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Abstract: Dimensionality reduction is of high importance in hyperspectral data processing, which can effectively reduce 

the data redundancy and computation time for improved classification accuracy. Band selection and feature extraction 

methods are two widely used dimensionality reduction techniques. By integrating the advantages of the band selection 

and feature extraction, we propose a new method for reducing the dimension of hyperspectral image data. First, a new 

and fast band selection algorithm is proposed for hyperspectral images based on an improved Determinantal point 

process (DPP). To reduce the amount of calculation, the Dual-DPP is used for fast sampling representative pixels, 

followed by kNN-based local processing to explore more spatial information. These representative pixel points are used 

to construct multiple adjacency matrices to describe correlation between bands based on mutual information. To 

further improve the classification accuracy, two-Dimensional Singular Spectrum Analysis (2D-SSA) is used for feature 

extraction from the selected bands. Experiments show that the proposed method can select a low-redundancy and 

representative band subset, where both data dimension and computation time can be reduced. Furthermore, it also 

shows that the proposed dimensionality reduction algorithm outperforms a number of state-of-the-art methods in terms 

of classification accuracy. 

 

1. Introduction 

Unlike traditional two-dimensional (2-D) images, 

hyperspectral data contains a 3-D structure, i.e. 2-D spatial 

information and 1-D spectral information. Abundant spectral 

information can describe the ground targets in more detail. 

Such advantages have facilitated the fast development of 

hyperspectral images in the field of remote sensing [1-2], 

where it has been successfully applied in urban mapping, 

environmental management, crop analysis, and mineral 

detection [3]. In addition to remote sensing, hyperspectral 

images has also been applied in lab-based applications such 

as forensics, pharmaceutical, medical, and food quality 

analysis [4-7].  

Although more spectral bands can increase the 

representation of ground objects, not all the bands play 

equally important roles in hyperspectral data processing [8]. 

Excessive data dimensions will directly lead to increased 

computational complexity and computer memory resources. 

In addition, high dimensional dataset may cause the Hughes 

phenomenon, which will lead to a decline in classification 

accuracy [3].  

To solve these problems, dimensionality reduction 

for hyperspectral images has attracted great attention in the 

past decade. Relevant techniques can be mainly divided into 

two categories, i.e. band selection and feature extraction. 

Band selection can also be regarded as a feature 

selection process [9-14], which aims to select a subset of the 

spectral features from the original data whilst keep the 

dominant information and maintain the performance. In [15], 

Yao et al proposed a new filter-based feature extraction 

method for band selection. The advantage of band selection 

is that it retains the physical information, characteristics and 

interpretable ability of the original data [9]. According to 

whether the sample labels are known or not, the band 

selection methods for hyperspectral images can be classified 

into supervised band selection [16-17] and unsupervised 

band selection [18-20]. 

Under the condition that a part of the sample labels is 

known, the supervised band selection method can select 

bands with higher correlation with class labels. In [12], the 

correlation between features and class labels is considered in 

designing a mutual-information based band selection 

algorithm. In comparison to unsupervised band selection 

methods, supervised band selection in general has better 

performance [21]. However, unsupervised band selection is 

still needed especially when there is no (sufficient) labelled 

data for supervised learning, regardless the time-consuming 

process of data labelling.   

For most unsupervised band selection algorithms, 

they aim to preserve the information of the original data 

with lowest possible dimensional dataset. Therefore, the 

generic unsupervised band selection algorithm contains two 

steps. The first is to establish an effective criterion to 

evaluate the spectral band performance or the redundancy of 

the candidate band subset. The second is to find a search 

strategy to determine a suitable band subset.  

Unlike band selection methods, feature extraction is 

to project the original data from the high-dimensional space 

to the low-dimensional space according to the criteria and 

obtain a low-dimensional data representation [22-25]. A 

number of feature extraction methods have been proposed 

for hyperspectral images dimensionality reduction. Based on 

how they deal with the spectral bands, these can be further 
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categorized into local-based methods and global-based 

methods.   

Local-based methods map the data from high 

dimension to low dimension whilst maintaining the local 

structure. Examples include Locality Preserving Projection 

(LPP) [26] and Locally Linear Embedding (LLE) [27]. In 

[28], Guo et al proposed a novel sparse hashing method to 

embed the high-dimension features into a low-dimension 

Hamming space.  

The global-based approaches aim to obtain a low 

dimensional representation of the original data whilst 

maintain the global structure of the original data. Typical 

examples include Principal Component Analysis (PCA) [29] 

and Isometric Feature Mapping (ISOMAP) [30]. In addition, 

some feature extraction methods can greatly remove the 

image noise, such as two-dimensional empirical mode 

decomposition (2D-EMD) [31] and two-dimensional 

singular spectrum analysis (2D-SSA) [22]. 2D-EMD can 

reconstruct each image using extracted low-order IMFs 

which can present the spatial structure of the image. 2D-

SSA can decompose each image into varying trends, 

oscillations, and noise. The image can be reconstructed 

using the trend and selected oscillations whilst remove the 

noise. In general, feature extraction methods can achieve 

high accuracy in classification of hyperspectral images. 

In summary, band selection and feature extraction 

methods have their own advantages and disadvantages for 

dimensionality reduction. Band selection methods can 

effectively maintain the original spectral band information 

and the correlation between spectral bands. Besides, band 

selection can directly remove the redundant information 

from the hyperspectral datasets. However, band selection 

normally is difficult to greatly improve the classification 

accuracy. On the contrary, feature extraction can effectively 

use the potential features of the hyperspectral image and 

achieve higher classification accuracy. However, feature 

extraction is usually applied to the original hyperspectral 

images and does not take into account the redundancy of the 

spectral bands. This will also result in the redundancy after 

feature extraction. Moreover, it will take more computation 

time for feature extraction because of the redundant 

information. In order to solve these problems, we combine 

band selection and feature extraction and propose a new 

dimension reduction method for hyperspectral image as 

detailed below.  

