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Abstract: 

Many offshore oil and gas production facilities are nearing the end of their operational life, with 

decommissioning now becoming a global challenge. The compatibility of decommissioning operations 

to marine protected areas (MPAs) creates further challenges. The recently-developed DAPSI(W)R(M) 

problem structuring framework (covering Drivers, Activities, Pressures, State changes, Impacts (on 

Welfare) and Responses (as Measures)) was applied here to interrogate the complexity of 

decommissioning oil and gas infrastructure within MPAs, with outputs feeding into the development 

of a novel database tool for Screening Potential Impacts of Decommissioning Activities (SPIDA). In 

meeting the current requirements of the marine regulatory regime, SPIDA provides a more 

streamlined, evidence-based process which can be applied by industry, statutory nature conservation 

bodies and regulators for identifying and evaluating evidence that supports the implications of 

decommissioning alternatives on the condition of MPAs. SPIDA has been developed to be adapted for 

other activities and sectors, including offshore renewables. 
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1. Introduction 

Our coasts and oceans have historically provided society with food, aggregates for building materials, 

fossil fuels for energy generation, global transport routes, a place to observe and study nature and 

participate in recreational activities, and more recently a valuable source of renewable energy in the 

form of wind, tidal and wave energy. In marine management, it has been suggested that there is only 

one big idea: how to maintain and protect ecological structure and functioning while at the same time 

allowing the system to produce ecosystem services from which we derive societal goods and benefits 

(Elliott, 2011). This is reflected in marine policy, for example the UK Marine Policy Statement provides 

a shared vision for its devolved governments of ‘clean, healthy, safe, productive and biologically 

diverse oceans and seas’ (HM Government, 2011). Such a vision is consistent with the ecosystem 

approach as advocated by the Convention on Biological Diversity (CBD, 2000), where the environment, 

economy and society are all considered in an integrated way. Given that human activities along 

coastlines can be intense, and are increasing and extending further offshore, understanding the 

impacts on the natural environment and their impact on the economy and society is of paramount 

importance (Atkins et al., 2011). 
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The energy generation sector has shown a shift in focus from non-renewable sources, such as oil and 

gas, to renewables including wave, tidal and wind energy. This is reflected in the Europe Union’s 

adopted collective renewable energy generation target of 20% by 2020 (Renewables Directive 

2009/28/EC Annex 1) and as such offshore wind energy has been a growing industry over the last two 

decades (Smyth et al., 2015). Many offshore oil and gas production facilities which have been 

operating globally since the 1960s are nearing the end of their operational life. Therefore, the next 30 

years will see a major decommissioning of these facilities which is becoming a worldwide challenge 

(Chandler et al., 2017; Rouse et al., 2017). For example, in the North Sea it is forecast that 349 fields 

across the UK, Norwegian, Danish and Dutch continental shelves will require decommissioning 

between 2017 and 2025, comprising almost 2,500 wells, 200 platforms and 7,500 km of pipelines (Oil 

and Gas UK, 2017). Most of this infrastructure is within the UK continental shelf (214 fields, 1,624 

wells, 98 platforms and 5,514 km of pipelines) and current forecasts suggest that decommissioning 

this UK infrastructure will cost £17 billion between 2017 and 2025 (Oil and Gas UK, 2017). 

There are considerable scientific uncertainties in the overall impacts of decommissioning, and the UK 

governmental guidance (from BEIS, the Department of Business, Enterprise, Industry and Skills) for 

comparative assessments requires that the chosen approach must demonstrate an understanding of 

five main criteria. These comprise elements of safety, environmental, societal, technological and 

economic impacts, not least because the taxpayer carries the major burden of decommissioning costs 

(BEIS, 2018). These criteria, broken down into sub-criteria, are used to assess the options for 

decommissioning oil and gas structures, which include complete removal to land, partial removal to 

land, leaving wholly in place, re-use and disposal at sea (BEIS, 2018). 

The NE Atlantic protocol from the Oslo and Paris Commission (OSPAR 98/3) requires installations to 

be removed unless certain derogation criteria can be met. Derogation cases under OSPAR 98/3 are 

further discussed below. In contrast, several regimes globally are questioning the appropriateness of 

removing structures at the end of their lives, as under both economic and environmental interests, 

there are arguments for leaving certain structures in place. Following the ‘rigs to reefs’ project in the 

Gulf of Mexico (Reggio, 1987; Schroeder & Love, 2004; Kaiser & Pulsipher, 2005), there is increasing 

academic discussion regarding the merits of removing or leaving in place these structures and the 

effects of these options on the adjacent marine features. 

There is an increasing need to protect the marine environment from anthropogenic activities, with a 

range of Marine Protected Areas (MPAs) established globally, with the primary aim to spatially identify 

and conserve biodiversity across connected ecological networks, including rare, threatened and 

endangered habitats and species (Saunders et al., 2015). There is a wide range of ecosystem services 

and societal goods and benefits that are also provided by MPAs (Fletcher et al., 2012; Potts et al., 

2014; Burdon et al., 2017) and thus the sustainable delivery of these valuable services may potentially 

be at risk by decommissioning activities. Many MPAs were designated after oil and gas exploration 

and operation, for example within UK waters, 13 MPAs have oil and gas installations (or installations 

and pipelines) within them, whilst a further 33 MPAs have oil and gas pipelines running through them1. 

Hence it is possible that such MPA sites are in environmental equilibria with the structures in place 

and so it is hypothesised that removal could disturb that equilibrium. Despite this, the effects of 

                                                           
1 Based on the overlap of offshore and gas surface installations and pipelines within MPAs in UK waters, 
derived from Oil and Gas UK data and MPA boundary data as at July 2017. 
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decommissioning activities within MPAs are relatively unknown due to a lack of sufficient scientific 

evidence in assessing and demonstrating long-term and cumulative impacts on MPA conservation 

objectives and site integrity. This introduces considerable challenges for all involved in 

decommissioning: for industry to fulfil their environmental obligations, for regulators to use risk-based 

procedures for assessing effects in consenting operations, and for Statutory Nature Conservation 

Bodies (SNCBs) as consultees in the approvals process. A robust evidence-based approach is therefore 

needed to improve and bring innovation to the decision-making process, and to make the assessment 

of effects of decommissioning on MPAs more consistent, efficient and transparent. 

MPAs are designated according to a set of conservation features which may be species and/or habitats 

and the onus is on marine developers to demonstrate that their activities (covering construction, 

operation and decommissioning) will not adversely affect the integrity of those features. In essence, 

objectives for those conservation features have to be set and rigorously monitored. Decommissioning 

includes not only the removal of structures but also the introduction of them (albeit on a temporary 

basis, e.g. jack-up rigs), and by definition represents a ‘plan or project’ with a potential to prevent the 

conservation objectives being reached. However, whilst there are a number of decision support tools 

which have been developed and applied to oil and gas decommissioning and/or MPA designation and 

management, there is no suitable decision support tool available to specifically assess the impacts of 

decommissioning activities on the natural marine environment within MPAs or to set such assessment 

within the wider context of the ecosystem services and goods and benefits provided for society. 

