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Abstract 34 

1. Moths are globally relevant as pollinators but nocturnal pollination remains poorly 35 

understood. Plant-pollinator interaction networks are traditionally constructed using 36 

either flower-visitor observations or pollen-transport detection using microscopy. 37 

Recent studies have shown the potential of DNA metabarcoding for detecting and 38 

identifying pollen-transport interactions. However, no study has directly compared the 39 

realised observations of pollen-transport networks between DNA metabarcoding and 40 

conventional light microscopy. 41 

2. Using matched samples of nocturnal moths, we construct pollen-transport networks 42 

using two methods: light microscopy and DNA metabarcoding. Focussing on the 43 

feeding mouthparts of moths, we develop and provide reproducible methods for 44 

merging DNA metabarcoding and ecological network analysis to better understand 45 

species-interactions. 46 

3. DNA metabarcoding detected pollen on more individual moths, and detected multiple 47 

pollen types on more individuals than microscopy, but the average number of pollen 48 

types per individual was unchanged. However, after aggregating individuals of each 49 

species, metabarcoding detected more interactions per moth species. Pollen-50 

transport network metrics differed between methods, because of variation in the 51 

ability of each to detect multiple pollen types per moth and to separate 52 

morphologically-similar or related pollen. We detected unexpected but plausible 53 

moth-plant interactions with metabarcoding, revealing new detail about nocturnal 54 

pollination systems. 55 

4. The nocturnal pollination networks observed using metabarcoding and microscopy 56 

were similar, yet distinct, with implications for network ecologists. Comparisons 57 

between networks constructed using metabarcoding and traditional methods should 58 

therefore be treated with caution. Nevertheless, the potential applications of 59 
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metabarcoding for studying plant-pollinator interaction networks are encouraging, 60 

especially when investigating understudied pollinators such as moths. 61 

 62 
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Introduction 68 

Species interaction networks, which describe the presence and strength of interspecific 69 

interactions within ecosystems (Montoya et al., 2006), are an important tool in understanding 70 

and conserving ecosystem processes and functioning (Tylianakis et al., 2010). Currently, 71 

there is considerable interest in pollination networks, due to ongoing global declines in 72 

pollinating insects (Potts et al., 2010) and their role in reproduction of both wild plants and 73 

crops (Klein et al., 2007; Ollerton et al., 2011). 74 

Many flower-visiting animals are not effective pollinators, and proving the existence of an 75 

effective pollination interaction is labour-intensive (King et al., 2013). Consequently, proxies 76 

for pollination are often used to construct plant-pollinator interaction networks, which cannot 77 

strictly be referred to as pollination networks. A commonly-used proxy is flower-visitation, 78 

recorded by directly observing animals visiting flowers. This is effective for daytime 79 

sampling, but is challenging to apply to nocturnal pollinators, such as moths (Lepidoptera; 80 

Macgregor et al., 2015), because observations are difficult and may be biased if assisted by 81 

artificial light. This may explain why plant-pollinator network studies frequently omit nocturnal 82 

moths, even though moths are globally relevant pollinators (Macgregor et al., 2015). 83 

An alternative to direct observation is detecting pollen transport, by sampling and identifying 84 

pollen on the bodies of flower-visiting animals; this approach has been used in several 85 

previous studies of nocturnal pollination by moths (Devoto et al., 2011; Banza et al., 2015; 86 