 First, we designed a fast band selection method 

using the spatial information. In [8], Yuan et al proposed a 

multiple graph to describe the complex structure between 

spectral bands by using spectral clustering. This method can 

consider latent structure between spectral bands in the high 

dimensional space thus it helps to make full use of the 

spatial information for more comprehensive measurement of 

the spectral redundancy. However, constructing a multiple 

graph structure by spectral clustering requires extremely 

high computation time and memory. To tackle this problem, 

we sample representative pixels to measure the correlation 

between bands. This sampling method consists of two steps: 

we first use Dual Determinantal Point Process (Dual-DPP) 

[32] to fast sample representative pixels, followed by kNN 

based strategy to determine neighbouring pixels to 

supplement the number of samples.  

Afterwards, we use the mutual information to 

construct an adjacency matrix that can describe the 

correlation of the spectral bands with representative pixels 

in each group. In this way, we can obtain multiple adjacency 

matrices from representative pixels in different groups. 

These adjacency matrices can measure redundancy of 

spectral bands using different spatial information. In 

addition, we also improved the original k-Determinantal 

point process (k-DPP) [33] to enable it to select a diversity 

and low-redundancy band subset from different adjacency 

matrices. Finally, to improve the classification accuracy, we 

use 2D-SSA to extract the spatial features from a low-

redundancy and low-dimension band subset. 

The main contributions of this paper can be 

summarized as follows: 

1. A fast Dual-DPP and kNN based algorithm is 

proposed to sample sufficient representative pixels 

from each spectral band. 

2.  From the perspective of data distribution, spatial 

information from different regions is used to measure 

the redundancy of the spectral bands more 

comprehensively. Moreover, we have improved the 

original k-DPP algorithm so that it can select low-

redundancy spectral band subsets on multiple 

similarity matrices.  

3. We apply 2D-SSA to selected subset of bands to better 

extract spatial features to improve the classification 

accuracy under much lower feature dimensions whilst 

effectively reducing the computational time.  

2. Related background 

2.1 k-Determinantal Point Process 

Determinantal point process (DPP) is an elegant 

probabilistic model of repulsion that arises in quantum 

physics and random matrix theory [32]. DPP is an effective 

and accurate sampling method, which can select a diversity 

and low-redundancy subset. DPP has many applications in 

real-world such as summarization, image search and news 

threading [32]. First proposed by Macchi [34], the DPP 

cannot set the cardinality 𝑘 of the subset bands in advance. 

To solve this problem, Kulesza et al [33] proposed an 

improved DPP algorithm called k-DPP to model the sets of 

cardinality 𝑘 as follows. 

Given a discrete finite set γ = {1,2,3, … , N} , any 

candidate subset 𝑌 ⊆ γ with cardinality |𝑌| = 𝑘 is selected 

according to the probability 

 𝑃𝐿
𝑘(𝑌) =

det⁡(L𝑌)

∑ det⁡(L𝑌′)|𝑌′|=𝑘

  (1) 

where 𝑌′ represents all the subsets that their cardinality, |𝑌′|, 
is equal to 𝑘. L𝑌 is a symmetric positive semidefinite matrix 

and its entries are indexed by the corresponding elements of   

𝑌. Similarly, L𝑌′ is a symmetric positive semidefinite matrix 

whose entries are indexed by the corresponding elements of   

𝑌′. Each element of matrix L𝑌 represents the correlation of 

the corresponding two elements in 𝑌. 

For example, if the subset 𝑌 contains two elements 

𝑌 = {𝑖, 𝑗}, L𝑌 can be written as 

 L𝑌 = [
𝐿𝑖𝑖 𝐿𝑖𝑗

𝐿𝑗𝑖 𝐿𝑗𝑗
] (2) 
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The greater the correlation between elements 𝑖  and 𝑗  will 

result in the larger value of 𝐿𝑖𝑗  and 𝐿𝑗𝑖. Then the probability 

of selecting candidate subset 𝑌 can be expressed as follows: 

 ⁡𝑃𝐿
𝑘(𝑌) ∝ det(𝐿𝑌)⁡⁡ 

 ⁡∝ |
𝐿𝑖𝑖 𝐿𝑖𝑗

𝐿𝑗𝑖 𝐿𝑗𝑗
|   (3)    

Obviously, the larger values of 𝐿𝑖𝑖  and 𝐿𝑗𝑗 ⁡mean that 

the elements 𝑖 and 𝑗 are more likely to belong to the subset 𝑌. 
The large value of 𝐿𝑖𝑗  means that 𝑖 and⁡𝑗 seem unlikely to 

co-occur. The more diverse and lower-redundancy subset 

has larger ⁡𝑃𝐿
𝑘(𝑌).  

However, selecting 𝑌  from γ  according to the 

equation (1) is an NP-hard problem. In [33], an approximate 

solution is given. The k-DPP mainly contains two steps [33]. 

In the first step, the eigenvector subset 𝑉  with 𝑘 

eigenvectors are selected depending on the probability 

which is calculated by the corresponding eigenvalues. In the 

second step, we select the band subset according to 

eigenvectors in subset  𝑉. An example is given below to 

detail the selection process. 