For example, in Southern California, Bernstein (2015) developed a conceptual framework to identify 

potential decommissioning options for oil and gas infrastructure based on legal requirements, 

environmental/ecological impacts, feasibility, liability and costs. For the same location, Henrion et al. 

(2015) developed a decision analysis software tool (‘PLATFORM’) to clarify and evaluate decision 

strategies against a comprehensive set of objectives which also included economic viability, 

technological feasibility, and social acceptability. With respect to MPAs, PRISM (PRoducing 

Information from Sensitivity Matrices), PISA (Potential Impacts from Selected Activities) and STARFISH 

(Simplified Tables for Assessing the need for Regulation, using Filtered Impacts on Species and 

Habitats) were tools developed by the second author here specifically to support stakeholder 

engagement workshops for the UK Net Gain Marine Conservation Zone (MCZ) Project (Net Gain, 

2011). The concept behind these MPA-focussed tools has since been further developed, for example 

to produce tools such as FEAST (FEature Activity Sensitivity Tool) which is currently used by Marine 

Scotland for determining potential management requirements for Nature Conservation MPAs (Marine 

Scotland, 2018). However, none of these also address the wider ecosystem services and goods and 

benefits which MPA features provide. 

This paper details the development of a decision support framework and innovative evidence-based 

database tool to quantify the risks, opportunities and impacts (both positive and negative) of 

decommissioning on marine features, especially as they relate to designated features within MPAs. 

The framework presented here is then interrogated to enhance tools used to date by the regulator, 

industry and SNCBs. The framework aims to further increase the transparency of the decommissioning 

process within MPAs by enhancing the operability of the existing tools within an integrated database 

tool. While the initial focus of the decision support framework and associated database tool is on oil 

and gas decommissioning in MPAs, it has been developed with an in-built flexibility to evolve, and as 
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such could be adapted for other activities and sectors, including offshore renewable energy 

developments. 

2. Decision Support Framework 

Following initial discussions with the regulator, industry, SNCBs, consultants and academics, a list of 

eight questions was generated to select a decommissioning strategy within an MPA, and these formed 

the basis of the decision support framework: 

1) What oil and gas structure(s) require(s) decommissioning? 

2) What are the potential decommissioning approaches for the structure? 

3) What potential decommissioning activities are required? 

4) What pressures are likely to result from decommissioning activities? 

5) What MPA features are present within the site? 

6) What is the potential loss or damage to the designated features? 

7) What is the potential for the loss or gain of ecosystem services? 

8) What is the potential for the loss or gain of societal goods/benefits? 

The DAPSI(W)R(M) framework was employed as a problem structuring method to provide a logical 

framework within which to structure these questions (Elliott et al., 2017). This framework is a 

refinement of the much-used DPSIR framework (Patricio et al., 2016). It recognises that Drivers of 

basic human needs require Activities. These Activities result in Pressures, which are the mechanisms 

of State change of the natural environment and Impacts on human Welfare. These in turn require 

management Responses (defined as Measures), which can be used as feedback loops to address the 

Drivers, Activities, or Pressures identified within the system. Marine management usually assesses the 

State changes and Impacts on human Welfare but it controls the Drivers, Activities and Pressures. A 

summary of the DAPSI(W)R(M) components with specific relation to environmental impact of oil and 

gas decommissioning is presented in Table 1; each component is further discussed below. 

Insert Table 1 here 

Using the DAPSI(W)R(M) framework to provide the structure of the decision support framework, the 

questions were organised in a transparent, simple and logical sequence, aligned with the associated 

resources required to address the questions of interest (Figure 1). This process can be followed by the 

regulator, industry, SNCBs, consultants and academics to identify the sensitivity of marine features to 

decommissioning activities. The proposed framework enables the users to work through the questions 

sequentially and therefore simplifies the process. In order to address the eight specific questions 

relating to decommissioning, a range of data and information resources was identified (Figure 1). The 

seven resources identified were: those which exist and are deemed fit for purpose for this study (#1); 

those which exist but require some refinement for the specific application in this study (#2), and/or 

those which were not previously available and were therefore generated specifically for this study 

(#3). The resources used are described below. 

Insert Figure 1 here 

It is important to emphasise from the outset the scope of the decision support framework and also 

what the decision support framework has not been designed to address (Table 2). 
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Insert Table 2 here 

3. DAPSI(W)R(M) as a problem structuring method 

The DAPSI(W)R(M) framework accommodates the complexity of decommissioning oil and gas 

infrastructures within MPAs. This section expands on Table 1 to illustrate the complexity associated 

with each element of the framework. 

Drivers 

The extent to which offshore installations must be removed is determined by international law, 

regional policy drivers and the regulating authority of the national government on a case-by-case 

basis, hence there is a paramount legal Driver. The regulating authority must approve the 

decommissioning plans of the oil and gas operator to ensure compliance with legislation. To mitigate 

the environmental consequences of the industry, European Regional Seas conventions such as the 

Convention for the Protection of the Marine Environment of the North-East Atlantic (OSPAR 

Convention), the Barcelona Convention and its Protocols protecting the Mediterranean Sea, and the 

Convention on the Protection of the Marine Environment of the Baltic Sea Area (HELCOM) have all 

adopted recommendations for actions in relation to the regulation of offshore industries. For example, 

HELCOM Recommendation 14/9 relates to the Removal of Abandoned and Disused Offshore Units 

and recommends that ‘the Governments of the Contracting Parties to the Helsinki Convention ensure 

that abandoned, disused offshore units and accidentally wrecked offshore units are entirely removed 

and brought ashore under the responsibility of the owner and that disused drilling wells are plugged’ 

(HELCOM, 1993). Similarly, Ministers of the OSPAR signatory countries adopted a binding Decision 

(OSPAR Decision 98/3) to ban the disposal of offshore installations at sea, although the removal of 

pipelines is not covered by the Decision (OSPAR, 1998). Since this came into force, the dumping and 

leaving wholly or partly in place, of disused offshore installations is prohibited within the OSPAR 

maritime area. However, following assessment, the competent authority of the relevant Contracting 

Party may give a derogation, i.e. permission to leave installations or parts of installations in place if 

sufficient justification has been made. A derogation to the OSPAR 98/3 rule may be granted for: 

• steel installations weighing >10,000 tonnes in air and placed before 9th February 1999; 

• gravity based concrete installations; 

• floating concrete installations; 

• any concrete anchor-base which results, or is likely to result, in interference with other 

legitimate uses of the sea. 

