well and the 2 

inconsistency is below ±10%.  3 

 (40) 4 

 (41) 5 

 6 

Fig. 12. Comparison between the energy changes in product and working airflows 7 

Eq. (42) was given to calculate the relative uncertainty for the dependent performance 8 

indicator variables. 9 

 (42) 10 

Where Δy/y represents the relative uncertainty of dependent variables, i.e. Δεwb/εwb, 11 

ΔQcooling/Qcooling, ΔEER/EER; y is the function of the independent variables xi described in Eqs. 12 

(1)-(3) respectively. For instance, y=εwb, thus xi=tdb,1, tdb,2, twb,1. The uncertainty of airflow 13 

rate is determined by pressure drop, given in Eq. (39). The uncertainty for the performance 14 

indicator variables was found to be within ±1.31% for wet-bulb effectiveness, ±1.36% for 15 

sensible cooling capacity and ±2.61% for EER on average. 16 

6. Performance analysis of the regenerative evaporative cooler 17 

The study experimentally examines the overall performance of the proposed regenerative 18 
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cooling prototype under various operating conditions and compares the results with the 1 

predictions obtained from the aforementioned numerical work. It also analyses the factors that 2 

affecting its cooling performance including intake air temperature and humidity, intake 3 

airflow rate, and working-to-intake air ratio numerically and experimentally. The achieved 4 

results can be employed 1) to analyse the performance of the system in different operating 5 

conditions; 2) to optimise its overall performance by determining its appropriate operating 6 

parameters; 3) to confirm practicality of the counter-flow cooler applying in hot and dry 7 

climates and reveal its novelty characteristics through comparing with previous studies in 8 

terms of systems geometrical, operating and performance parameters.  9 

6.1. Effect of intake airflow rate 10 

Fig. 13 shows the cooler’s cooling effectiveness, cooling capacity and EER value 11 

obtained from the experiment and simulation when gradually increasing the intake airflow 12 

rate from 1148 to 2393 m
3
/h (corresponding to 1.73-3.60 m/s of intake channel air velocity) 13 

while keeping the other operating parameters constant (th,in=38.0 
o
C d.b., th,in,wb=20.8 

o
C w.b., 14 

tw=22 
o
C and R=0.47). It is observed that, for the experimental data, as the intake airflow rate 15 

increased by 108%, the cooler’s wet-bulb effectiveness declined merely by 7.6% from 1.07 to 16 

0.99 while the supply air temperature increased by 6.6% from 19.6 to 20.9 
o
C. With the same 17 

change, the cooling capacity of the system was significantly increased from 3.9 to 7.3 kW by 18 

around 84% and the EER from 10.6 to 16.9 by 58.6%. The results show that, when operating 19 

under a wide range of intake air velocity (1.73-3.04 m/s), the established prototype could 20 

reduce the intake air temperature below its wet-bulb and provide much higher cooling 21 

capacity with only a small amount of energy consumption.  22 

It is also found that the discrepancies between the numerical and experimental results 23 

ranged from 5.3-19.2%, 3.9-14.4% and 3.9-21.5% in terms of cooling effectiveness, cooling 24 

capacity and supply air temperature respectively. The differences are getting larger when 25 

intake airflow rate are reduced. For the lowest intake airflow rate, there was biggest gap 26 

occurred between the experimental and predicted data. The reason for the increased 27 

discrepancy can be explained as follows: For the experiment results, as the intake airflow rate 28 

is reduced, the water evaporation rate is getting slower as plotted in the Fig. 11(b) of Ref. [19]. 29 

Thus, the ratio of water supplied to water evaporated is getting higher while reducing the 30 

intake airflow rate because the water mass flow rate supplied to the exchanger is 31 

predominantly constant during the experiment process. The highest water 32 
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supplied-to-evaporated ratio makes the cooler’s effectiveness fall to the lowest level as 1 

indicated in the Fig. 6 of Ref. [20]. For the simulation results, however, the uniform and 2 

continuous water film is always assumed for all operating conditions without considering 3 

excessive water mass flow rate, which could become much larger in the experiment when the 4 

intake airflow rate is getting smaller. Therefore, the measured performance is substantially 5 

less than that predicted. This discrepancy may be reduced if the feed water mass flow rate was 6 

made small in the exchanger while keeping the evaporation surfaces completely wet. 7 

Especially, a smaller water mass flow rate should be supplied when the intake airflow rate is 8 

small. The similar trend of this discrepancy between measured and predicted effectiveness 9 

was also described in the Fig. 3 of an early paper [5], in which assuming that constant water 10 

mass flow rate was maintained while varying the air flow rates, the water flow rates would be 11 

most excessive and measurements lowest relative to the predictions at low Reynolds numbers, 12 

i.e. low air velocities.  13 

 14 

 15 
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 1 

 2 

Fig. 13. Graphs showing the effect of intake airflow rate on the cooler’s (a) product air 3 

temperature (b) wet-bulb effectiveness (c) cooling capacity and EER 4 

 5 

6.2. Effect of intake air temperature and humidity  6 

Fig. 14 depicts the cooler’s overall performance evaluated experimentally and 7 

numerically under different intake air humidity ratio (ω=7.67, 8.51, 10.94 g/kg) when 8 

gradually increasing the intake air dry-bulb temperature from 36 to 40 
o
C while retaining the 9 

other operating parameters constant (uin=3.6 m/s, Vh=2393 m
3
/h, R=0.47, tw=25.3

 o
C). It is 10 

found that the cooler’s cooling capacity and effectiveness, together with the energy efficiency 11 

were linearly growing with increasing the intake air temperature. Operating at highest intake 12 

airflow rate, the cooler can achieve 0.96 to 1.04 of wet-bulb effectiveness approximately. The 13 

hot intake air can be cooled to 19.7-22.9 
o
C (around 1 

o
C lower than the wet-bulb temperature 14 

of intake air) before it was finally supplied to outside, bring about 13.4-20.0 
o
C of 15 

temperature reduction. These results indicate the cooling prototype can obtain sub-wet bulb 16 

supply air temperature even for the largest intake airflow rate, and it is greatly influenced by 17 

the intake air temperature and humidity with respect to the overall performance, as described 18 

in Eqs. (1) and (2).  19 
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 1 

Fig. 14. Graphs showing the effect of intake air temperature and humidity on the cooler’s (a) 2 

product air temperature (b) wet-bulb effectiveness (c) cooling capacity and EER 3 

 4 

6.3. Effect of working-to-intake air ratio  5 

Fig. 15 demonstrates the cooler’s overall performance examined experimentally and 6 

numerically under different working-to-intake airflow rate ratio while keeping the other 7 

operating conditions fixed (th,in=38.9 
o
C, th,in,wb=21.2 

o
C, Vh=2393 m

3
/h, R=0.47). The 8 

experimental results show that the working to intake air ratio evidently affects the cooler’s 9 

overall performance. With the ratio getting higher, the cooler’s wet-bulb effectiveness 10 

increased by 15.8% from 0.85 to 0.99 and the supply air temperature dropped by 8.4% from 11 

23.7 to 21.7 
o
C. Meanwhile, the cooling capacity and EER value enhanced with the ratio 12 

increasing from 0.35 to 0.44 and then fell down from 0.44 to 0.58. Hence, considering the 13 

contrary variation trends among the wet-bulb effectiveness, cooling capacity and energy 14 

efficiency, the optimal ratio of working to intake airflow rate should be around 0.4-0.44.  15 

16 
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 2 

Fig. 15. Graphs showing the effect of working-to-intake air ratio on the cooler’s (a) product 3 

air temperature (b) wet-bulb effectiveness (c) cooling capacity and EER 4 

 5 

6.4. Comparison with previous experimental studies 6 

To disclose the superior characteristics of the proposed cooler, we evaluated and compare 7 

with other regenerative evaporative coolers recently investigated in related experiment studies 8 