Given a positive semidefinite matrix 𝐿, its entries are 

indexed by the corresponding elements of γ . 𝐿  can be 

decomposed as  

  

 𝐿 = ∑ 𝜆𝑛
𝑁
𝑛=1 𝜈𝑛𝜈𝑛

𝑇 (4) 
 

𝜆𝑛  is the eigenvalue of 𝐿  and 𝜈𝑛  is the corresponding 

eigenvector. Then we want to find a subset 𝑌 from γ whose 

cardinality is |𝑌| = 𝑘 . First, we select 𝑘  eigenvalues 𝑆 =
{𝜆1, 𝜆2, … , 𝜆𝑘−1, 𝜆𝑘}   and the corresponding eigenvectors 

𝑉 = {𝜈1, 𝜈1, … , 𝜈𝑘−1, 𝜈𝑘} . Define 𝑆′⋃𝜆𝑘 = 𝑆 , then the 

cardinality |𝑆′| = 𝑘 − 1. The probability of selecting the k-

th eigenvalue, 𝜆𝑘, corresponding to the eigenvectors 𝜈𝑘 of 𝐿 

to add to 𝑆 and 𝑉 can be expressed as: 

 P(𝜆𝑘 ∈ 𝑆) = 𝜆𝑛
𝑒𝑘−1

𝑛−1

𝑒𝑘
𝑛 ⁡ (5) 

where 𝑒𝑘
𝑛 = ∑ ∏ 𝜆𝑛𝑛∈𝑌|𝑌|=𝑘 . In the second step, denote the 

low-redundancy band subset as 𝑌, whose cardinality is k, 

that is, |𝑌| = 𝑘 and 𝑌′ ∪ 𝑖 = 𝑌. The probability of selecting 

the 𝑖-th band to add to⁡𝑌 can be written as: 

𝑃𝑟(𝑖) =
1

|𝑉|
∑ (𝜈𝑛

𝑇𝑒𝑖)
2

𝜈𝑛∈𝑉  (6) 

where 𝑒𝑖 is a column vector that the 𝑖 element is one and the 

other elements are zero. 

2.2 2D-Singular Spectrum Analysis 

The 2D-SSA can extract the trend and select 

oscillations from hyperspectral images as features and 

remove the noise [22]. It contains four steps: Embedding 2-

D Signal, SVD, Grouping, and Diagonal Averaging. 

Embedding 2-D Signal: we set each spectral image 

𝑃2𝐷  with a size 𝑛𝑥 × 𝑛𝑦 . Each spectral image can be 

represented as a matrix: 

 P2D =

[
 
 
 
p1,1 p1,2 ⋯ p1,ny

p2,1 p2,2 ⋯ p2,ny

⋮ ⋮ ⋱ ⋮
pnx,1 pnx,2 ⋯ pnx,ny]

 
 
 

     (7) 

𝑃2𝐷 can be written as a trajectory matrix 𝑋2𝐷 with Hankel-

block-Hankel structure: 

𝑋2𝐷 =⁡

[
 
 
 
𝐻1 𝐻2 ⋯ 𝐻𝑁𝑥−𝐿𝑥+1

𝐻2 𝐻3 ⋯ 𝐻𝑁𝑥−𝐿𝑥+2

⋮ ⋮ ⋱ ⋮
𝐻𝐿𝑥

𝐻𝐿𝑥+1 ⋯ 𝐻𝑁𝑥 ]
 
 
 

𝐿𝑥×(𝑛𝑥−𝐿𝑥+1)

 (8) 

where each submatrix 𝐻𝑟  is Hankel type defined by 

𝐻𝑟 =

[
 
 
 
𝑝𝑟,1 𝑝𝑟,2 ⋯ 𝑝𝑟,𝑛𝑦−𝐿𝑦+1

𝑝𝑟,2 𝑝𝑟,3 ⋯ 𝑝𝑟,𝑛𝑦−𝐿𝑦+2

⋮ ⋮ ⋱ ⋮
𝑝𝑟,𝐿𝑦

𝑝𝑟,𝐿𝑦+1
⋯ 𝑝𝑟,𝑛𝑦 ]

 
 
 

𝐿𝑦×(𝑛𝑦−𝐿𝑦+1)

   (9) 

where 𝐿𝑥 and 𝐿𝑦 are the sizes of 2D-windows. 

SVD: Matrix 𝑆  is defined by the trajectory matrix 

𝑋2𝐷 as follows: 

 𝑆=𝑋2𝐷𝑋2𝐷𝑇
   (10) 

The eigenvalues of 𝑆 are denoted as {𝜆1 ≥ 𝜆1 ≥ ⋯𝜆𝐿} and 

the corresponding eigenvectors are {𝜇1, 𝜇2, … , 𝜇𝐿} , where 

𝐿 = 𝐿𝑥 × 𝐿𝑦. 

Grouping: The total set of L components is divided 

into two disjoint sets according to their contribution. The 

contribution of each component is related to its eigenvalue 

which can be represented as 

 𝜂𝑡 =
∑ 𝜆𝑙𝑙∈𝑡

∑ 𝜆𝑙
𝐿
𝑙=1

    (11) 

𝑡 is the set of eigenvalues with large values. Then we select 

the set with higher 𝜂𝑡 to reconstruct the matrix 𝑋𝑡𝑀
2𝐷. 