Knop et al., 2017; Macgregor et al., 2017a). By analysing pollen transport, flower-visits 87 

where no pollen is received from the anthers are excluded (Pornon et al., 2016). This 88 

approach can detect more plant-pollinator interactions with lower sampling effort than flower-89 

visitor observations (Bosch et al., 2009). Studies of pollen transport also permit unbiased 90 

community-level sampling of interactions without requiring decisions about distribution of 91 

sampling effort among flower species, as each pollinator carries a record of its flower-visiting 92 

activities in the pollen on its body (Bosch et al., 2009). Traditionally, pollen identification is 93 
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undertaken using light microscopy with a reference collection of known species (e.g. Devoto 94 

et al., 2011). However, identifications made by microscopy can be ambiguous, especially 95 

when distinguishing related species (Galimberti et al., 2014). Accurate, reproducible 96 

identification of pollen sampled from pollinators is necessary to ensure plant-pollinator 97 

networks are free from observer bias. 98 

A recent alternative to microscopy is DNA metabarcoding: high-throughput sequencing of 99 

standard reference loci from communities of pooled individuals (Cristescu, 2014). It offers 100 

possibilities to detect interspecific interactions, including plant-pollinator interactions (Evans 101 

et al., 2016), and methods are rapidly improving, permitting greater accuracy in species 102 

identification (Bell et al., 2016a) for reducing costs (Kamenova et al., 2017). Studies using 103 

metabarcoding have identified pollen sampled from honey (Hawkins et al., 2015; de Vere et 104 

al., 2017) and directly from bees (Galimberti et al., 2014) and flies (Galliot et al., 2017), and 105 

constructed plant-pollinator networks (Bell et al., 2017; Pornon et al., 2017). DNA sequences 106 

have confirmed identities of single pollen grains sampled from moths (Chang et al., 2018), 107 

but no study has applied metabarcoding to nocturnal pollen-transport by moths, where 108 

pollen-transport approaches may be most valuable, given the paucity of existing knowledge 109 

about moth-plant pollination interactions. Metabarcoding reveals more plant-pollinator 110 

interactions than direct flower-visitor observations (Pornon et al., 2016, 2017), but it is 111 

unclear whether this is purely because pollen-transport approaches detect interactions more 112 

efficiently than flower-visitation approaches (Bosch et al., 2009) or whether metabarcoding 113 

offers specific additional benefits. Use of a metabarcoding approach is often justified by the 114 

labour-intensive nature of microscopy-based approaches and the level of expertise required 115 

to identify pollen morphologically (e.g. de Vere et al., 2017). It is frequently suggested that 116 

metabarcoding increases the level of species discrimination compared to traditional 117 

approaches (Bell et al., 2017). Crucially, despite this assertion, no study has directly 118 

compared metabarcoding to traditional microscopy for assessing pollen transport. It is 119 

therefore unknown whether, in studies using a pollen-transport approach, the choice of 120 
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detection method (light microscopy or DNA metabarcoding) can alter the realised 121 

observations of plant-pollinator interactions.  122 

In this study, we used matched samples of moths to construct nocturnal pollination networks 123 

using two methods: DNA metabarcoding, and the traditional light microscopy approach; and 124 

compared the observed networks, considering the quantity and nature of the interactions 125 

detected and the properties of the networks themselves. We sampled moths in a UK agro-126 

ecosystem, as our previous study suggests that moths may have greater importance as 127 

pollinators in such systems than generally thought (Macgregor et al., 2017a). Accordingly, 128 

we developed existing pollen-metabarcoding protocols to enable detection of pollen 129 

transported by moths, and integrated molecular advances with ecological network analysis 130 

to provide a reproducible methodology for the improved study of species-interactions. We 131 

present a framework for future studies of pollination networks using metabarcoding, by 132 

providing detailed descriptions of our methods and archiving all bioinformatic and statistical 133 

code. We discuss the advantages and disadvantages of each method for assessment of 134 

pollen transport by moths and other pollinator taxa, current limitations and future research 135 

directions.  136 

Materials and methods 137 

Field sampling 138 

We sampled moths, using light-traps, from four locations in a single farmland site in the East 139 

Riding of Yorkshire, UK (53°51'44" N 0°25'14" W), over eight nights between 30th June and 140 