[16, 19-21] by comprehensively considering operating conditions, geometrical parameters and 9 

performance indicators as given in Table 3. Some experimental data were taken from the 10 

studies to make comparisons that obtained whilst these regenerative coolers working in 11 

certain operating conditions.  12 

To eliminate the effects of different geometries and airflow rates, we examined the 13 

cooling capacities of unit volume and unit supply airflow rate of these coolers. It is found that, 14 
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comparing against the cooler in Ref. [20], the cooling capacity per unit volume provided by 1 

the proposed cooler is increased by 62-108%. That means, through conducting an 2 

optimisation design on the structure and materials of heat exchanger, the cooling capacity of 3 

the presented cooler have been greatly improved with more compact size. Additionally, we 4 

noticed that the cooling capacity per unit airflow rate provided by the cooler is similar with 5 

those studied in Refs. [16, 19] despite of more humid working condition, but 21.6% higher 6 

than that the cooler reported in Ref. [20]. The reason why it has the less cooling capacity per 7 

unit airflow rate can be explained by its lower intake air temperature, higher humidity, less 8 

working-to-intake air ratio and unmentioned intake air velocity. Besides, while operating at 9 

higher intake air velocity, the proposed cooler also achieved similar cooling effectiveness 10 

with those of coolers in Refs. [19-21]. Compared to our proposed cooler, the M-cycle 11 

cross-flow cooler in Ref. [16] has 17% higher effectiveness due to the much lower supply 12 

airflow rate reduced by 86 %. In terms of the energy efficiency, the proposed cooler has the 13 

largest EER compared to others. 14 

 15 

Table 3. Comparison of regenerative evaporative coolers in recent experimental studies 16 

Parameters Present study Ref. [21] Ref. [20] Ref. [19] Ref. [16] 

Flow arrangement Counter flow Counter flow Counter flow Counter flow 
M-cycle 

cross flow 

Exchanger 

dimension 

(W×H×L), m 

0.458×1.08×

0.86 

0.08×0.045×

1.2 

0.55×0.69×0.

35 

0.314×0.594

×0.9 

0.75×0.6×

0.85 

Exchanger volume, 

m
3
 

0.425 0.004 0.266 0.168 0.383 

Channel spacing 

(dry/wet), mm 
3/3 5/5 20/10 6/6 5/5 

Channel length, m 0.86 1.2 0.2 0.9 0.85 

Channel width, m 0.458 0.08 0.55 0.314 0.75 

Total channel 

numbers 
320 9 46 95 131 

Intake air 

temperature, 
o
C 

35.9-40.1 34 32 36 27.3-41.1 
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Intake air humidity, 

g/kg 
11.0 11.2 13.6 8.25 7.13-7.9 

Intake channel air 

velocity, m/s 
3.6 3.3 N/A 1.58-2.83 N/A 

Supply airflow rate, 

m
3
/h 

1268 N/A 600 120-257 174-604 

Working to intake 

air ratio 
0.47 0.33 0.3 0.5 0.33 

Feed water flow rate 

(g/h) 
N/A 60 52.5 N/A N/A 

Supply air 

temperature, 
o
C 

22.5-22.8 22 21 20.8-25.6 17.3-19.3 

Wet-bulb 

effectiveness 
0.96-1.0 0.96 1.06 0.55-1.06 0.77-1.17 

Cooling capacity, 

kW 
5.7-7.3 N/A 2.2 0.68-1.13 1.05-1.22 

Cooling capacity per 

unit volume, kW/m
3
 

13.4-17.2 N/A 8.27 0.8-6.7 2.7-3.185 

Cooling capacity per 

unit air flow rate, 

W/(m
3·h-1

) 

4.5-5.8 N/A 3.7 4.3-5.6 2.0-6.0 

EER 13.2-17.1 N/A N/A 10-14 6.8-14.2 

 1 

7. Conclusions 2 

With increasingly demands for air conditioning in building sectors, this research proposes 3 

a large-scale compact regenerative evaporative cooler for buildings as an alternative to 4 

conventional compression refrigeration system with great energy saving potential and positive 5 

environmental impacts. First, this study optimally designs the structural parameters of the 6 

counter-flow heat and mass exchanger by developing a finite element numerical model based 7 

on modified ε-NTU method. Subsequently, the heat and mass exchanger was fabricated with 8 

a type of evaporation material with high wicking ability, followed by the whole evaporative 9 

cooler’s construction. Then, the study experimentally examines the cooler’s overall 10 

performance operating in various conditions controlled by an air-conditioned chamber. 11 
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Moreover, the study experimentally and numerically analyses the factors affecting the 1 

performance of the cooler including intake air temperature, humidity and velocity and the 2 

ratio of working to intake airflow rate. Finally, the proposed cooler is comprehensively 3 

compared with other RECs in literature with respect to overall performance, operating and 4 

geometrical parameters. Regarding to the above works, some conclusions can be drawn as 5 

follows：  6 

1) The developed computational programme can be utilised i) to determine the optimal 7 

operating and geometrical parameters of a heat and mass exchanger in regenerative 8 

evaporative coolers; ii) to accurately predict the performance of regenerative 9 

evaporative coolers, provided that the Lewis relation is satisfied. 10 

2) The experimental results show that the wet-bulb effectiveness of the proposed cooler 11 

ranged from 0.96 to 1.07, the cooling capacity and EER varied from 3.9 to 8.5 kW and 12 

10.6 to 19.7 respectively. The cooler can supply cool outlet air temperature below the 13 

wet-bulb temperature of inlet air by around 1-2 
o
C despite of operating high intake 14 

channel air velocities (3.04-3.60 m/s).  15 

3) Through conducting an optimisation design on the structure, material and operating 16 

parameters of heat and mass exchanger, the proposed cooler’s performance has been 17 

greatly enhanced with more compact geometry: Its cooling capacity per unit volume 18 

has increased by 62-108%. The cooling capacity per unit airflow rate is either 21.6% 19 

higher than a previous counter-flow REC, or comparable with another M-cycle REC.  20 

4) The measured performance is substantially less than that predicted. This discrepancy 21 

may be reduced if the feed water mass flow rate was made small in the exchanger 22 

while keeping the evaporation surfaces completely wet. Especially, a smaller water 23 

mass flow rate should be supplied when the intake airflow rate is small. The water 24 

mass flow rate supplied to the heat exchanger should be varied with the intake airflow 25 

rate for making further performance optimisation.   26 
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Abstract  10 

The urges of reducing energy use and carbon footprint in buildings have prompted the 11 

developments of regenerative evaporative coolers (RECs). However, the physical dimensions 12 

of RECs have to be designed enormous in order to deliver a large amount of supply airflow rate 13 

and cooling capacity. To tackle the issue, this paper develops a large-scale counter-flow REC 14 

with compact heat exchanger through dedicated numerical modelling, optimal design, 15 

fabrication and experimentation. Using modified ε-NTU method, a finite element model is 16 

established in Engineering Equation Solver environment to optimise the cooler’s geometric and 17 

operating parameters. Based on modelling prediction, the cooler’s experimental prototype was 18 

optimally designed and constructed to evaluate operating performance. The experiment results 19 

show that the cooler’s attained wet-bulb effectiveness ranges from 0.96 to 1.07, the cooling 20 

capacity and energy efficiency ratio from 3.9 to 8.5 kW and 10.6 to 19.7 respectively. It can 21 

provide sub-wet bulb cooling while operating at high intake channel air velocities of 3.04-3.60 22 

m/s. The superiority of proposed cooler’s performance is disclosed by comparing with different 23 

RECs under similar operating conditions. Both the cooler’s cooling capacity per unit volume 24 

and per unit airflow rate are found to be 62-108% and 21.6% higher respectively.  25 