Diagonal Averaging: This process contains two-step 

Hankelization process. Sequential Hankelization is first 

applied within each block 𝐻𝑟  and then applied between the 

blocks 𝑋2𝐷 . Then 2D diagonal projection from group 𝑋𝑡𝑀
2𝐷  

can be written as follows 

 𝑍𝑀
2𝐷 =

[
 
 
 
 
𝑧𝑚1,1

𝑧𝑚1,2
⋯ 𝑧𝑚1,𝑛𝑦

𝑧𝑚2,1
𝑧𝑚2,2

⋯ 𝑧𝑚2,𝑛𝑦

⋮ ⋮ ⋱ ⋮
𝑧𝑚𝑛𝑥,1

𝑧𝑚𝑛𝑥,2
⋯ 𝑧𝑚𝑛𝑥,𝑛𝑦]

 
 
 
 

  (12) 

Finally, the spectral image 𝑃2𝐷 can be described as  

 𝑃2𝐷 = 𝑍1
2𝐷 + 𝑍2

2𝐷 + ⋯+ 𝑍𝑀
2𝐷 = ∑ 𝑍𝑚

2𝐷𝑀
𝑚=1    (13) 

3. The proposed band selection framework  

In this section, we will give a detailed description of 

the proposed dimensionality reduction method. The 

flowchart of our proposed algorithm is showed in Fig. 1. 
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Fig.1. The flowchart of the proposed dimensionality reduction method 

Part 2 

Part 3 

Part 1 

The proposed approach consists of three parts. In Part 

1, a fast yet effective sampling algorithm based on Dual-

DPP and kNN is introduced to sample the most 

representative pixels from the spectral datasets. In Part 2, 

these representative pixels are used to construct multiple 

adjacency matrices to describe the relationships of band 

pairs measured by the mutual information. In Part 3, an 

improved k-DPP algorithm is presented to select a low-

redundancy subset of bands from multiple adjacencies. In 

addition, 2D-SSA is employed to extract the spatial features 

from the selected bands to further improve the classification 

accuracy. Details will be discussed in the following 

subsections. 

In section 3.1, we introduce the proposed method to 

fast sample representative pixel points from hyperspectral 

images. The method of constructing multiple adjacency 

matrices is proposed in section 3.2. In section 3.3, we 

introduce the process of selecting bands with the proposed 

method and use 2D-SSA to extract spatial feature from the 

selected band subset. 

3.1 Sample representative pixels 

A hyperspectral image can be written as B =
{b1, b2, b3, … , b𝑙} ∈ Rn×𝑙, where⁡n represents the number of 

pixels in each spectral band and 𝑙  is the total number of 

spectral bands. b𝑖 ⁡(1 ≤ 𝑖 ≤ 𝑙)⁡ is the 𝑖-th spectral band. We 

use 𝑝𝑖
𝑥 to represent the pixel points in 𝑖-th spectral band.  

In this section, we aim to select some representative 

pixel points from the hyperspectral spatial-domain for 

subsequent band selection. These pixel points must be 

diverse and widely distributed in the spatial domain. The 

algorithm k-DPP mentioned above can be applied for this 

purpose. However, the k-DPP inevitably needs to compute 

𝐿 = ⁡𝐵𝐵𝑇 ∈ 𝑅𝑛×𝑛 and perform the eigen-decomposition on 

𝐿. As shown in equation (4), if the dimension 𝑛 of 𝐿 is large, 

it will require a huge amount of computer memory and a 

huge amount of computation time. Therefore, it is 

impractical to apply this method directly. 

To tackle this problem, the Dual-DPP [32] is applied 

here for fast sampling tasks. Different from 𝐿 = ⁡𝐵𝐵𝑇 ∈
𝑅𝑛×𝑛 , we construct another adjacency matrix 𝐻 =⁡𝐵𝑇𝐵 ∈

𝑅𝑙×𝑙, where 𝑙 is the number of bands and 𝑛 is the number of 

pixels. Since 𝑙 is much smaller than 𝑛, it’s obvious that the 

dimension of 𝐻 is much smaller than the dimension of 𝐿. 
Therefore, Dual-DPP requires less memory and less time 

than k-DPP in the decomposition process. 𝐻  can be 

decomposed as  

 𝐻 = ∑ 𝜆̂𝑛
𝑙
𝑛=1 𝜈̂𝑛𝜈̂𝑛

𝑇 (14) 

where 𝜆̂𝑛  is eigenvalue of 𝐻  and 𝜈̂𝑛  is the corresponding 

eigenvector. It can be simply proved that  

 𝜈𝑛 =⁡𝐵𝑇 𝜈̂𝑛    (15) 

Therefore, the sampling process by the Dual-DPP 

method also includes two steps. The first step is the same as 

the k-DPP method. According to equation (5), eigenvalues 

subset 𝑉̂  with 𝑘̂ eigenvalues 𝜈̂𝑛  are selected. In the second 

step, different from equation (6), we select i-th bands by the 

following probability 

 𝑃𝑟(𝑖) =
1

|𝑉|
∑ ((𝐵𝑇 𝜈̂𝑛)𝑇𝑒𝑖)

2
𝜈̂𝑛∈𝑉  (16) 

We repeat the selection process for multiple times until the 

required number 𝑘̂ (0 < 𝑘̂ ≤ 𝑙) is met.  

Due to the dimensionality limit of matrix 𝐻 , the 

value of 𝑘̂ is normally smaller than 𝑙. It will inevitably lead 

to insufficient samples. In order to solve this problem, we 

use KNN [35] to increase the number of pixel points. 

First, the pixel points collected by Dual-DPP [32] are 

used as the central points, which can be recorded as a central 

point set 𝑃𝑐 = {𝑃𝑐
1, 𝑃𝑐

2 … , 𝑃𝑐
𝑘̂} ∈ ℛ𝑙×𝑘̂, where 𝑙 is the number 

of bands and 𝑘̂ is the number of central points. 