19th September 2015 (Table S1; full details in Appendix S1). Moths were euthanised and 141 

retained individually. As both pollen-sampling methods are destructive, it was impossible to 142 

directly compare sensitivity by sampling pollen from the same individual moth with both 143 

methods. Instead, we created two matched sub-samples of moths, each containing the 144 

same set of species, and the same number of individuals of each. Pollen-transport by each 145 

sub-sample was analysed using one method (Fig. 1). With both methods, we restricted 146 
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pollen sampling to the proboscis, because most moth species coil their proboscides unless 147 

actively feeding (Krenn, 1990). Therefore, the proboscis is unlikely to experience cross-148 

contamination of pollen through contact with other moths (e.g. whilst in the moth-trap), and 149 

pollen held on the proboscis is probably the result of a flower-visitation interaction. 150 

Method 1: light microscopy 151 

A standard approach for pollen sampling was applied (Beattie, 1972), in which 1 mm3 cubes 152 

of fuchsin jelly were used to swab pollen from the proboscides of moths, and the pollen 153 

examined under a light microscope at 400x magnification. Pollen morphotypes were 154 

identified using a combination of keys (Moore et al., 1994; Kapp et al., 2000) and knowledge 155 

of likely insect-pollinated plant taxa. Morphotypes (equivalent to operational taxonomic units, 156 

OTUs) represented groupings that could not be unambiguously separated to a lower 157 

taxonomic level, and might have contained pollen from multiple species. 158 

Method 2: DNA metabarcoding 159 

Protocols for DNA extraction, amplification and sequencing are fully described in Appendix 160 

S1 and archived online (dx.doi.org/10.17504/protocols.io.mygc7tw). In brief, the protocols 161 

were as follows. Moth proboscides were excised using a sterile scalpel. Pollen was removed 162 

from each proboscis by shaking for 10 minutes in HotSHOT lysis reagent (Truett et al., 2000) 163 

at 2000 rpm on a Variomag Teleshake plate shaker (Thermo Scientific, Waltham, MA). The 164 

proboscis was removed using sterile forceps, and the DNA extraction procedure completed 165 

on the remaining solution following Truett et al. (2000). Extracted DNA was amplified using a 166 

three-step PCR nested tagging protocol (modifed from Kitson et al., n.d. in press; see 167 

Appendix S1). We amplified a custom fragment of the rbcL region of chloroplast DNA, which 168 

has been previously used for metabarcoding pollen (Hawkins et al., 2015; Bell et al., 2017) 169 

and has a comprehensive reference library for the Welsh flora, representing 76% of the UK 170 

flora (de Vere et al., 2012), available on the International Nucleotide Sequence Database 171 

Collaboration (http://www.insdc.org/; GenBank). We used two known binding sites for 172 
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reverse primers, rbcL-19bR (Hofreiter et al., 2000) and rbcLr506 (de Vere et al., 2012), to 173 

produce a working forward and reverse universal primer pair, rbcL-3C (rbcL-3CF: 5’-174 

CTGGAGTTCCGCCTGAAGAAG-3’; rbcL-3CR: 5’-AGGGGACGACCATACTTGTTCA-3’). 175 

Primers were validated by successful amplification of DNA extracts from 23/25 plant species 176 

(Table S2). Sequence length varied widely (median: 326 base pairs (bp), range: 96–389 bp); 177 

fragments shorter than 256 bp generally had no match on GenBank. Six control samples 178 

were used to monitor cross-contamination between wells (Table S3).  179 

Amplified DNA was sequenced on an Illumina MiSeq, using V2 chemistry. Taxonomic 180 

assignment of MiSeq output was conducted using the metaBEAT pipeline, version 0.97.7 181 

(https://github.com/HullUni-bioinformatics/metaBEAT). For reproducibility, all steps were 182 

conducted in Jupyter notebooks; all bioinformatic and statistical code used in this study is 183 

archived online (dx.doi.org/10.5281/zenodo.1322712) and procedures are explained in full in 184 