 26 

Keywords: 27 

Indirect evaporative cooling; Dew point cooling; Heat and mass exchanger; Experimental and 28 

numerical investigations 29 
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Building energy consumption in China had increased by 40% from 1990 to 2009 as the 1 

incomes rise and urbanisation advances [1]. The energy consumed by space cooling accounts 2 

for around 10% of total building energy use in 2012 [2]. With global warming and rising 3 

demand for comfort levels, this share has been increasing continuously. Due to the 4 

participations of compressor and refrigerant, the dominant vapour compression refrigeration/air 5 

conditioning systems consume large amounts of electrical energy and cause heavy 6 

environmental impact. In comparison, Indirect Evaporative Cooling systems (IECs) utilise 7 

latent heat of water vaporisation to remove the heat from supply airflow and retain the moisture 8 

constant without using compressors and refrigerants that have great potentials in energy saving 9 

and associated carbon emissions reduction [3]. However, conventional IECs haven’t been 10 

widely applied because the ultimate temperature for the IECs’ supply air is the wet-bulb 11 

temperature of ambient air, which could hardly be achieved in practice. According to Ref. [4], it 12 

is thought that only 40 to 80 per cent of temperature difference between ambient air dry-bulb 13 

and wet-bulb could be reached in typical indirect evaporative coolers.  14 

Regenerative or Recuperator Evaporative Cooler (REC), as the IECs with closed-loop 15 

configuration, has the ability of providing supply air at a temperature below the wet-bulb 16 

towards the dew-point temperature of inlet air theoretically [5-7]. According to the estimates 17 

[8], a counter-flow REC could annually reduce 13-58% of the total electrical power consumed 18 

by conventional compression air conditioners for various climates in China.  19 

Predominantly, there are two types of regenerative evaporative coolers including 20 

single-stage counter-flow and multi-stage M-cycle cross-flow configurations [9]. Fig.1 21 

demonstrates the working principles of their basic heat and mass exchanger structure and the 22 

psychrometric charts representing thermal process of airflows in dry and wet channels. In the 23 

counter-flow regenerative configuration, the intake airflow is circulated through the dry 24 

channel, a portion of the airflow is used as cooled product/supply airflow to be delivered to 25 

indoors, while being extracted through the perforations, the remaining airflow, as the working 26 

air, is re-circulated through the wet channel and is subsequently discarded to the outside. 27 

During this thermal process, the product air is cooled along the dry channel without any 28 

humidity increase whereas the working air is initially cooled to the minimal temperature with 29 

moisture additions at a certain distance from the entrance due to the effect of water evaporation. 30 

The temperature of working air subsequently begins to increase with minor moisture increase 31 

when the sensible heat transfer from product air in the dry channel exceeds the effect of 32 

evaporation cooling [10]. In the remainder of the wet channel, the working air has already 33 
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reached saturation and has gradually heated under this condition. Eventually, the working air 1 

can be heated and humidified towards a temperature a bit higher than the wet-bulb of intake air 2 

before it’s exhausted. This counter-flow recirculation arrangement allows the working air to be 3 

fully cooled before entering the wet channel, thus leading to increased temperature difference 4 

and heat transfer between the working and product airflows. 5 

 6 

Fig. 1. Graphs showing working principle and psychrometric process of (a) M-cycle 7 

multi-stage regenerative HMX [ref] (b) single-stage regenerative HMX.  8 

 9 

In the M-cycle regenerative configuration, part of the dry surface is designed for the 10 

product airflow to pass through while the rest is allocated to the working airflow. Both the 11 

(b) 

(a) 
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product and working air flows parallel along the dry channel. A few perforations are evenly 1 

distributed over the surface where the working air is contained. Through the small holes, all of 2 

the air passing along the working dry channel is gradually diverted to the wet surface, to be used 3 

as working air. This portion of airflow is pre-cooled before entering the wet channel by losing 4 

heat to the adjacent wet surface. The working air flowing over the wet surface absorbs heat 5 

from the product and working air on dry surface. During the thermal process, the product air 6 

temperature is reduced with constant moisture, while the working air is partially pre-cooled, 7 

humidified and heated in multi-stage process (1-2'-2'wb-3', 2'-2''-2''wb-3'', 2''-2'''-2'''wb-3''', 8 

2'''-2-2wb-3) and is finally exhausted to the outside. Compared to the single-stage counter-flow 9 

cooler with equivalent physical size and operating conditions, this cross-flow cooler allows the 10 

working air to be cooled in multi-stage, thereby leading to 15-23% lower cooling effectiveness 11 

and around 20% smaller cooling capacity but 10% higher energy efficiency theoretically [11].  12 

More recently, there have been growing interests on developing the single stage 13 

counter-flow and M-cycle regenerative evaporative coolers by analytical, numerical and 14 

experimental/field-testing methods. The analytical models being developed are normally based 15 

on conventional ε-NTU method when proper alternations are made by redefining the potential 16 

gradients, transfer coefficient, heat capacity rate parameters and assuming a linear saturation 17 

temperature-enthalpy relation of air. Through making these adjustments, the established 18 

analytical models can be used to determine the optimal operating and geometrical parameters of 19 

RECs for design problems, as well as to predict or compare the performance of RECs with 20 

different airflow patterns including parallel-flow, counter-flow, cross-flow and regenerative 21 

flow [10, 12-14]. Usually the analytical models were simplified to achieve acceptable results by 22 

making some assumptions, such as: 1) longitudinal thermal conduction in the wall is negligible; 23 

2) Lewis number is unity, 3) heat and mass transfer coefficients inside each channel are 24 

constants; 4) water film is uniform and continuous, etc. [5, 13]. By contrast, some sophisticated 25 

models can provide more accurate predictions by considering a set of variables including Lewis 26 

factor, surface wettability, spray water temperature, and spray water enthalpy change [10, 12].  27 

A few one-dimensional numerical models of counter-flow and two-dimensional models of 28 

M-cycle cross-flow RECs have been developed to predict/compare their performance and to 29 

analyse the effects of operating and geometrical parameters. The governing differential 30 

equations of these models were discretised with finite difference [15, 16] or finite element 31 

scheme [7, 11, 17] and solved using Newton iterative method or Eulerian-Lagrangian method 32 

[18]. The results of these modelling show that the RECs’ performance strongly depends upon 33 
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the parameters including intake air temperature and humidity, intake air velocity, 1 

working-to-intake airflow ratio, channel size of heat exchanger, feed water flow rate and 2 

uniformity of water film, but depends less on thermal conductivity of heat transfer sheets and 3 

feed water temperature [7, 19].  4 

Additionally, a few experimental/fielding-testing studies have been conducted on 5 

counter-flow and M-cycle RECs aiming to 1) validate the numerical or analytical modelling 6 

results [16, 20], to 2) study the effects of operating parameters [16, 19, 21], to 3) achieve the 7 

internal air temperature and humidity distributions for dry and wet channels [22] and to 4) 8 

prove the cooler’s technical viability through examining operating performance under various 9 

conditions [19, 23]. Most of those regenerative coolers developed are lab scale prototypes that 10 

can only provide sub-wet bulb cooling while operating at small intake channel air velocities 11 

lower than 1.0 m/s [16, 21]. As the intake air velocity increased from 1.0 to 4.0 m/s, the cooler’s 12 

effectiveness dramatically declined by nearly 100% [18]. Therefore, to achieve desirable 13 

cooing effectiveness or outlet air temperature, the regenerative coolers are suggested to operate 14 

under the intake air velocity less than 1.0 m/s. In that case, the physical dimensions of the 15 

regenerative coolers have to be designed rather huge in order to deliver a large amount of 16 

supply airflow rate or cooling capacity. The question then arises: how to determine the 17 

geometric and operating parameters of the heat exchanger for accomplishing the REC optimal 18 

performance subject to specified design constraints such as certain cooling requirement and 19 

confined geometrical volume. 20 

Aiming at solving the problem, this paper develops a computational model based on 21 

modified ε-NTU numerical method to determine the optimal geometrical and operating 22 

parameters of a new counter-flow regenerative evaporative cooler designed for buildings. The 23 

technical viability of the proposed cooler is confirmed by constructing a dedicated 24 

experimental prototype and testing it under various operating conditions in an air-conditioned 25 

chamber. The overall performance of the prototype examined in this study includes cooling 26 

effectiveness, cooling capacity, and energy efficiency as well as supply air temperature. The 27 

cooler’s unit performance indicators include cooling capacity per unit volume and per airflow 28 

rate. Additionally, the paper experimentally and numerically analyses and compares the factors 29 

that affecting the cooler’s overall performance, including intake air temperature, humidity, 30 

airflow rate and working-to-intake air ratio. To reveal the superior performance of the proposed 31 

cooler, the paper finally makes comparisons with those regenerative cooler found in previous 32 

studies in terms of overall/unit performance indicators under similar operating conditions. 33 
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2. Description of the developed counter-flow regenerative evaporative cooler 1 