After that, around each central point 𝑃𝑐
α⁡(1 ≤ α ≤ 𝑘̂), 

we use the kNN method [35] to find 𝑚 pixel points that are 

closest to the central points. In this way, we can collect 

enough diversity pixel points. We represent the pixel points 

set as B̂ = {b̂1, b̂2, b̂3, … , b̂𝑙} ∈ 𝑅𝑟×𝑙  which has 𝑘̂ clusters in 

each band and each cluster has 𝑚 pixel points. ⁡𝑟 = 𝑘̂ × 𝑚 

represents the number of pixels in each spectral band and 𝑙 
is the total number of all spectral bands. 
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3.2 Construct multiple adjacency matrices with mutual 

information 

Graph model can effectively capture the relationship 

between vertices. In [8], the author proposed a multi-graph 

structure by spectral clustering method that can effectively 

represent the relationship between bands. However, the 

spectral clustering methods are too complicated and require 

lots of computer memory.  

To tackle this problem, considering the useful 

information in spatial domain, we use representative pixels 

to construct multiple adjacency matrices with mutual 

information metrics. With this model, we can consider the 

redundancy of spectral bands from the data distribution of 

each band and capture the complex relationships between 

the pairwise bands. Both aspects make our model more 

comprehensive in judging the redundancy between spectral 

bands. 

We use a fast algorithm [36] to estimate the mutual 

information between two bands. Assume that pixels 

( 𝑝𝑖,α
𝑥 , 𝑝𝑗,α

𝑥 ), 𝑥 = 1,… ,𝑚,  in the α -th cluster from any 

pairwise bands 𝑏̂𝑖 and 𝑏̂𝑗 , and the joint probability of pixel 

points in α-th cluster from any pairwise bands 𝑏̂𝑖 and 𝑏̂𝑗 can 

be estimated as  

 𝑓(𝑝𝑖,𝛼 , 𝑝𝑗,𝛼) 

=
1

𝑚
∑

1

2𝜋ℎ2
𝑒

−
1

2ℏ2((𝑝𝑖,𝛼−𝑝𝑖,𝛼
𝑥 )

2
+(𝑝𝑗,𝛼−𝑝𝑗,𝛼

𝑥 )
2
)
⁡

𝑚

𝑥=1

(17) 

The marginal probability of pixels in the α-th cluster 

from any band 𝑏̂𝑖 can be estimated by  

            

𝑓(𝑝𝑖,𝛼) =
1

𝑚
∑

1

√2𝜋ℎ2
𝑒

−
1

2ℏ2((𝑝𝑖,𝛼−𝑝𝑖,𝛼
𝑥 )

2
𝑚

𝑥=1

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(18) 

  

Combining equations (17) and (18), we can get the mutual 

information of α-th cluster from any pairwise bands 𝑏̂𝑖 and 

𝑏̂𝑗 as 

I(b̂𝑖,α, b̂𝑗,α)

=
1

𝑚
∑ 𝑙𝑜𝑔

𝒎∑ ⅇ
−

𝟏

𝟐ℏ𝟐((𝒑𝒊,α
𝒙 −𝒑𝒊,α

𝒚
)
𝟐
+(𝒑𝒋,α

𝒙 −𝒑𝒋,α
𝒚

)
𝟐
)𝒎

𝒚=𝟏

∑ ⅇ
−

𝟏

𝟐ℏ𝟐((𝒑𝒊,α
𝒙 −𝒑𝒊,α

𝒚
)
𝟐

𝒎
𝒚=𝟏 ∑ ⅇ

−
𝟏

𝟐ℏ𝟐((𝒑𝒋,α
𝒙 −𝒑𝒋,α

𝒚
)
𝟐

𝒎
𝒚=𝟏

𝑚

𝑥=1

(19) 

where I(b̂𝑖,α, b̂𝑗,α) indicates the mutual information between  

𝑖-th and 𝑗-th bands calculated by the pixel points of α-th 

cluster. According to equation (19), we can calculate the 

mutual information between all bands and construct 

adjacency matrices LMI
α . Through the above method, we can 

build multiple adjacency matrices 𝐿𝑀𝐼 =

{LMI
1 , LMI,

2 LMI
3 , … , LMI

α }(1 ≤ α ≤ k̂) , where LMI
α ∈ 𝑅𝑙×𝑙  is a 

symmetric matrix used to measure the correlation between 

spectral bands with pixel information from the α-th cluster. 

3.3 Band selection and feature extraction 

Taking into account the spatial information of the 

hyperspectral image, we have construct multiple adjacency 

matrices with mutual information mentioned in Section 3.2. 