The OSPAR 98/3 Decision is reviewed by the OSPAR Commission at regular intervals, to consider in the 
light of experience and technical developments whether the derogations from the general ban on 
dumping continue to be appropriate. The 2008 and 2013 policy reviews concluded that operational 
experience is insufficient to justify changing the derogation criteria. The next review is due in 2018. 
National regulating authorities must follow these international agreements in the management of oil 
and gas decommissioning applications with national legislation implementing these policies. 
Therefore, the driver for many countries within Europe is a ‘clean seabed policy’ and so any 
management framework has to be directed towards achieving this aim. 

Despite the above, other legally-binding constraints come into effect when decommissioning is 
required either within or close to an MPA. Under European Drivers, a network of MPAs in European 
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seas have been designated e.g. Special Protection Areas (SPAs) under the Wild Birds Directive 
(79/409/EEC) and Special Areas of Conservation (SACs) under the Habitats Directive (92/43/EEC). 
National legislation also allows the designation of additional offshore MPAs; for example, the UK 
Marine and Coastal Access Act 2009 allows further designations of Marine Conservation Zones (MCZs) 
in UK offshore waters. All these MPAs protect important habitats and features from the damaging 
effects of human activity, but have been designated with many offshore industries already operating 
within their boundaries. The UK overarching Driver for a vision of a ‘clean, healthy, safe, productive, 
biologically diverse marine and coastal environment’ (Defra, 2002; HM Government, 2011) requires 
the protection of the marine environment, and therefore any decommissioning activities should 
demonstrate no likely significant effect on the designated conservation features of the site during the 
process. 

Activities 

There has been some confusion in the past between Drivers and Pressures (when applying the DPSIR 

framework; see for example Patricio et al., 2016; Elliott et al., 2017) and therefore this study follows 

the DAPSI(W)R(M) framework in making the distinction between Drivers, Activities and Pressures. 

Decommissioning methods for oil and gas structures depend on a combination of the infrastructure 

to be removed (e.g. platform wells, subsea wells, platform topsides, platform topsides, pipelines and 

umbilicals, drill cuttings), the objective of the decommissioning (e.g. plug and abandon, full removal, 

partial removal, leave in situ) and the methods employed to decommission the specific infrastructure 

type (e.g. use of a jack-up rig, piecemeal removal, reverse installation). This produced 21 

decommissioning combinations of Infrastructure-Objective-Method (Table 3). It is of note that when 

a Heavy Lifting Vessel is applied, there are two methods of anchoring (embedment and suction) and 

therefore three of the methods have been sub-divided as they lead to different Pressures. This table 

was generated specifically for this study, and has been verified by representatives from the regulator, 

industry, SNCBs and oil and gas consultants. Based on expert judgement, 24 potential Activities have 

been identified (Table 4) which are required to deliver the 21 methods listed in (Table 3). It is 

emphasised that whichever option is selected, decommissioning must be carried out in a sustainable 

manner to protect the marine environment. 

Insert Table 3 here 

Insert Table 4 here 

Pressures 

Each Activity (Table 4) is likely to cause one or more Pressures on the marine environment, resulting 

in the mechanisms of environmental change (JNCC, 2018). Given the focus here on decommissioning 

of oil and gas structures within MPAs, the sensitivity of the marine features of interest will dictate the 

potential effect of such Pressures. Pressure types were derived from the list created and agreed by 

the OSPAR Intercessional Correspondence Group on Cumulative Effects (ICG-C), which identified a 

total of 31 different Pressures. These were grouped into six separate Pressure themes with a detailed 

description for each Pressure provided (OSPAR, 2011). The full list of marine Pressures has been 

refined to include only those 22 Pressures deemed of relevance to oil and gas decommissioning (Table 

5). 

Insert Table 5 here 

http://www.legislation.gov.uk/european/directive/1992/0043
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State changes 

State changes reflect the potential effect of Pressures on the natural system, which comprises both 

physico-chemical (abiotic) and ecological (biotic) capital (Atkins et al., 2014). A recent review of the 

scientific evidence base for decommissioning impacts on MPAs (Mazik et al., 2018) primarily focusses 

on the evidence base relating to the benthos (e.g. Coates et al., 2014; Coolen et al., 2015), fish (e.g. 

Claisse et al., 2015), and marine mammals (e.g. Gomez et al., 2016). As long as the natural system has 

an appropriate structure and is functioning properly, it has the potential to provide a set of ecosystem 

services which can then lead to goods and benefits for society (Atkins et al., 2014; Turner et al., 2015). 

Thus, any impact on the physico-chemical or ecological structure and functioning could affect the 

delivery of ecosystem services. Turner et al. (2015) identify the key ecosystem services provided by 

the marine environment (Figure 2). This categorisation distinguishes between the underlying 

components and processes of the marine environment, the intermediate and final ecosystem services 

and the goods and benefits which can be obtained by society. Importantly, the potential effect of any 

Pressure on ecosystem service delivery may be positive or negative and therefore the direction of any 

State change needs to be identified. Given the focus of the framework on MPAs, the matrices which 

identify the relative importance of UK marine features (habitats, species and seabirds) in providing 

the key ecosystem services (after Turner et al., 2015) can be used to identify the key ecosystem 

services which may be affected by the Pressures (Potts et al., 2014; Saunders et al., 2015; Burdon et 

al., 2017). Once key ecosystem services have been identified, a qualitative assessment, based on the 

literature and expert opinion can be employed to assess the magnitude direction of State change 

(positive or negative) for each ecosystem service. The present framework builds on previously 

undertaken qualitative assessments in relation to seabed restoration (Cooper et al., 2013) and the 

decommissioning of offshore wind farms (Smyth et al., 2015) following guidance from the UK 

Department of Environment, Food and Rural Affairs (Defra, 2007). 

Insert Figure 2 here 

Impacts (on Welfare) 

In turn, any State changes in the natural environment, including the ecosystem services which are 

provided, have the potential to Impact the Welfare of society (either positively or negatively and 

including well-being). With the addition of complementary capital (e.g. assets such as time, energy, 

skills and finance comprising built, human or social capital), a range of goods and benefits can be 

obtained by society from the marine environment (Figure 2). The matrix approach (after Potts et al., 

2014; Saunders et al., 2015; Burdon et al., 2017) can again be applied to identify the key goods and 

benefits which may be at risk as a result of decommissioning operations. The decommissioning 

Activities, and their associated Pressures and State changes can therefore also have positive or 

negative impacts on the delivery of these goods and benefits and thus trade-offs must be assessed 

when comparing the Impacts on Welfare of different decommissioning options (e.g. Smyth et al., 

2015). 