As depicted in Fig. 2, the regenerative evaporative cooler developed in this study is a 2 

self-contained device, mainly composed of a core heat and mass exchanger, a centrifugal fan, a 3 

water distributing/recirculating system and an outer casing. Ambient air is drawn into the 4 

cooler by the centrifugal fan, and is primarily filtered before entering the heat exchanger. In the 5 

exchanger where the thermal process going through by the process air is equivalent to that 6 

shown on the psychrometric charts in Fig. 1(b): The process air consisting of product and 7 

working air is cooled along the dry channels without moisture increase and subsequently 8 

discharged from the right side. Through the perforations located on the end of channels, a 9 

portion of the process air (as the working air) is diverted into the adjacent wet channels. 10 

Flowing in counter direction to the process air in dry channels, the working air of wet channels 11 

is humidified, heated and finally exhausted to outside. Meanwhile the remainder of process air 12 

(as the product air) is purified by a filtration again before it is supplied to outside. A damper was 13 

equipped to regulate the ratio of working to product airflow rate. A top water distributor enables 14 

water spread evenly across the wet surfaces of heat exchanger. Non-evaporated water is 15 

collected in the bottom reservoir and re-circulated to the top reservoir periodically through an 16 

electrical pump. When a certain amount of water is consumed, more fresh water is supplied to 17 

the top reservoir with a solenoid valve.  18 

 19 

Fig. 2. Schematic diagram of the counter-flow regenerative evaporative cooler 20 

 21 
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3. Theoretical design of heat and mass exchanger  1 

3.1. Overall and unit performance indicators  2 

Wet-bulb effectiveness of the regenerative cooler, given by Eq. (1), is defined as the ratio 3 

of temperature reduction of inlet and outlet air dry-bulb to that of inlet air dry-bulb and 4 

wet-bulb.  5 

 
(1) 

The cooler’s sensible cooling capacity is determined by Eq. (2) derived from ASHRAE 6 

Standard 143 [24], when outside ambient air is used as the inlet air. 7 

, , ,( )( )

3.6
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(2) 

Energy Efficiency Ratio (EER) of the evaporative cooler, calculated by Eq. (3), is 8 

described as the ratio of sensible cooling capacity to total power consumption of the cooler, i.e. 9 

electricity consumption by the air fan and water pump. 10 

                                                         (3) 11 

The cooler’s unit performance indicators includes cooling capacity per unit volume and per 12 

unit airflow rate, which are the sensible cooling capacity determined by Eq. (2) divided by the 13 

cooler’s geometric volume and supply airflow rate respectively. 14 

3.2. Descriptions of the design problem  15 

The design problem of heat and mass exchanger is complex that involves our 16 

comprehensive concerns on the exchanger’s intended purpose, geometrical dimensions, capital 17 

investment and operating cost. In this study, the following design criteria were considered as a 18 

guideline:  19 

 High cooling effectiveness (counter-flow pattern) 20 

 Low pressure drop of airflows, i.e. low fan power consumption  21 

 Compact size of exchanger, i.e. the exchanger’s total length and depth are limited 22 

within 0.9 and 1.1 m respectively. 23 

 Simple production and construction  24 

To satisfy these needs, we designed a compact counter-flow plate-type heat and mass 25 

exchanger. The schematic of the exchanger is shown in Fig. 3. The exchanger comprises a stack 26 
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of thin cellulose fibre coated plastic sheets, separated by Nch channel gaps. The width (b) and 1 

depth (e) of each dry/wet channel gap is set to 3.0 mm and 45.8 mm (>15 times the width) 2 

respectively to achieve better heat transfer. The total width of effective heat transfer surface (W) 3 

is 0.458 m regardless of the supporting rods between the channels. The thickness of heat 4 

exchanger sheets (δ) is 0.375 mm. Therefore, the total depth of exchanger is H=bNch+(Nch+1)δ. 5 

The intake air design temperature is set to th,in =37.78 
o
C dry bulb and th,in,wb=21.11 

o
C wet bulb 6 

(Australian standard rating condition, see Ref. [25]). The exchanger is required to provide 7 

Qcooling=8303 W of cooling capacity with 1530 m
3
/h supply/product airflow volumetric rate 8 

(Vh-Vc). It’s able to supply sufficient air change rate by 1530 m
3
/h due to 100% fresh air input, 9 

which totally fulfils the demands of the UK’s building code [26] (the necessary air change rate 10 

for most types of buildings ranges from 4 to 10 ach for 100 m
2
 floor area, which is equivalent to 11 

400-1000 m
3
/h approximately). Calculated by Eqs. (1) and (2) respectively, the exchanger’s 12 

wet bulb effectiveness (εwb) and product air temperature were yield, i.e. εwb=0.977, th,out=21.5 13 

o
C,  which are the known parameters for this design problem. 14 

To meet the aforementioned design criteria, the exchanger’s optimal geometrical and operating 15 

parameters should be determined that incorporate dry/wet channel length and depth (L, H), dry 16 

and wet channel numbers (Nch), working-to-intake airflow ratio (R) and intake air velocity or 17 

intake airflow volumetric rate  (Vh). A numerical computer model based on modified ε-NTU 18 

method is developed as follows to accomplish the purpose. 19 

 20 

Fig. 3. Schematic of the counter-flow plate-type heat and mass exchanger 21 

3.3. Modified effectiveness-NTU method 22 

3.3.1. Mathematical equations and computational modelling method  23 

The method applied for obtaining a numerical solution to the counter-flow heat and mass 24 
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exchanger problem is to divide the entire heat exchanger into N numbers of computational 1 

elements. Fig. 4 illustrates the diagrams of computational element for the numerical modelling 2 

with the modified thermal profiles of the entire heat exchanger. A one-dimensional numerical 3 

model is developed by applying the modified ε-NTU method to each element of the exchanger 4 

and requiring that the boundary conditions associated with each element are consistent with the 5 

adjacent element. The numerical problem is coded in Engineering Equation Solver (EES) 6 

software and solved by Newton's alternative method. Some assumptions are made to simplify 7 

the solutions: 1) the exchanger is assumed to be well insulated to the surrounding; 2) 8 

longitudinal thermal conduction in the wall sheet is neglected; 3) fouling resistance of the 9 

exchanger is neglected; 4) heat and mass transfer coefficients as well as fluid properties inside 10 

each element of the model are constants; 5) Reynolds analogy between heat and mass transfer is 11 

valid and the Lewis number is unity; 6) the air-water interface offers a negligible resistance to 12 

heat transfer so that the interface temperature is saturated at the water film temperature.  13 

In the modified ε-NTU method, the differential governing equations are directly given 14 

below regardless of the mathematical derivation, as the related study is well presented in Ref. 15 

[13]. In those equations, proper adjustment is made by redefining some terms stated in typical 16 

ε-NTU method, which include: 1) the enthalpy potential gradient for driving the energy transfer 17 

between the product air in dry channel and working air in wet channel; 2) the overall heat 18 

transfer coefficient and 3) the heat capacity rate parameters.  19 

 20 

(a) 21 

 22 

(b) 23 
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Fig. 4. Schematic diagrams illustrating (a) computational element for the numerical modelling 1 

and (b) modified thermal profiles of the counter-flow heat and mass exchanger 2 

Based on the energy balance on the product air in dry side, the heat transfer rate for each 3 

computational element of the exchanger is given by Eq. (4): 4 

 (4) 

5 

where ih,1and ih,2 represent the specific enthalpy of the process/primary air at the inlet and outlet 
6 

states of each element respectively. An energy balance on the working air in wet side for each 
7 

element is expressed as Eq. (5):  
8 

 (5) 
9 

where ic,1and ic,2 denote the specific enthalpy of the working air at the outlet and inlet states of 
10 

each element respectively. For the regenerative cooler, the outlet thermal condition of the air in 
11 

dry channel is equal to the inlet thermal condition of air in wet channel i.e. ih,out =ic,in and 
12 

th,out=tc,in. 
13 

The heat transfer equation between the product air in the dry channel and the working air in 14 

the wet channel for the element can be given by Eq. (6): 
 