In this section, we propose an improved k-DPP to sample 

low-redundancy set of bands from these multiple adjacency 

matrices. According to Ref. [8], our algorithm can be 

written as follows: 

 𝑃𝐿𝑀𝐼
𝑘 (𝑌) =

1

𝑘̂
∑

1

𝑒𝛼,𝑘
𝑁 ∑ 𝑃𝑉𝑌

𝐵

|𝑌|=𝑘 (𝑌′)∏ 𝜆𝑛
𝛼 ⁡𝑛∈𝑌

𝑘̂
𝛼=1    (20) 

where 𝑒𝛼,𝑘
𝑁 = ∑ ∏ 𝜆𝑛

𝛼
𝑛∈𝑌|𝑌|=𝑘  are the eigenvalue 

polynomials of adjacency matrices 𝐿𝑀𝐼 , and 𝑃𝐿𝑀𝐼
𝑘 (𝑌) is the 

probability of sampling a band subset 𝑌 from the all band set 

γ . 𝜆𝑛
𝛼  is eigenvalue of  LMI

α  and ν𝑛
𝛼  is corresponding 

eigenvector. The probability of selecting 𝑖 -th band to add 

to⁡𝑌 can be written as: 

𝑃𝑟(𝑖) =
1

k̂
∑

1

|𝑉𝛼|
∑ (ν𝑛

𝛼𝑇𝑒𝑖)
2

ν𝑛
𝛼∈𝑉𝛼

k̂

𝛼=1

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(21) 

Our algorithm consists of two steps. The first step is 

to select the 𝑘 feature vectors in the same way as stated in 

Section 2.1. The main difference is that we have to select 

different feature vectors on different adjacent matrixes. In 

the second step, we select 𝑘  bands, according to the 

probability calculated in equation (21). Finally, we input the 

selected spectral band subset into the 2D-SSA algorithm for 

feature extraction. Details of the final proposed method are 

summarized in Algorithm 1.  

4. Experimental result  

In this section, we use two well-known hyperspectral 

image datasets to test the performance of the proposed 

method. Several representative unsupervised dimensionality 

reduction algorithms are used for comparisons, including 

PCA [29], LPP [26] and EMAP [37]. All the experiments 

were performed on Matlab and run on Intel CPU E5-

1620@3.5GHz with 32GB RAM. 

4.1. Hyperspectral Datasets 

AVRIS sensor: Indian Pines dataset 

The India Pines dataset was obtained by the Airborne 

Visible/Infrared Imaging Spectrometer sensor (AVIRIS) in 

1992 [38]. The image covers Indian Pines test site in North-

western Indiana. It has 220 spectral bands covering the 

spectrum range of 0.2-2.4 𝜇𝑚 . And 20 water absorption 

spectral bands [104-108], [150-163] are removed and 

remaining 200 spectral bands form the dataset. It has 

145 × 145 spatial pixels, including 16 classes ground truth.  

 ROSIS sensor: Pavia University dataset 

The Pavia University was collected by the Reflective 

Optics System Imaging Spectrometer optical sensor 

covering the Pavia University, Italy [39]. The dataset has 

115 spectral bands covering the spectrum range of 0.43-

0.86⁡𝜇𝑚. 12 noisy spectral bands are removed to remain 103 

bands for the dataset. It has 610 × 340  spatial pixels, 

including ground truth in 9 classes. 
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Algorithm 1 Dimensionality reduction based on DPP 

and SSA 

Input: 

       𝐵: a hyperspectral image 

       𝑘: number of selected bands 

Output: 

       Y∗: The feature map of B 

1) Sample representative pixel points by Dual-DPP and 

kNN 

2) for pixel points of each cluster do 

        calculate multiple adjacency matrices LMI
α  by            

equations (19) 

3) end for 

4) for each adjacency matrices LMI
α  do 

5) Characteristic decomposition: {ν𝑛
𝛼 , 𝜆𝑛

𝛼}𝑛=1
𝑙 ⇐ LMI

α  

6) Select 𝑘 eigenvectors with probability 𝜆𝑛
𝛼 𝑒𝐵,𝑘−1

𝑛−1

𝑒𝐵,𝑘
𝑛               

7) end for 

8) Select band subset Y with equations (21) 

9) Extract spatial features Y∗from Y 

Output:⁡Y∗ 

4.2. Experimental parameter setup 

In this section, we will introduce the parameter 

settings. We collected 20 pixel points as central points, and 

each central point selects the closest 50 and 30 pixel points 

in Indian Pines image and Pavia University image, 

respectively. The parameter, h, i.e. the width of the kernel in 

equation (18), is set to be 0.00032 and 0.0024 in Indian 

Pines image and Pavia University image, respectively. We 

use the SVM algorithm [40] to test the performance of the 

selected bands. The parameters C and RBF kernel of SVM 

are determined by five-fold cross validation. In all 

experiments, 5% of the samples are randomly selected for 

training, and the rest of the data are used for testing and all 

experiments are repeated 10 times. The number of training 

samples and test samples for Indian Pines image and Pavia 

University image are shown in Tables 1 and 2, respectively. 
The results of the experiment are evaluated with three 

authoritative indexes: overall accuracy (OA), average 

accuracy (AA) and kappa coefficient [41]. 
 

Table 1 The numbers of training and test samples of each 

class in the Indian Pines image 

Class Training Test Samples 

1. Alfalfa 3 51 54 

2. Corn-notill 72 1362 1434 

3. Corn- mintill 42 792 834 

4. Corn 12 222 234 

5. Grass- pasture 25 472 497 

6. Grass-trees 37 710 747 

7. Grass-pas- turemowed 2 24 26 

8. Hay- windrowed 24 465 489 

9. Oats 2 18 20 

10. Soybean- notill 48 920 968 

11. Soybean- mintill 123 2345 2468 

12. Soybean- clean 31 583 614 

13. Wheat 11 201 212 

14. Woods 65 1229 1294 

15. Building- grass-trees 19 361 380 

16. Stone- steel-towers 5 90 95 

total 521 9845 10366 

 

Table 2 The numbers of training and test samples of each 

class in Pavia university image 

 

Class Training Test Samples 

1. Asphalt 332 6299 6631 

2. Meadows 933 17716 18649 

3. Gravel 105 1994 2099 

4. Trees 153 2911 3064 

5. Painted metal sheets 67 1278 1345 

6. Bare soil 252 4777 5029 

7. Bitumen 67 1263 1330 

8. Self-blocking bricks 184 3498 3682 

9. Shadows 48 899 947 

Total 2141 40635 42776 

4.3. Classification performance  

In this section, we choose different dimensionality 

reduction methods to reduce the dimension of the data and 

compare the performance of the reduced dimension data on 

the classification task. All experiments are repeated 10 times, 

and the relevant mean and standard of classification 

accuracy deviation are shown in Table 3 and Table 4, 

respectively. 