Responses (as Measures) 

Finally, management Responses, termed Measures in the European Directives mentioned above, are 

then needed to address the potential Pressures, State changes and Impacts (on Welfare). With respect 
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to decommissioning of oil and gas infrastructure in MPAs, management Responses may include: 

assessing the potential impacts of decommissioning Activities on the Conservation Objectives; re-

evaluating selected decommissioning Activities to reduce the potential impact of the Activities; 

applying mitigation and/or compensation Measures to reduce negative State changes and Impacts (on 

Welfare), and introducing management Measures to further enhance gains in goods and benefits. 

Such Responses provide feedback loops within the system as outlined above. 

Thus far, the DAPSI(W)R(M) components have been described independently from each other, but 

Atkins et al. (2011) and Elliott et al. (2017) emphasised that multiple Drivers can lead to multiple 

Activities, which in turn can lead to multiple Pressures and so forth and the same Pressures can 

emanate from different Activities. A brief illustration of this for decommissioning oil and gas 

infrastructures (Figure 3) indicates the complexity of decommissioning activities within MPAs, and 

thus the challenges that are faced by the regulator, industry and SNCBs, in ensuring that the 

decommissioning operations have a minimal impact on the condition of MPAs. This complexity is 

further demonstrated in summarising the relationships between decommissioning methods and their 

constituent Activities (Table 6) and relationships between the Activities and Pressures (Table 7). 

Insert Figure 3 here 

Insert Table 6 here 

Insert Table 7 here 

This approach demonstrates the need for, and the value of, applying the DAPSI(W)R(M) framework to 

illustrate and interrogate the complexity of decommissioning oil and gas infrastructures within MPAs. 

However, to make such a framework operational, a tool is required which enables end-users to 

untangle this complexity, focussing on the specific decommissioning options required within any given 

MPA, and identifying the features, ecosystem services and/or goods and benefits which may 

potentially be affected (positively or negatively) from such decommissioning operations. 

4. SPIDA Database Tool 

As indicated above, none of the frameworks and tools currently available address all of the eight 

questions of interest (Figure 1, Table 8); hence, there is the need to develop a database tool to link a 

number of existing tools. Applying the operational decision support framework has produced a proof-

of-concept evidence-based tool, which allows the above relationships and complexity to be mapped 

and interrogated. This application, SPIDA (Screening Potential Impacts of Decommissioning Activities), 

was developed in Microsoft Access as an interactive tool that can be used to screen for the potential 

impacts of decommissioning activities. 

Insert Table 8 here 

SPIDA has a modular structure, which draws on several underlying data tables. These tables outline: 

the potential decommissioning Methods (Table 3); the relationship between these Methods and the 

discrete Activities through which they are delivered (Table 6); the Pressures that are likely to be 

generated by the constituent Activities (Table 7), and the sensitivity of selected marine conservation 

features to these Pressures (based on the Marine Evidence based Sensitivity Assessment (MarESA); 
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MarLIN, 2018, or taken from Tillin et al., 2010). The adopted structure for the SPIDA development 

permits the tool to be updated relatively easily when new or revised data become available. 

Furthermore, an intuitive and user-friendly interface allows the user to identify the infrastructure type 

and decommissioning objective, and to select the proposed decommissioning method (Figure 4). 

Insert Figure 4 here 

Algorithms are not currently available to describe the likely spatial extent, duration and frequency of 

decommissioning Activities (or resultant Pressures) (i.e. their spatio-temporal footprints). It is 

nevertheless recognised that such information is important for assessing the likely significance of the 

environmental effects of Activities, and in considering whether Pressures are likely to exceed 

benchmark levels. To address this requirement, SPIDA first identifies the range of Activities that would 

be associated with the proposed decommissioning scenario, and then provides a utility to capture 

expert judgement regarding the likely spatio-temporal footprint associated with each Activity (see 

Table 9). The use of expert judgement to support decision-making has always played a large role in 

science and engineering (Barnard & Boyes, 2013) and in managing complex marine areas (Elliott et al., 

2018). Expert judgement is routinely recognised as representing a certain type of data (Goossens et 

al., 2008); and it may be argued that the use of expert judgement in relation to technical problems is 

not only often unavoidable, but is also desirable (Keeny & von Winterfeldt, 1989). This novel approach 

embedded within SPIDA enables case-specific details to be included in the resultant assessments. 

Insert Table 9 here 

The software user is able to select from a list of 16 features of interest (including habitats and species), 

representing the range of designated features within those UK MPAs that currently contain elements 

of oil and gas infrastructure (Table 10), and to identify a minimum level of feature sensitivity to be 

considered in reporting (effectively High, Medium, Low and combinations thereof). The software 

cross-references the known sensitivity of the selected feature against this selected cut-off value and, 

where a feature’s sensitivity to any given Pressure is below the cut-off, it is assumed that the feature 

will not be adversely affected by that Pressure. Conversely, where a feature’s sensitivity to a Pressure 

is above the cut-off there is an assumption that the feature may be adversely affected, and both the 

Pressure, and the Activity that potentially gives rise to it, are flagged by the software and are reported 

in the sensitivity outputs (Figure 5). In a similar way, the SPIDA tool is also able to indicate which 

intermediate ecosystem services and goods and benefits may be affected, based on the importance 

of the feature in delivering particular services, goods and benefits (after Potts et al., 2014; Saunders 

et al., 2015; Burdon et al., 2017). 

Insert Table 10 here 

Insert Figure 5 here 

The strength of the SPIDA tool is that it’s outputs are presented in a clear, standardised format, which 

enables the potential environmental impact of multiple decommissioning methods to be compared. 

The first output generated by the SPIDA tool is an assessment of the potential environmental impacts 

on designated features within the site (see Figure 5, Q6 in Figure 1). In addition, SPIDA also generates 

a summary of the key intermediate ecosystem services (Q7 in Figure 1) and societal goods and benefits 

(Q8 in Figure 1) which may be affected based on the established relationships between the features 
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and the relative provision of ecosystem services and goods and benefits (after Saunders et al., 2015; 

Burdon et al., 2017). These latter outputs identify the focus for further assessments, based on 

ecosystem service indicators (Atkins et al., 2015; Hattam et al., 2015) which could assess the 

magnitude and direction of the State change (i.e. intermediate ecosystem services) and Impact on 

Welfare (i.e. the goods and benefits) of a given decommissioning scenario. 