15 

 
(6) 16 

Where the unique enthalpy gradient is(th)-i(tc) is the driven force making this energy transfer 17 

occur. The overall conductance of the heat exchanger is expressed in Eq. (7):  18 

 

(7) 19 

whereσis the surface wetting factor defined as the ratio of wetting area to the total area of heat 20 

transfer, which stands for surface incomplete wetting condition. It varies from 0 to 1 depending 21 

on surface wettability, water spraying condition and operating condition. In this study, a typical 22 

value of 0.8 was selected for this variable to carry out the modelling [12]. k and kw symbolise 23 

the thermal conductivity of exchanger wall and water film.δw represents the thickness of water 24 

film, which was assumed to be 0.3 mm.  25 

The enthalpy of air is assumed to have a linear relation with saturation temperature, which 26 

can be defined as Eq. (8).  27 
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Where a is the slope of the temperature-enthalpy saturation line and c is a constant in this 1 

equation.  2 

The heat capacity rate of primary air (Ch) and secondary/working air (Cc) can be redefined 3 

by establishing the heat balance on the air in dry channel and wet channel, which are given in 4 

Eqs. (9) and (10) respectively:   5 

  (9) 6 

    (10) 7 

Rearranging the Eq. (9) gives: 8 

  (11) 9 

Where a can be determined by the ratio of enthalpy difference to the temperature difference 10 

between inlet and outlet air in each element of dry channel.  11 

Rearranging the Eq. (10) gives: 12 

   (12) 13 

The maximum possible heat transfer rate (qmax) for the exchanger can be achieved 14 

theoretically as the overall conductance (UA) approaches infinity. The fluid with the minimum 15 

capacity rate (Cmin) will experience the maximum possible enthalpy gradient and the maximum 16 

heat transfer rate, which can be written as Eq. (13):  17 

    (13) 18 

Where    (14) 19 

The effectiveness of each computational element (ε) is the ratio of the actual heat transfer 20 

rate to the maximum possible heat transfer rate: 21 

  (15) 22 

Substituting for dqmax from Eq. (13) into Eq. (15) yields: 23 

 

(16) 24 

The number of transfer units and the capacity ratio is expressed as Eqs. (17) and (18) 25 

respectively: 26 
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  (17) 1 

  (18)  2 

Where    (19) 3 

For a counter-flow exchanger, the effectiveness is determined by Eq. (20) [27]:  4 

  (20) 5 

where Cr<1 6 

3.3.2. Heat and mass transfer coefficients   7 

In the Eq. (7), the convective heat transfer coefficient (hc) of the product air in dry channel 8 

can be determined as follows. The air velocities in dry and wet channels are calculated by Eqs. 9 

(21) and (22) respectively: 10 

  (21) 11 

  (22) 12 

Calculating the hydraulic diameter of dry and wet channels yields: 13 

  (23) 14 

For each computational element of heat exchanger, Reynolds number (Re) of the primary 15 

and secondary air in dry and wet channels is calculated by Eqs. (24) and (25) respectively:  16 

 (24) 17 

 (25) 18 

Where νh and νc denote the kinematic viscosity of process and working air evaluated at average 19 

temperature in each element. The Reynolds numbers calculated by above equations are less 20 

than 2300, which indicates both the process and working airstreams are laminar flow.  21 

The local convective heat transfer coefficients from process and working air to exchanger 22 

walls are decided by Eqs. (26) and (27) respectively:  23 
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 (26) 1 

 

(27)

 

2 

where kh and kc respectively denote the thermal conductivity of process and working air 

3 

evaluated at average temperature in each element. To obtain the conservative solution, NuT,h 

4 

represents the lower bound of local Nusselt number for a laminar, hydrodynamically and 

5 

thermally fully developed flow in a rectangular duct that is exposed to an uniform wall 

6 

temperature, which is given by Eq. (28) [28]  

7 

  (28) 
8 

where b/e=0.066 is defined by the aspect ratio of the minimum to the maximum dimensions of 

9 

rectangular duct. While the local Nusslet number for a simultaneously developing flow in the 

10 

rectangular duct as a function of dimensionless position, L/(DhRePr), was predicted by EES 

11 

procedure, i.e. DuctFlow_N_local [29], which interpolated a table of data provided by Ref. [30]. 

12 

Assuming that the Lewis number for air and water mixture is unity, the mass transfer 

13 

coefficient between working air and water film can be obtained by the following equation: 

14 

 (29) 15 

Where Cp,c is the specific heat capacity of moist air assessed at average temperature of working 16 

air in each element.  17 

3.3.3. Pressure drop of airflows  18 

The total pressure drop of the process and working air, consisting of friction and minor loss, 19 

can be described in Eqs. (30) and (31) respectively. 20 

 (30) 
21 

 (31)
 

22 

where the friction loss of product air (ΔPf,h) and working air (ΔPf,c) in each element are 23 

calculated using the Eqs. (32) and (33) respectively [27]: 24 
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(33)

 

1 

where the average friction factor (f) of each modelling element is computed by the empirical 2 

correlations expressed as Eq.(34) [28], for laminar flow in rectangular duct including the 3 

simultaneously developing and fully developed regions. 4 

 (34)

 
5 

where L
+
=L/(DhRe) is the dimensionless length for a hydro dynamically developing internal 6 

flow. The friction factor (ffd) for the fully developed laminar flow in rectangular duct can be 7 

determined by the correlation given in Eq. (35) [28]:  8 

 (35) 

9 

The minor loss of product and working air in Eqs. (30) and (31) are calculated by Eqs. (36) 10 

and (37) respectively: 

 

11 

 (36) 
12 

 (37) 
13 

where Σζh and Σζc denote the total minor loss coefficients of the product and working airflow in 
14 

dry and wet side respectively. ζin,h and ζexit indicate the resistance coefficients for a sharped 
15 

edged duct inlet and exit respectively. ζtee,straight and ζtee,branched are the resistance coefficients for 
16 

standard T with flow straight through and primarily through branch respectively. ζcontraction and 
17 

ζexpansion represent the resistance coefficients for an abrupt contraction and expansion processes 
18 

respectively. ζfilter and ζbend symbolise the resistance coefficients for an air filter and a 90 degree 
19 

bend.  
20 

The actual fan power consumption is the ratio of the total theoretical energy use to the fan 21 

efficiency (η), which is given by Eq. (38): 22 
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where uh,out =(Vh-Vc)/(0.5WbNch), which is the outlet air velocity in dry channel. 

 1 

3.4. Results and discussion of numerical modelling 2 

 3 

 4 

Fig. 5. Channel length and fan power consumption as a function of the number of 5 

computational elements 6 

Fig. 5 plots the channel length predicted by the numerical model as a function of the 7 

number of computational elements. The result shows that the accurate results of channel length 8 

and power consumption can be achieved if the number of computational elements is larger than 9 

20, which are 0.86 m and 394 W respectively.   10 

 11 

Fig. 6. Channel length and fan power consumption as a function of working-to-intake air ratio 12 