From Table 3, it can be seen that except the PCA 

algorithm, the classification accuracies of the other three 

data dimensionality reduction methods are all higher than 

that of the original data in Indian Pines dataset. Compared to 

the original dataset, our algorithm has 11% increase in the 

indexes of OA and AA, and 12% increase in the indexes of 

Kappa. Compared to EMAP, our algorithm has 1.7-2% 

increase in the indexes of OA and Kappa, and 0.3% slightly 

lower in the indexes of AA. Our method can achieve good 

results, mainly because our algorithm can effectively select 

a wide distribution of light bands, which can effectively 

maintain the original data information. Moreover, our 

algorithm can effectively extract spatial feature information. 

As can be seen from Table 4, the four dimensionality 

reduction methods can achieve good results. Compared with 

other methods, the PCA method has the worst result for 

dimensionality reduction. Our proposed method achieves the 

best results. Compared to PCA and LPP, our method has a 

7-8% improvement in the three indicators. Although EMAP 

is a powerful method, the performance of our method also 

has a 0.6-1% improvement in classification accuracy. 
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Table 3 Classification accuracy in the Indian Pines with PCA, LPP, EMAP and the proposed method (Best result of each row 

is marked in bold type)

 

Class Baseline PCA LPP EMAP Proposed 

Dimensionality 200 36 36 36 36 

1. Alfalfa 58.04±18.05 61.18±13.95 62.75±15.52 90.20±5.06 80.78±16.74 

2. Corn-notill 79.21±2.55 78.98±2.28 82.72±1.57 87.25±2.43 92.72±3.31 

3. Corn- mintill 70.88±5.47 71.28±5.50 71.19±5.53 92.50±4.56 89.17±2.65 

4. Corn 60.09±10.18 59.55±8.30 71.26±6.85 84.23±4.53 91.04±7.55 

5. Grass- pasture 91.50±3.79 90.68±3.64 93.35±1.81 90.68±3.48 91.33±5.43 

6. Grass-trees 95.06±2.00 94.99±2.00 94.59±1.95 96.10±1.27 96.85±2.32 

7. Grass-pas- turemowed 72.50±11.32 77.08±10.80 77.50±7.91 93.75±2.20 78.33±23.64 

8. Hay- windrowed 97.76±1.13 97.31±1.88 97.72±1.44 99.57±0.10 96.02±2.53 

9. Oats 69.44±21.32 77.78±15.71 81.67±13.11 67.78±18.29 72.22±24.00 

10. Soybean- notill 72.32±6.11 72.50±3.53 72.70±4.06 83.96±3.33 89.53±4.52 

11. Soybean- mintill 82.74±2.75 81.69±2.91 84.11±2.92 92.67±2.89 95.03±1.30 

12. Soybean- clean 74.89±3.66 73.07±3.28 78.95±5.43 79.04±4.79 86.04±4.15 

13. Wheat 98.46±1.29 98.06±1.25 98.96±0.83 99.05±1.09 96.62±4.86 

14. Woods 94.59±2.03 94.30±2.36 94.87±1.06 97.70±2.75 96.64±1.69 

15. Building- grass-trees 50.08±5.37 49.42±5.86 51.72±6.33 89.17±4.83 89.11±4.92 

16. Stone- steel-towers 89.22±5.59 89.11±5.73 89.44±5.52 98.00±0.88 92.78±5.84 

OA (%) 81.85±0.83 81.40±1.11 83.43±0.74 91.20±0.48 92.94±0.87 

AA (%) 78.55±2.70 79.19±1.72 81.47±1.86 90.10±0.95 89.64±2.33 

Kappa (%) 79.28±0.96 78.78±1.25 81.06±0.87 89.96±0.54 91.95±1.00 

 

     Table 4 Classification accuracy in the Pavia University with PCA, LPP，EMAP and the proposed method (Best result of 

each row is marked in bold type)  

 

Class Baseline PCA LPP EMAP Proposed 

Dimensionality 200 36 36 36 36 

1. Asphalt 89.50±1.42 89.50±1.42 90.23±1.48 98.70±0.29 98.15±0.56 

2. Meadows 96.48±0.65 96.48±0.65 96.74±0.30 99.11±0.29 99.89±0.06 

3. Gravel 69.88±2.52 69.88±2.52 70.11±1.29 93.12±2.48 90.18±2.52 

4. Trees 91.91±1.47 91.91±1.47 91.83±2.00 97.75±1.03 97.09±1.18 

5. Painted metal sheets 99.37±0.34 99.37±0.34 99.40±0.30 99.69±0.15 99.87±0.16 

6. Bare soil 73.97±2.61 73.97±2.61 75.00±1.27 94.51±1.39 99.33±0.36 

7. Bitumen 80.19±2.80 80.19±2.80 80.97±3.00 92.94±1.46 96.12±1.96 

8. Self-blocking bricks 85.26±2.54 85.26±2.54 86.56±1.71 96.73±1.21 94.75±0.81 

9. Shadows 97.93±1.21 97.93±1.21 98.06±1.40 99.83±0.19 96.52±1.06 

OA (%) 89.77±0.43 89.77±0.43 90.26±0.34 97.75±0.16 98.24±0.31 

AA (%) 87.17±0.69 87.17±0.69 87.66±0.58 96.93±0.22 96.88±0.60 

Kappa (%) 86.33±0.58 86.33±0.58 86.99±0.46 97.01±0.21 97.67±0.41 

4.4. Comparison with 2D-SSA using all bands 

In this section, we analyse the proposed 

dimensionality reduction algorithm and the original 2D-SSA 

from the two perspectives of data dimension reduction and 

the computation time. The original 2D-SSA is used for 

feature extraction for hyperspectral images using all bands. 