5. Discussion 

The transparent decision support framework developed and applied here to produce a database tool 

(SPIDA) allows for the screening of potential impacts of decommissioning Activities. The study has 

focused on identifying the environmental impacts of oil and gas decommissioning Activities within UK 

MPAs but the flexible modular structure of SPIDA, and the transparency of the underlying decision 

support framework could easily be applied to decommissioning within other sectors, such as those 

relating to offshore wind developments (Smyth et al., 2015), or even to other Activities such as the 

impacts of fisheries or aggregate extraction on MPAs. Similarly, the focus on UK MPAs relates to those 

features currently protected by MPAs, and which have oil and gas infrastructure within them, but 

again, the modular structure of SPIDA has the in-built flexibility to broaden the number and type of 

features, thus having global relevance to MPAs as well as the wider non-protected marine 

environment. The transparency, transportability and flexibility of both the decision support 

framework and the underlying resources also allows a range of data types to be incorporated (e.g. 

quantitative, qualitative, expert opinion). 

The SPIDA tool does not replace the requirement for an Environmental Impact Assessment (EIA), 

comparative assessment or derogation case applications undertaken by industry, but complements 

these regulatory procedures to improve the decision-making process. EIA will continue to be required 

in the planning and consenting process for any plan or project, but increasingly, approaches based 

around a series of linked matrices are being used by developers to support their decision-making 

process. By increasing the understanding of the links between the Pressures associated with particular 

decommissioning Activities and the sensitivities to those Pressures of marine habitats and species, the 

tool enhances industry’s decision-making capability with respect to decommissioning options within 

and close to MPAs. Hence, the tool provides support in meeting the needs of industry against an 

increasing decommissioning workload, whilst increasing the importance of conservation issues. 

The outputs from the SPIDA tool support regulatory managers in making legislative and policy 

decisions by providing further understanding of the decommissioning options and their environmental 

impact within MPAs. The SPIDA tool aims to make such decisions more rigorous, defendable and 

transparent for the industry developers, the regulatory bodies and the nature conservation bodies, 

and indeed for any NGO wishing to challenge a decision. To help satisfy this range of aims, both the 

decision support framework and the SPIDA tool were produced and steered in cooperation with 

representatives from the regulator, industry, SNCBs, consultancies and academia. The development 

of the framework and SPIDA tool have been constantly reviewed and refined following feedback and 

via road-testing at two stakeholder engagement workshops. For example, initial feedback from 

stakeholders identified the requirement for case-specific information to feed into the process, to 

ensure that decisions were not based upon a purely generic framework. This has been achieved within 

SPIDA, with the inclusion of an additional assessment stage where spatial extent, duration and 
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frequency of an Activity are incorporated. Such stakeholder engagement is essential to ensure the tool 

and approach are consistent with stakeholder demands and are fit-for-purpose. 

The scope of SPIDA, and the underlying decision support framework, have focused on environmental 

issues, specifically with respect to impacts of decommissioning operations on MPAs. However, it is 

recognized here that the environmental aspects are only one facet of decommissioning. The BEIS 

guidance for comparative assessments requires that the chosen approach must demonstrate 

understanding of safety, environmental, societal, technological and economic impacts (BEIS, 2018), 

not least because the taxpayer carries the major burden of decommissioning costs. In addition to the 

local nature conservation considerations, there are additional implications regarding, for example, 

energy use (and therefore greenhouse gas production) during infrastructure removal, and hence 

wider-scale repercussions if preventing global environmental change is a priority. As such, 

decommissioning management requires a holistic approach. It has been suggested that successful 

marine management should focus on a set of 10-tenets which incorporate all multidisciplinary aspects 

(Elliott, 2013; Barnard & Elliott, 2015). The application of the 10-tenets to oil and gas decommissioning 

(Table 11) shows that in particular the technological, economic and legal aspects are paramount in 

dictating both the course of action and the business case for oil and gas decommissioning. It is of note 

that 9 out of the 10 tenets are social in nature, thus emphasising the importance of integrating natural 

and social science research (Burdon, 2016; Burdon et al., 2018). Furthermore, such a holistic approach 

has wider application outside of the oil and gas industry; for example, the concepts presented also 

hold true for offshore windfarm decommissioning (Smyth et al., 2015). 

Insert Table 11 here 

In addition to the requirements of the Regional Seas Conventions discussed earlier, the 

decommissioning of oil and gas installations has implications for meeting the legally binding 

requirements of European Directives. The effects of decommissioning on Good Environmental Status 

(GES) under the Marine Strategy Framework Directive (MSFD) and uses and users under the Maritime 

Spatial Planning Directive (MSPD) need to be considered (see also Boyes et al., 2016; Elliott et al., 

2018). Hence, the influence of the many Pressures created by decommissioning Activities needs to be 

determined for their positive or negative effect on the 11 MSFD descriptors (Table 12) which in turn 

will influence achieving GES. GES therefore requires the descriptors to be defined quantitatively (using 

indicators) and the management of any environmental Pressure relies on monitoring to detect a given 

amount of change, such as a deviation from GES. True monitoring requires an unacceptable level of 

change to be defined either by an operator or a regulator, i.e. as a change against an accepted 

baseline, threshold or target (Borja et al., 2017), and this may be set as a condition in a permit or 

licence. In the case of MPA management, such unacceptable levels of change can only be defined 

against stipulated conservation objectives and these should be quantitative. 

Insert Table 12 here 

Marine plans, developed to meet the requirements of the MSPD, inform when and where human 

activities take place at sea to support sustainable development and growth in the maritime sector 

(Elliott et al., 2018). As decommissioning activities increase, marine planning must be an adaptive 

process, hence the need for a flexible and transparent approach as described here. Removing the 

platforms and associated infrastructure leads to a potential change in maritime use with spatial 
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competition effectively removed; for example, fishing activities could re-engage with the area 

formerly restricted by the safety exclusion zones around infrastructure. 

6. Challenges and Future Work 

This paper and the tool produced have identified the complexity of decommissioning within the 

marine environment and the additional challenges associated with undertaking such activities within 

MPAs (Box 1). In providing a rigorous, transparent and defendable decision support framework, the 

tool allows industry and regulators to make evidence-based judgements regarding the need to 

remove, or to consider derogations to leave in place, the obsolete infrastructure. This requires not 

only the impediments to action to be considered, but also the implications of the actions on the other 

maritime uses and users. 

Box 1: Marine environmental challenges from oil and gas decommissioning 

 the loss and gain of habitats and surfaces; 

 the loss and gain of ecosystem services and societal goods and benefits; 

 the value of removing structures with and without damage; 

 the whole system energy and economic budgets; 

 the whole cycle environmental footprints at near and far scales; 

 the determination of whether an area will regain a pre-construction equilibrium if a structure 

is removed; 

 how to ensure the protection of other maritime uses and users; 

 the relevant baseline/reference condition (with or without structures); 

 the harmonised implementation of Good Ecological Status (WFD), Good Environmental Status 

(MSFD) and Favourable Conservation Status (HD), and  

 determining the bottlenecks, showstoppers and train-wrecks (Newton & Elliott, 2016). 