Fig. 6 shows the effects of the ratio of working to intake airflow rate on channel length and 13 

fan power consumption. The predicted power consumption reaches minimum with the 14 

working-to-intake air ratio varied between 0.35 and 0.45. Also, the predicted channel length 15 

drops rapidly with the working-to-intake air ratio smaller than 0.44 and then it gradually 16 
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decreases without changing too much. Therefore, to reduce the exchanger’s capital and 1 

operating costs, its working-to-intake air ratio should be set around 0.44.  2 

  3 

 4 

(a) 5 

 6 

(b) 7 

Fig. 7. Effects of number of channel gaps on (a) channel length, depth and fan power 8 

consumption; (b) volume size and heat transfer area of heat exchanger 9 

Fig. 7 indicates the geometrical parameters (channel length and depth) and fan power 10 

consumption of the heat exchanger as a function of channel gaps number. With increasing the 11 

channel gap number from 100 to 600, the predicted channel length decreases from 1.96 to 0.46 12 

m and the channel depth increases from 0.34 to 2.02 m. Meanwhile, It is shown that the 13 
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prediction of fan power consumption reduces dramatically with the channel number increasing 1 

from 100 to 300 and nearly keeping constant from 300 to 600. The calculated volume size and 2 

heat transfer area of the exchanger doesn’t vary too much while the channel number increasing 3 

from 200 to 600. All in all, the number of 320 channel gaps was determined by 4 

comprehensively considering design criteria including simple manufacturing, low energy 5 

consumption and limited geometry. The total depth of exchanger is 1.08 m derived from the 6 

number of channel gaps. In summary, Table 1 presents the geometrical and operating 7 

parameters of the heat exchanger, including the known design conditions and predicted results.  8 

Table 1. Known and predicted design parameters of heat and mass exchanger 9 

Design parameter  Symbol  Unit Value 

Intake air dry-bulb temperature  th,in 
o
C 37.78 

Intake air wet-bulb temperature th,in,wb 
o
C 21.11 

Intake air humidity ratio ω g/kg 9.05 

Product air volumetric flow rate  Vh-Vc m
3
/h 1530 

Intake air volumetric flow rate Vh m
3
/h 2737 

Cooling capacity  Qcooling W 8303 

Fan power consumption P W 394 

Product air dry-bulb temperature  th,out 
o
C 21.5 

Wet-bulb effectiveness εwb - 0.977 

Thickness of thin sheets  δ mm 0.375 

Thickness of water film δw mm 0.3 

Dry/wet channel height  b mm 3.0 

Dry/wet channel width  e mm 45.8 

Dry/wet channel length L m 0.86 

Total width of heat transfer surface W m 0.458 

Total depth of the exchanger H m 1.08 

Thermal conductivity of wall sheet k W/(m•K) 0.375 

Thermal conductivity of water film kw W/(m•K) 0.3 

Fan efficiency  η  0.65 

Working-to-intake air ratio R - 0.44 

Number of dry and wet channels Nch - 320 

 10 
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Figs. 8 and 9 respectively depict the effects of channel length and intake airflow rate on 1 

overall performance of the cooler while retaining other geometrical and operating parameters 2 

the same as shown in Table 1. They indicate that the model developed here can be used to 3 

determine the heat exchange’s channel length and intake airflow rate if the required cooling 4 

effectiveness, cooling capacity and power consumption are known in advance. 5 

 6 

 7 

Fig. 8. Calculated wet bulb effectiveness and product air temperature as a function of channel 8 

length  9 

 10 
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 1 

(b) 2 

Fig. 9. Effects of intake air flow rate on (a) wet-bulb effectiveness and product air temperature; 3 

(b) cooling capacity and fan power consumption  4 

 5 

4. Fabrication of the regenerative evaporative cooler  6 

4.1. Heat and mass exchanger 7 

The heat and mass exchanger was designed, fabricated and constructed as specifications 8 

summarised in Table 1. As seen in Fig. 10, the exchanger was stacked together using 160 pairs 9 

of dry and wet channels. The dry and wet channels were formed with moisture impervious 10 

polymer films and cellulose-blended wicking fibre films, which has superior water absorption 11 

and retention abilities compared to other hydrophilic materials [8]. Each dry or wet channel is 12 

separated by 10 pieces of long plastic rods having the dimensions of 2×3×860 mm and 13 

2×3×695 mm respectively. These rods were arranged in parallel rows to form long paths with 14 

rectangular cross-section (3×45.8 mm), which are designed to guide the passing product and 15 

working airflows. Moreover, both two sides of the rods in between wet channels were coated 16 

with the same wicking fibre in order to enhance surface wetting condition. Aluminium strips (in 17 

3×10×665 mm) coated with the same wicking fibre material were also constructed at the top of 18 

each wet channel to facilitate surface water distribution. It is found that the evaporation surfaces 19 

were completely wetted within 5 minutes with assistance of the strips.  20 
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 1 

Fig. 10. Photographs showing the fabricated (a) exchanger, (b) dry/wet wall and (c) 2 

regenerative evaporative cooler  3 

4.2. Regenerative evaporative cooler  4 

The prototype of regenerative evaporative cooler was mainly assembled using the heat and 5 

mass exchanger, a centrifugal fan (manufacturer: ebm-papst, type: K3G355-AI62-06), a water 6 

distributor and collector as depicted in Fig. 2. A high efficiency filter made of fibrous materials, 7 

being installed between the fan and the inlet of exchanger, is used to remove solid particulates 8 

(such as dust, mould and bacteria) from process air and to make the intake air of exchanger 9 

distribute more uniformly. Another filter placing at the outlet of heat exchanger, not only to 10 

further purify the product air but also to block and divert portions of process air into the 11 

adjacent wet channels through the terminal perforations. Evaporation water is supplied from the 12 

top water distributor to the top of wet channels through 160 pieces of copper tubes in 2.6 mm 13 

outer diameter, located at internals of 6 mm, which is the distance between adjacent wet 14 

channels. Unused water is collected in bottom reservoir and recirculated to the top water 15 

distributor through an electrical pump (manufacturer: Xin Wei Cheng tech., type: 16 

WKA1300-12V). When the water level in the top distributor falls below the lower limit, a water 17 

level switch (manufacturer: Cynergy3, type: SSF211X100) can detect the level change and 18 

open a joint solenoid valve (manufacturer: COVNA, type: 2W31-15GBN). As a consequence, 19 

(b) 

(c) 

(a) 
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more fresh water will be supplied to the distributor until the upper limit is reached. The capital 1 

cost of the cooling unit was calculated by summing up the prices of the components contained 2 

in the unit, taking into account an appropriate rate of labour cost in China. It should be stressed 3 

that the prices of the components were quoted from the selected product catalogue and the 4 

labour cost was estimated on the basis of mass production premise. Details of the calculation 5 

are presented in Table 2.  6 

Table 2. Estimated capital cost of the cooling unit 7 

Component Unit Price (CNY) Quantity Cost (CNY) 

Centrifugal fan 10994 1 [piece] 10994 

Electrical pump 495 1 [piece] 495 

Air filter 100 2[piece] 200 

Water distributor 100 1[piece] 100 

Water collector 50 1[piece] 50 

Solenoid valve 95 1[piece] 95 

Supply air damper 80 1[piece] 80 

Level switch 570 1[piece] 570 

Outer casing                              330 1[piece] 330 

Heat exchanger 3700 1[piece] 3700 

Labour cost 20 80[hours] 1600 

Total 18214 

5. Experimental set-up  8 

5.1. Experimental instrumentation and measurement method  9 

Fig. 11 demonstrates a layout of the experimental facility for testing the fabricated 10 

regenerative evaporative cooler’s performance. The cooler was placed in an environmentally 11 

controlled room, which is conditioned by an Air Handling Unit (AHU) consisting of a 12 

pre-heater, a humidifier, a cooling coil, a re-heater and an air blower. The AHU was adjusted to 13 

vary the temperature and humidity of the entering air to the cooler. Both the supply and exhaust 14 

airflows of the evaporative cooler were connected to the separate airflow measurement 15 

chambers, which are composed of square tunnels with several flow nozzles in the middle. The 16 
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supply or exhaust airflow rate given in Eq. (39), is obtained by measuring the difference in 1 

pressure across the taps at upstream and downstream of the nozzle plate using micro 2 

manometers (measurement range：0-1500 Pa, accuracy：0.01 mmH2O).  3 

 (39) 4 

Where, qv symbolises volumetric flow rate, m
3
/s; C denotes orifice flow coefficient, i.e. 0.6, A 5 

is the cross-sectional area of the orifice hole, m
2
; ρ is the air density, kg/m

3
; P1 and P2 represent 6 

air pressures measured at upstream and downstream of the orifice plate respectively, Pa.  7 