In our dimensionality reduction method, the 2D-SSA is 

applied for feature extraction on a part of bands selected by 

the proposed band selection method. The results are given as 

follows. 

In Table 5 and Table 6, we analyse the differences in 

the classification accuracy of the feature extraction with 

entire bands and the feature extraction with selected bands. 

The numbers in parentheses indicate the numbers of the 

selected hyperspectral bands. The numbers of bands for the 

Indian Pines and Pavia University datasets are 200 and 103, 

respectively. To compare the dimensionality reduction 

effects of different dimensions, 40 to 80 bands are tested and 

the dimensionality reduction performances are given with 

the increment of 10 dimensions each time.  

In Fig. 2 and Fig. 3, we illustrate the classification 

accuracy and computation time of 2D-SSA with all bands 

and DPP+SSA with the increasing number of bands. The 

results of feature extraction with all bands are taken as 

baseline. For example, the line labelled 2D-SSA (200) in 

Fig.2 (a) and the labelled 2D-SSA (103) are taken as 

baseline. The time in the table contains all times for band 

selection, feature extraction and classification. It can be seen 

that, in Indian Pines, when the dimension exceeds 60, the 
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classification accuracy of our proposed algorithm is very 

close to or even slightly higher than the original 2D-SSA. 

On Pavia University, the experiment results of the two 

algorithms are similar in terms of classification accuracy, 

which means that the performance is very close. However, 

the dimension of dataset extracted by our method is lower 

and takes much less time. This shows that the features 

extracted by the original 2D-SSA are partially redundant, 

and our method can effectively remove the redundancy. The 

reasons why it takes less time are analysed as follows.  

In band selection, the most time consuming is eigen-

decomposition of similarity kernel matrix and the 

construction of adjacency matrix with mutual information. 

Therefore, we use the Dual-DPP to avoid the decomposition 

of high-dimensional matrices and reduce the computation 

time. Besides, we design a method for collecting the spatial 

representative pixel points with diversity and good coverage. 

This method avoids the estimation of mutual information on 

the entire hyperspectral dataset and effectively reduces the 

calculation time.     

 

Table 5 Classification accuracy and computation time in the Indian Pines image of 2D-SSA and DPP+SSA (Best result of 

each row is marked in bold type) 

 

 2D-SSA 

(200) 

DPP+SSA 

(40) 

DPP+SSA 

(50) 

DPP+SSA 

(60) 

DPP+SSA 

(70) 

DPP+SSA 

(80) 

OA (%) 93.09±0.99 92.79±0.85 92.80±0.81 93.17±0.62 93.07±0.94 93.50±0.53 

AA (%) 89.25±1.92 89.22±2.01 89.29±2.45 89.56±1.75 89.30±2.24 89.52±1.75 

Kappa (%) 92.12±1.13 91.78±0.98 91.79±0.92 92.21±0.70 92.03±1.08 92.59±0.60 

Time(s) 23.25 8.47 10.81 13.96 17.02 21.10 

 

Table 6 Classification accuracy and computation time in the Pavia University image of 2D-SSA and DPP+SSA (Best result of 

each row is marked in bold type) 

 

 2D-SSA 

(103) 

DPP+SSA 

(40) 

DPP+SSA 

(50) 

DPP+SSA 

(60) 

DPP+SSA 

(70) 

DPP+SSA 

(80) 

OA (%) 98.42±0.23 98.20±0.18 98.23±0.20 98.35±0.25 98.40±0.20 98.43±0.20 

AA (%) 97.19±0.38 96.98±0.30 96.92±0.33 97.09±0.46 97.16±0.38 97.20±0.44 

Kappa (%) 97.90±0.30 97.62±0.24 97.66±0.27 97.81±0.33 97.87±0.26 97.91±0.27 

Time(s) 80.76 35.70 44.45 52.43 64.00 74.02 

 

 
 

(b) (a) 

Fig.2. Classification accuracy in the Indian 

Pines image (a) and Pavia University image 

(b) of 2D-SSA and DPP+SSA 
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5. Conclusion 

In this paper, a new unsupervised dimensionality 

reduction algorithm is proposed for band selection of 

hyperspectral image. We make full use of the spatial 

information of hyperspectral image and construct multiple 

adjacency matrices to describe the correlation of spectral 

bands. In addition, we designed a fast spatial sampling 

method for hyperspectral, collecting some representative 

sample points, which can effectively reduce the amount of 

data calculation. An improved k-DPP is presented to sample 

a diversity and low-redundancy band subset from the multi 

adjacency matrices. Finally, duo to its ability of extracting 

features, 2D-SSA is employed and integrated with the 

improved k-DPP to build our unsupervised dimensionality 

reduction algorithm which can efficiently extract the spatial 

features of spectral images. The experimental results on two 

well-known hyperspectral datasets show that the proposed 

algorithm achieves higher classification accuracy with 

effectively compressing the data dimension.  
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