This conceptual paper has attempted to address a number of these challenges although there are 

opportunities to further develop the concept and to undertake rigorous testing of the tool. Future 

developments will include: applying the framework to a range of industry-led scenarios to 

demonstrate its real world applicability; improving knowledge of the key elements of the framework 

e.g. the Activities-Pressures relationships, and developing a combined scoring system (‘Spatio-

Temporal Footprint Index’) for assessing the spatial extent, duration and frequency of each Activity. It 

also relies on increasing our understanding and quantification of the ecosystem service components 

(based on ecosystem service indicators) to enable an assessment of the trade-offs between services 

and societal goods and benefits under different scenarios. 
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Table 1: Elements of the DAPSI(W)R(M) framework of relevance to decommissioning. 

Element Relevance to Decommissioning 

Drivers Legal and societal demand for a clean, safe, productive, diverse and healthy 
environment. 

Activities Appropriate decommissioning options and their associated activities e.g. removal of 
rigs, burying or removal of pipelines, removal of rock protection. 

Pressures Wide-scale pressure list: above-water noise, abrasion, siltation, collision risk, 
contamination by chemicals, litter, light, etc. 

State changes Potential biological loss, gain or damage to the hydrodynamics, ecology, ecosystem 
services, such as smothering of the benthos, resuspension of sediments and re-
liberation of contaminants. 

Impacts (on 
Welfare) 

Potential loss or gain of societal goods and benefits; commercial, recreational and 
cultural aspects, such as increase or decrease in fisheries, changes to recreation near 
developments. 

Responses (as 
Measures) 

Management measures such as legal controls, technological advances or economic 
instruments to further enhance the provision of ecosystem services; mitigation 
and/or compensation measures to minimise effects. 
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Table 2: Scope of the Decision Support Framework. 

What does the decision support framework do? What does the decision support framework not do? 

 Feed into the Environmental Appraisal, 
Comparative Assessment and Derogation 
processes 

 Focus on environmental impacts 
 Facilitate decision-making 
 Provide a transparent, evidence-based, more 

streamlined approach 
 Provide flexibility to evolve 
 Take an innovative natural capital approach 
 Allow for review of existing evidence 
 Provide an approach which links existing 

frameworks and tools 
 Formalise/simplify current assessment 

methods 

 Replace the Environmental Appraisal, 
Comparative Assessment and Derogation 
processes 

 Incorporate safety, societal, technological and 
economic aspects 

 Make decisions 
 Generate new data or evidence 
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Table 3: Summary of potential decommissioning approaches for the oil and gas industry. 

 Infrastructure Objective Method 

1 Platform wells Plug and abandon Existing integrated facilities 

2 Platform wells Plug and abandon “Rigless” modular units 

3 Platform wells Plug and abandon Jack-up rig 

4 Subsea wells Plug and abandon Jack-up rig 

5 Subsea wells Plug and abandon Light well-intervention vessel 

6 Platform topsides Full removal Piecemeal removal involving demolition in situ, and 
multiple smaller ships and possibly crane vessels 

7(a) Platform topsides Full removal Reverse installation using an anchored Heavy Lifting 
Vessel (embedment anchoring) 

7(b) Platform topsides Full removal Reverse installation using an anchored Heavy Lifting 
Vessel (suction anchoring) 

8 Platform topsides Full removal Reverse installation using a Dynamically Positioned 
Heavy Lifting Vehicle 

9(a) Platform topsides Full removal Single lift using an anchored Heavy Lifting Vessel 
(embedment anchoring) 

9(b) Platform topsides Full removal Single lift using an anchored Heavy Lifting Vessel 
(suction anchoring) 

10 Platform topsides Full removal Single lift using a Dynamically Positioned Heavy Lifting 
Vehicle 

11 Platform jackets Full removal Multiple lifts using a shear-leg barge or smaller Heavy 
Lifting Vehicle 

12(a) Platform jackets Full removal Single lift using an anchored Heavy Lifting Vessel 
(embedment anchoring) 

12(b) Platform jackets Full removal Single lift using an anchored Heavy Lifting Vessel 
(suction anchoring) 

13 Platform jackets Full removal Single lift using a Dynamically Positioned Heavy Lifting 
Vessel 

14 Pipelines and umbilicals Full removal “Cut and lift” of pipeline sections: most practical for 
large diameter, rigid and concrete coated pipelines, 
though applicable to any 

15 Pipelines and umbilicals Full removal Reverse reel or reverse S-lay 

16 Pipelines and umbilicals Partial removal “Cut and lift” of individual sections [may involve various 
degrees of intervention, with removal of pipeline ends 
and remediation involving rock placement] 

17 Pipelines and umbilicals Leave in situ Usually involves various degrees of intervention, with 
removal of pipeline ends and remediation involving rock 
placement 

18 Pipelines and umbilicals Leave in situ Trench and bury 

19 Drill cuttings Leave in situ Leave in place 

20 Drill cuttings Leave in situ Leave in place but cover with gravel 

21 Drill cuttings Full removal Remove cuttings (pump up to surface rig/vessel), 
dewater, and either re-inject into bedrock waste well or 
transfer to shore for treatment/landfill 
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Table 4: Activities required to satisfy the full combination of Infrastructure-Objective-Methods (JNCC, 

Peterborough and Aberdeen, pers. comm.). 

# Activity 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

Vessel movements 
Embedment anchoring 
Suction anchoring 
Survey sampling 
Overtrawl survey 
Making safe 
Rig placement 
Rig removal 
Detachment of top side 
Digging out infrastructure (excavation around jacket footings, pipeline sections, risers etc.) 
Placement of stabilisation material 
Removal of the infrastructure (cutting / explosives) 
Removal of the infrastructure (pipelines, jacket footings (non-derogation), risers, mattresses) (impact 
on seabed) 
Reinjection of cuttings 
Concrete gravity based structure (remaining in place) 
Footings (derogation) (remaining in place) 
Buried mattresses (remaining buried) 
Pipeline trenched and buried (remaining as buried) 
Pipeline rock dump 
Pipeline open trench (remaining open) 
Cutting a trench (trenching a surface pipeline) 
Seabed preparation (corridor for pipeline) 
Drill cuttings (undisturbed) 
Drill cuttings (disturbed) 

  



21 
© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ 

 

Table 5: Refined list of Pressures identified as currently being of relevance to decommissioning Activities 

(adapted from OSPAR, 2011). 