A variable-speed fan located at the outlet of each airflow chambers is used to maintain the 8 

required outlet static pressure and compensate for the additional resistance of the pipework and 9 

measurement system. The cooler’s intake air flow rate was varied by the inlet fan, while its 10 

dry-bulb and wet-bulb temperatures were measured by dry-bulb and wet-bulb mercury 11 

thermometers (measurement range: -25-50 
o
C, accuracy:±0.2 

o
C) respectively, placed at the 12 

inlet of the air cooler. Small portions of the supply airflow were drawn by a blower to a 13 

visualised plastic box, where mercury thermometers (measurement range： 0-50 
o
C, accuracy：14 

±0.1 
o
C) were positioned to measure its dry-bulb and wet-bulb temperature. Meanwhile, the 15 

cooler’s exhaust air dry-bulb and wet-bulb temperatures were tested using the same method. 16 

The cooler’s energy consumption was gauged using a power meter (measurement range: 17 

0-1000 W, accuracy: ±0.01 W).   18 

The measured data were analysed under steady states, which was defined as the period 19 

when the dry-bulb and wet-bulb temperature variations are within 0.1 
o
C for 10 minutes. Once 20 

steady state had been achieved, the dry-bulb, wet-bulb temperatures and pressures used for 21 

performance analysis were attained by taking algebraic average of the measured data over 22 

10-minute intervals. The data collected enabled a number of performance indicators to be 23 

determined including wet-bulb effectiveness, cooling capacity, power consumption and EER.  24 

 v 1 2

2
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
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 1 

 2 

Fig. 11. Graphs showing (a) schematic and (b) photograph of the evaporative cooling system 3 

experimental set-up  4 

5.2. Uncertainty analysis of experimental results 5 

The accuracy of experimental results was examined by evaluating energy balance 6 

between the cooler’s product air and the working air. The energy changes in product and 7 

working airflows are determined by Eqs. (40) and (41) respectively. Fig. 12 depicts the 8 

(b) 

(a) 
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comparison of energy changes in product and working air for all experimental data conducted 1 

in this work. It is shown that, for most of cases, the energy changes agree well and the 2 

inconsistency is below ±10%.  3 

 (40) 4 

 (41) 5 

 6 

Fig. 12. Comparison between the energy changes in product and working airflows 7 

Eq. (42) was given to calculate the relative uncertainty for the dependent performance 8 

indicator variables. 9 

 (42) 10 

Where Δy/y represents the relative uncertainty of dependent variables, i.e. Δεwb/εwb, 11 

ΔQcooling/Qcooling, ΔEER/EER; y is the function of the independent variables xi described in Eqs. 12 

(1)-(3) respectively. For instance, y=εwb, thus xi=tdb,1, tdb,2, twb,1. The uncertainty of airflow 13 

rate is determined by pressure drop, given in Eq. (39). The uncertainty for the performance 14 

indicator variables was found to be within ±1.31% for wet-bulb effectiveness, ±1.36% for 15 

sensible cooling capacity and ±2.61% for EER on average. 16 

6. Performance analysis of the regenerative evaporative cooler 17 

The study experimentally examines the overall performance of the proposed regenerative 18 
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cooling prototype under various operating conditions and compares the results with the 1 

predictions obtained from the aforementioned numerical work. It also analyses the factors that 2 

affecting its cooling performance including intake air temperature and humidity, intake 3 

airflow rate, and working-to-intake air ratio numerically and experimentally. The achieved 4 

results can be employed 1) to analyse the performance of the system in different operating 5 

conditions; 2) to optimise its overall performance by determining its appropriate operating 6 

parameters; 3) to confirm practicality of the counter-flow cooler applying in hot and dry 7 

climates and reveal its novelty characteristics through comparing with previous studies in 8 

terms of systems geometrical, operating and performance parameters.  9 

6.1. Effect of intake airflow rate 10 

Fig. 13 shows the cooler’s cooling effectiveness, cooling capacity and EER value 11 

obtained from the experiment and simulation when gradually increasing the intake airflow 12 

rate from 1148 to 2393 m
3
/h (corresponding to 1.73-3.60 m/s of intake channel air velocity) 13 

while keeping the other operating parameters constant (th,in=38.0 
o
C d.b., th,in,wb=20.8 

o
C w.b., 14 

tw=22 
o
C and R=0.47). It is observed that, for the experimental data, as the intake airflow rate 15 

increased by 108%, the cooler’s wet-bulb effectiveness declined merely by 7.6% from 1.07 to 16 

0.99 while the supply air temperature increased by 6.6% from 19.6 to 20.9 
o
C. With the same 17 

change, the cooling capacity of the system was significantly increased from 3.9 to 7.3 kW by 18 

around 84% and the EER from 10.6 to 16.9 by 58.6%. The results show that, when operating 19 

under a wide range of intake air velocity (1.73-3.04 m/s), the established prototype could 20 

reduce the intake air temperature below its wet-bulb and provide much higher cooling 21 

capacity with only a small amount of energy consumption.  22 

It is also found that the discrepancies between the numerical and experimental results 23 

ranged from 5.3-19.2%, 3.9-14.4% and 3.9-21.5% in terms of cooling effectiveness, cooling 24 

capacity and supply air temperature respectively. The differences are getting larger when 25 

intake airflow rate are reduced. For the lowest intake airflow rate, there was biggest gap 26 

occurred between the experimental and predicted data. The reason for the increased 27 

discrepancy can be explained as follows: For the experiment results, as the intake airflow rate 28 

is reduced, the water evaporation rate is getting slower as plotted in the Fig. 11(b) of Ref. [19]. 29 

Thus, the ratio of water supplied to water evaporated is getting higher while reducing the 30 

intake airflow rate because the water mass flow rate supplied to the exchanger is 31 

predominantly constant during the experiment process. The highest water 32 
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supplied-to-evaporated ratio makes the cooler’s effectiveness fall to the lowest level as 1 

indicated in the Fig. 6 of Ref. [20]. For the simulation results, however, the uniform and 2 

continuous water film is always assumed for all operating conditions without considering 3 

excessive water mass flow rate, which could become much larger in the experiment when the 4 

intake airflow rate is getting smaller. Therefore, the measured performance is substantially 5 

less than that predicted. This discrepancy may be reduced if the feed water mass flow rate was 6 

made small in the exchanger while keeping the evaporation surfaces completely wet. 7 

Especially, a smaller water mass flow rate should be supplied when the intake airflow rate is 8 

small. The similar trend of this discrepancy between measured and predicted effectiveness 9 

was also described in the Fig. 3 of an early paper [5], in which assuming that constant water 10 

mass flow rate was maintained while varying the air flow rates, the water flow rates would be 11 

most excessive and measurements lowest relative to the predictions at low Reynolds numbers, 12 

i.e. low air velocities.  13 

 14 

 15 
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 2 

Fig. 13. Graphs showing the effect of intake airflow rate on the cooler’s (a) product air 3 

temperature (b) wet-bulb effectiveness (c) cooling capacity and EER 4 

 5 

6.2. Effect of intake air temperature and humidity  6 

Fig. 14 depicts the cooler’s overall performance evaluated experimentally and 7 

numerically under different intake air humidity ratio (ω=7.67, 8.51, 10.94 g/kg) when 8 

gradually increasing the intake air dry-bulb temperature from 36 to 40 
o
C while retaining the 9 

other operating parameters constant (uin=3.6 m/s, Vh=2393 m
3
/h, R=0.47, tw=25.3

 o
C). It is 10 

found that the cooler’s cooling capacity and effectiveness, together with the energy efficiency 11 

were linearly growing with increasing the intake air temperature. Operating at highest intake 12 

airflow rate, the cooler can achieve 0.96 to 1.04 of wet-bulb effectiveness approximately. The 13 

hot intake air can be cooled to 19.7-22.9 
o
C (around 1 

o
C lower than the wet-bulb temperature 14 

of intake air) before it was finally supplied to outside, bring about 13.4-20.0 
o
C of 15 

temperature reduction. These results indicate the cooling prototype can obtain sub-wet bulb 16 

supply air temperature even for the largest intake airflow rate, and it is greatly influenced by 17 

the intake air temperature and humidity with respect to the overall performance, as described 18 

in Eqs. (1) and (2).  19 
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 1 