Pressures 

1. Vibration 
2. Above water noise 
3. Transition elements & organo-metal (e.g. TBT) contamination 
4. Hydrocarbon & PAH contamination 
5. Synthetic compound contamination 
6. Noise changes 
7. Introduction of light or shading 
8. Death or injury by collision 
9. Visual disturbance 
10. Introduction or spread of invasive non-indigenous species (INIS) 
11. Introduction of microbial pathogens 
12. Litter 
13. Abrasion/disturbance at the surface of the substratum 
14. Penetration and/or disturbance of the substratum below the surface 
15. Changes in suspended solids (water clarity) 
16. Smothering and siltation rate changes (light) 
17. Smothering and siltation rate changes (heavy) 
18. Physical change (to another substratum type) - change in sediment type/Folk class 
19. Physical change (to another substratum type) - change in substrata 
20. Water flow (tidal current) changes - local 
21. Barrier to species movement (behaviour, reproduction) 
22. Habitat structure changes - removal of substratum (extraction) 

 



22 
© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ 

 

Table 6: Relationships between potential decommissioning Methods and their constituent Activities (indicating where Activities are undertaken as part of a given 

decommissioning method). 
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 Platform wells Plug and abandon Existing integrated facilities  - - - -  - - - - - - - - - - - - - - - - - -

2 Platform wells Plug and abandon “Rigless” modular units  - - - -  - - - - - - - - - - - - - - - - - -

3 Platform wells Plug and abandon Jack-up rig  - - - -    - - - - - - - - - - - - - - - -

4 Subsea wells Plug and abandon Jack-up rig  - - - -    - - - - - - - - - - - - - - - -

5 Subsea wells Plug and abandon Light well-intervention vessel  - - - -  - -  - - - - - - - - - - - - - - -

6 Platform topsides Full removal
Piecemeal removal involving demolition in situ, and multiple smaller 

ships and possibly crane vessels  - - - -  - -  - - - - - - - - - - - - - - -

7(a) Reverse installation using an anchored HLV (embedment anchoring)   - - -  - -  - - - - - - - - - - - - - - -

7(b) Reverse installation using an anchored HLV (suction anchoring)  -  - -  - -  - - - - - - - - - - - - - - -

8 Platform topsides Full removal Reverse installation using a DP HLV  - - - -  - -  - - - - - - - - - - - - - - -

9(a) Single lift using an anchored HLV (embedment anchoring)   - - -  - -  - - - - - - - - - - - - - - -

9(b) Single lift using an anchored HLV (suction anchoring)  -  - -  - -  - - - - - - - - - - - - - - -

10 Platform topsides Full removal Single lift using a DP HLV  - - - -  - - - - - - - - - - - - - - - - - -

11 Platform jackets Full removal Multiple lifts using a shear-leg barge or smaller HLV  - - -  - -  -  -   - - - - - - - - - - -

12(a) Single lift using an anchored HLV (embedment anchoring)   - -  - -  -  -   - - - - - - - - - - -

12(b) Single lift using an anchored HLV (suction anchoring)  -  -  - -  -  -   - - - - - - - - - - -

13 Platform jackets Full removal Single lift using a DP HLV  - - -  - -  -  -   - - - - - - - - - - -

14 Pipelines and umbilicals Full removal
“cut and lift” of pipeline sections: most practical for large diameter, 

rigid and concrete coated pipelines, though applicable to any  - - -   - - -  -   - - - - - - - - - - -

15 Pipelines and umbilicals Full removal Reverse reel or reverse S-lay  - - -   - - -  - -  - - - - - - - - - - -

16 Pipelines and umbilicals Partial removal

“cut and lift” of individual sections [may involve various degrees of 

intervention, with removal of pipeline ends and remediation 

involving rock placement]
 - - - -  - - -  - - - - - - - -  - - - - -

17 Pipelines and umbilicals Leave in situ
Usually involves various degrees of intervention, with removal of 

pipeline ends and remediation involving rock placement  - - - -  - - - - - - - - - - - -  - - - - -

18 Pipelines and umbilicals Leave in situ Trench and bury  - - -   - - - -  - - - - - -  - -  - - -

19 Drill cuttings Leave in situ Leave in place - - - - - - - - - - - - - - - - - - - - - -  -

20 Drill cuttings Leave in situ Leave in place but cover with gravel  - - - - - - - - -  - - - - - - - - - - - - -

21 Drill cuttings Full removal

Remove cuttings (pump up to surface rig/vessel), dewater, and either 

reinject into  bedrock waste well or transfer to shore for 

treatment/landfill
 - - - - - - - - - - - -  - - - - - - - - - 

Activity

InfrastructureMethod Objective Method

Platform jackets Full removal

Platform topsides Full removal

Platform topsides Full removal
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Table 7: Relationships between constituent Activities and the potential Pressures (indicating where Pressures are likely to be generated as a result of a given Activity). 
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1 Common to all decom scenarios Vessel movements             - - - - - - - - - -

2 Common to all decom scenarios Embedment Anchoring - - - - - - - - - - - -      - - - - -

3 Common to all decom scenarios Suction Anchoring  - - - -  - - - - - -      - - - - -

4 Common to all decom scenarios Survey sampling - - - - - - - - - - - -   - - - - - - - -

5 Common to all decom scenarios Overtrawl survey                  - - - - -

6 P&A Making safe - - - - - -  - - - - - - - - - - - - - - -

7 P&A Rig placement - - - - - - - - - - - -       -  - -

8 P&A Rig removal - - - - - - - - - - - -       -  - -

9 Top side removal Detachment of top side   - - -   - - - - - - - - - - - - - - -

10 Subsea removal 
Digging out infrastructure (excavation around jacket footings, pipeline 

sections, risers etc)
- -   - - - - - - - -       -  - -

11 Subsea removal Placement of stabilisation material - - - - - - - - - - - - - -      - - -

12 Subsea removal Removal of the infrastructure (cutting / explosives)   - - -   - - - - - - -    -  -  -

13 Subsea removal 
Removal of the infrastructure (pipelines, jacket footings (non-derogation), 

risers, mattresses) (impact on seabed)
 - - - -  - - -   - - - - -    - - -

14 Subsea removal Reinjection of cuttings  - - -  - - - - - - - - - - - - - - - - -

15 Subsea In-situ Concrete Gravity Based Structure (remaining in place) - -    - - - -   - - - - - -    - 

16 Subsea In-situ Footings (derogation) (remaining in place) - - - - - - - - - - - - - - - - -    - 

17 Subsea In-situ Buried mattresses (remaining buried) - - - - - - - - - - - - - - - - - -  - - -

18 Subsea In-situ Pipeline trenched and buried (remaining as buried) - -   - - - - - - - - - - - - - - - - - -

19 Subsea In-situ Pipeline rock dump - -   - - - - - - - -  -       - 

20 Subsea In-situ Pipeline open trench (remaining open) - -   - - - - - - - - - - - - -    - -

21 Subsea In-situ Cutting a trench (trenching a surface pipeline)  - - - - - - - - - - -       -  - 

22 Subsea In-situ Seabed preparation (corridor for pipeline) - - - - - - - - - - - -      - - - - -

23 Subsea In-situ Drill cuttings (undisturbed) - - - - - - - - - - - - - - - - - - - - - -

24 Subsea In-situ Drill cuttings (disturbed) - -   - - - - - - - -  - - -   -  - -

Pressure

Activity
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Table 8: Comparison of existing decision support tools / frameworks in addressing the key questions for oil 

and gas decommissioning (Questions are provided in full in Figure 1). 

Tool / Framework Reference 
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Decision Framework Bernstein et al. (2015)         

PLATFORM Henrion et al. (2015)         

PRISM  Net Gain (2011)         

PISA  Net Gain (2011)         

STARFISH  Net Gain (2011)         

FEAST  Marine Scotland (2018)         

ES Matrix Approach Saunders et al. (2015)         

SPIDA Current paper         
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Table 9: Categories used to record expert judgement on the likely spatio-temporal footprints of 

decommissioning Activities. 

Categories used to record: 

Spatial extent Duration Frequency 

 Local (0-1m) 

 Restricted nearfield (1-10m) 

 Nearfield (10-100m) 

 Farfield (100m-1km) 

 Widespread (in excess of 1km) 

 Up to 1 day 

 Up to 1 week 

 Up to 1 month 

 Up to 2 weeks 

 Up to 2 months 

 More than 2 months 

 One-off (single occurrence) 

 Repeating: minute-by-minute 

 Repeating: hourly 

 Repeating: daily 
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Table 10: Range of features currently considered by SPIDA. 

Interest Feature 

Annex I Species Hydrocoloeus minutus (Little gull) 

Annex I Species Sterna albifrons (Little tern) 

Annex I Species Sterna hirundo (Common tern) 

Annex I Habitats Reefs 

Annex I Habitats Sandbanks which are slightly covered with seawater all of the time 

Annex I Habitats Submarine structures made by leaking gases 

Annex II Species Phocoena (Harbour porpoise) 

Broad-scale Habitats Subtidal mixed sediments 

Broad-scale Habitats Subtidal mud 

Broad-scale Habitats Subtidal sands 

Broad-scale Habitats Subtidal sands and gravel 

FOCI Species Arctica islandica (Ocean quahog) 

Habitat Deep sea sponge aggregations 

Habitat Offshore deep sea muds 

Habitat Offshore subtidal sands and gravels 

Other Waterfowl assemblage 
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Table 11: Application of the 10-tenets to oil and gas decommissioning. 

Tenet Relevance to Oil, Gas and Offshore Windfarm Decommissioning 

Ecologically sustainable Effects of loss or gain of habitats and surfaces; changes in ecological 
equilibrium; increase or removal of pressures 

Technologically feasible Are there the techniques and technologies for removal? 

Economically viable Costs/benefits/increase/decrease/legacy issues of 
energy/GHG/jobs/ecosystem services/societal goods and benefits in 
removal and recycling 

Socially desirable/ tolerable Societal views of remain/removal and company responsibility; repercussions 
for other societal users and uses 

Legally permissible Legal requirements to remove or allow retention; challenges to legal 
practice 

Administratively achievable National bodies to implement international regulations and decide removal 
and derogations 

Politically expedient Politics of austerity, environmental protection and Blue Growth 

Ethically defensible (morally 
correct) 

Ethics of leaving and/or decommissioning debts for future generations 

Culturally inclusive Influence on indigenous peoples’ land and on high seas areas 

Effectively communicable Delivery of relevant and unbiased information  
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Table 12: Marine Strategy Framework Directive (MSFD) descriptors and their relevance to oil, gas and offshore 

windfarm decommissioning. 

MSFD Descriptor Relevance to Oil, Gas and Offshore Windfarm Decommissioning 

D01 biodiversity Biodiversity/MPA change against uncertain baselines; loss of de facto MPA 
with exclusion zone 

D02 alien species Surfaces for attachment; increasing the connectivity between oil fields and 
spread of alien species 

D03 food webs Biomass and feeding area changes; reef-effect & loss 

D04 seafloor integrity Disturbance through drill cuttings, cabling, tunnelling, scour-protection 
and surface structures; removal of structures from the seafloor 

D05 fishing De facto no-take zones with structures vs. regaining fishing grounds after 
removal 

D06 eutrophication No changes, minimal response 

D07 hydrography Removal of impediments to flow, local changes in local hydrodynamics 

D08 contamination in 
environment 

Release of contaminants due to physical disturbance of from anoxic 
sediments (H2S, CH4 etc.) 

D09 contamination in 
seafood 

Uptake of any released contaminants but perhaps dispersion means non-
detectable additional contamination 

D10 litter Remaining materials (pipelines, mattresses) regarded as ‘litter’ with 
eventual dispersion into the wider marine environment 

D11 energy/noise Noise, vibration (use of explosives) and energy use in removal 
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Figure 1: The Decision Support Framework. 
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Q1: What oil and gas structure(s) require(s) decommissioning? 

Q2: What are the potential decommissioning approaches for the structure?

Q3: What potential decommissioning activities are required?

Q4: What pressures are likely to result from decommissioning activities?

Q5: What MPA features are present within the site?

Q6: What is the potential loss or damage to the designated features?

Q7: What is the potential for the loss or gain of ecosystem services?

Q8: What is the potential for the loss or gain of goods/benefits?

Resources (R)

R1: Inventory of available decommissioning options (#3)

R2: Activities-Pressures matrix for decommissioning (#2)

R3: Inventory of protected features in UK marine waters (#1)

R4: Assessment of feature sensitivities to Pressures (#1)

R5: Intermediate ecosystem services (IES) –MPA matrix (#1)

R6: Goods/Benefits (G/B) - MPA matrix (#1)

R7: Underlying scientific evidence relating to decommissioning in the 

marine environment (#3)

Drivers Activities Pressures State changes
Impacts 

(on Welfare)
Responses 

(as Measures)

• Impacts on 
Conservation 
Objectives;

• Mitigation to 
reduce impacts;

• Reconsider 
decommissioning 
options;

• Enhance gains in 
goods/benefits.

R7. Underlying scientific evidence
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Figure 2: Ecosystem service classification for the marine environment (after Turner et al., 2015). 
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Figure 3: Application of DAPSI(W)R(M) to decommissioning oil and gas structures in MPAs. 
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Figure 4: SPIDA’s initial user-friendly interface. 
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Figure 5: Example of a standardised output from SPIDA. 