Fig. 14. Graphs showing the effect of intake air temperature and humidity on the cooler’s (a) 2 

product air temperature (b) wet-bulb effectiveness (c) cooling capacity and EER 3 

 4 

6.3. Effect of working-to-intake air ratio  5 

Fig. 15 demonstrates the cooler’s overall performance examined experimentally and 6 

numerically under different working-to-intake airflow rate ratio while keeping the other 7 

operating conditions fixed (th,in=38.9 
o
C, th,in,wb=21.2 

o
C, Vh=2393 m

3
/h, R=0.47). The 8 

experimental results show that the working to intake air ratio evidently affects the cooler’s 9 

overall performance. With the ratio getting higher, the cooler’s wet-bulb effectiveness 10 

increased by 15.8% from 0.85 to 0.99 and the supply air temperature dropped by 8.4% from 11 

23.7 to 21.7 
o
C. Meanwhile, the cooling capacity and EER value enhanced with the ratio 12 

increasing from 0.35 to 0.44 and then fell down from 0.44 to 0.58. Hence, considering the 13 

contrary variation trends among the wet-bulb effectiveness, cooling capacity and energy 14 

efficiency, the optimal ratio of working to intake airflow rate should be around 0.4-0.44.  15 

16 
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Fig. 15. Graphs showing the effect of working-to-intake air ratio on the cooler’s (a) product 3 

air temperature (b) wet-bulb effectiveness (c) cooling capacity and EER 4 

 5 

6.4. Comparison with previous experimental studies 6 

To disclose the superior characteristics of the proposed cooler, we evaluated and compare 7 

with other regenerative evaporative coolers recently investigated in related experiment studies 8 

[16, 19-21] by comprehensively considering operating conditions, geometrical parameters and 9 

performance indicators as given in Table 3. Some experimental data were taken from the 10 

studies to make comparisons that obtained whilst these regenerative coolers working in 11 

certain operating conditions.  12 

To eliminate the effects of different geometries and airflow rates, we examined the 13 

cooling capacities of unit volume and unit supply airflow rate of these coolers. It is found that, 14 

©2018, Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/



comparing against the cooler in Ref. [20], the cooling capacity per unit volume provided by 1 

the proposed cooler is increased by 62-108%. That means, through conducting an 2 

optimisation design on the structure and materials of heat exchanger, the cooling capacity of 3 

the presented cooler have been greatly improved with more compact size. Additionally, we 4 

noticed that the cooling capacity per unit airflow rate provided by the cooler is similar with 5 

those studied in Refs. [16, 19] despite of more humid working condition, but 21.6% higher 6 

than that the cooler reported in Ref. [20]. The reason why it has the less cooling capacity per 7 

unit airflow rate can be explained by its lower intake air temperature, higher humidity, less 8 

working-to-intake air ratio and unmentioned intake air velocity. Besides, while operating at 9 

higher intake air velocity, the proposed cooler also achieved similar cooling effectiveness 10 

with those of coolers in Refs. [19-21]. Compared to our proposed cooler, the M-cycle 11 

cross-flow cooler in Ref. [16] has 17% higher effectiveness due to the much lower supply 12 

airflow rate reduced by 86 %. In terms of the energy efficiency, the proposed cooler has the 13 

largest EER compared to others. 14 

 15 

Table 3. Comparison of regenerative evaporative coolers in recent experimental studies 16 

Parameters Present study Ref. [21] Ref. [20] Ref. [19] Ref. [16] 

Flow arrangement Counter flow Counter flow Counter flow Counter flow 
M-cycle 

cross flow 

Exchanger 

dimension 

(W×H×L), m 

0.458×1.08×

0.86 

0.08×0.045×

1.2 

0.55×0.69×0.

35 

0.314×0.594

×0.9 

0.75×0.6×

0.85 

Exchanger volume, 

m
3
 

0.425 0.004 0.266 0.168 0.383 

Channel spacing 

(dry/wet), mm 
3/3 5/5 20/10 6/6 5/5 

Channel length, m 0.86 1.2 0.2 0.9 0.85 

Channel width, m 0.458 0.08 0.55 0.314 0.75 

Total channel 

numbers 
320 9 46 95 131 

Intake air 

temperature, 
o
C 

35.9-40.1 34 32 36 27.3-41.1 
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Intake air humidity, 

g/kg 
11.0 11.2 13.6 8.25 7.13-7.9 

Intake channel air 

velocity, m/s 
3.6 3.3 N/A 1.58-2.83 N/A 

Supply airflow rate, 

m
3
/h 

1268 N/A 600 120-257 174-604 

Working to intake 

air ratio 
0.47 0.33 0.3 0.5 0.33 

Feed water flow rate 

(g/h) 
N/A 60 52.5 N/A N/A 

Supply air 

temperature, 
o
C 

22.5-22.8 22 21 20.8-25.6 17.3-19.3 

Wet-bulb 

effectiveness 
0.96-1.0 0.96 1.06 0.55-1.06 0.77-1.17 

Cooling capacity, 

kW 
5.7-7.3 N/A 2.2 0.68-1.13 1.05-1.22 

Cooling capacity per 

unit volume, kW/m
3
 

13.4-17.2 N/A 8.27 0.8-6.7 2.7-3.185 

Cooling capacity per 

unit air flow rate, 

W/(m
3·h-1

) 

4.5-5.8 N/A 3.7 4.3-5.6 2.0-6.0 

EER 13.2-17.1 N/A N/A 10-14 6.8-14.2 

 1 

7. Conclusions 2 

With increasingly demands for air conditioning in building sectors, this research proposes 3 

a large-scale compact regenerative evaporative cooler for buildings as an alternative to 4 

conventional compression refrigeration system with great energy saving potential and positive 5 

environmental impacts. First, this study optimally designs the structural parameters of the 6 

counter-flow heat and mass exchanger by developing a finite element numerical model based 7 

on modified ε-NTU method. Subsequently, the heat and mass exchanger was fabricated with 8 

a type of evaporation material with high wicking ability, followed by the whole evaporative 9 

cooler’s construction. Then, the study experimentally examines the cooler’s overall 10 

performance operating in various conditions controlled by an air-conditioned chamber. 11 
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Moreover, the study experimentally and numerically analyses the factors affecting the 1 

performance of the cooler including intake air temperature, humidity and velocity and the 2 

ratio of working to intake airflow rate. Finally, the proposed cooler is comprehensively 3 

compared with other RECs in literature with respect to overall performance, operating and 4 

geometrical parameters. Regarding to the above works, some conclusions can be drawn as 5 

follows：  6 

1) The developed computational programme can be utilised i) to determine the optimal 7 

operating and geometrical parameters of a heat and mass exchanger in regenerative 8 

evaporative coolers; ii) to accurately predict the performance of regenerative 9 

evaporative coolers, provided that the Lewis relation is satisfied. 10 

2) The experimental results show that the wet-bulb effectiveness of the proposed cooler 11 

ranged from 0.96 to 1.07, the cooling capacity and EER varied from 3.9 to 8.5 kW and 12 

10.6 to 19.7 respectively. The cooler can supply cool outlet air temperature below the 13 

wet-bulb temperature of inlet air by around 1-2 
o
C despite of operating high intake 14 

channel air velocities (3.04-3.60 m/s).  15 

3) Through conducting an optimisation design on the structure, material and operating 16 

parameters of heat and mass exchanger, the proposed cooler’s performance has been 17 

greatly enhanced with more compact geometry: Its cooling capacity per unit volume 18 

has increased by 62-108%. The cooling capacity per unit airflow rate is either 21.6% 19 

higher than a previous counter-flow REC, or comparable with another M-cycle REC.  20 

4) The measured performance is substantially less than that predicted. This discrepancy 21 

may be reduced if the feed water mass flow rate was made small in the exchanger 22 

while keeping the evaporation surfaces completely wet. Especially, a smaller water 23 

mass flow rate should be supplied when the intake airflow rate is small. The water 24 

mass flow rate supplied to the heat exchanger should be varied with the intake airflow 25 

rate for making further performance optimisation.   26 
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