Appendix S1. Taxonomic assignment of sequences was conducted within metaBEAT based 185 

on a BLAST Lowest Common Ancestor approach similar to the one implemented in MEGAN 186 

(Huson et al., 2007). We chose to conduct taxonomic assignment with BLAST because it is 187 

among the most widely-used taxonomic assignment tools, and blastn specifically has a 188 

proven capacity to discriminate between UK plant species using the rbcL locus (de Vere et 189 

al., 2012). We used a curated database of reference sequences from plausibly-present plant 190 

species previously recorded in the vice-county of South-east Yorkshire (reference list of 191 

species archived at dx.doi.org/10.5281/zenodo.1322712). 192 

To eliminate the risk of cross-well contamination, we established a threshold for minimum 193 

read depth of 50 reads, per assignment, per well. The maximum read depth in any negative 194 

control well was 47, and the maximum read depth in any positive control well of sample 195 

assignments was 33 (Table S3). Therefore, this threshold was adequate to remove sample 196 

reads from positive and negative controls. Within each well, any assignment with a read 197 

depth below 50 was reset to 0 prior to statistical analysis; this resulted in some plant OTUs 198 

being removed entirely from the dataset (however, these OTUs are indicated in Table 1). 199 
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Curation of data 200 

We harmonised the plant identifications from each method (OTUs from metabarcoding and 201 

morphotypes from microscopy) to produce a single list of plants consistent across both 202 

methods (Table 1). Specifically, for metabarcoding, we revised family-level assignments 203 

made by BLAST, inspecting the range of species-level matches to identify clear taxonomic 204 

clusters within the families. For microscopy, we attempted to re-identify pollen morphotypes 205 

using images of pollen from species identified by metabarcoding for additional reference 206 

(see Appendix S1). Microscopic photographs of pollen were sourced from two online 207 

repositories of pollen images: Pollen-Wiki 208 

(http://pollen.tstebler.ch/MediaWiki/index.php?title=Pollenatlas) and the Pollen Image Library 209 

(http://www-saps.plantsci.cam.ac.uk/pollen/index.htm). 210 

Comparison of methods and statistical analysis 211 

We tested for differences between the two identification methods, examining whether 212 

sampling method affected the likelihood of detecting (i) pollen on individual moths; (ii) more 213 

than one pollen species on individuals; (iii) pollen on moth species (individuals combined); 214 

and whether sampling method affected the number of pollen types detected (iv) per 215 

individual moth; and per moth species, using (v) observed richness and (vi) true richness 216 

estimated using the Chao2 estimator (Chao, 1987). We used generalised linear mixed-217 

effects models (GLMMs), with sampling method as a fixed effect. In individual-level 218 

analyses, we used date/light-trap combination (‘trap ID’) and species as crossed random 219 

effects, whilst in species-level analyses, we used moth species as a random effect to treat 220 

the data as pairs of observations (one observation, per method, per moth species). We 221 

tested significance of fixed effects using either Likelihood Ratio Tests, for models with a 222 

binomial or Poisson error distribution, or Type III ANOVA, for models with a quasi-Poisson 223 

error distribution (error distributions used in each model are detailed in Table S5). Analysis 224 
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was carried out with R version 3.3.2 (R Core Team, 2016); all code is archived at 225 

dx.doi.org/10.5281/zenodo.1322712.  226 

Sampling completeness and networks 227 

For both methods, we estimated sampling completeness of interactions, following Macgregor 228 

et al. (2017b). For each method, we estimated the total number of pollen types (interaction 229 

richness) for each insect species with the Chao2 estimator (Chao, 1987), using the R 230 

package vegan (Oksanen et al., 2015). We calculated interaction sampling completeness for 231 

each species as 100*(observed interactions)/(estimated interactions) for each species. 232 

Finally, we calculated the mean interaction sampling completeness of all species, weighted 233 

by estimated interaction richness of each species. 234 

We constructed pollen-transport networks from the interaction data. We used presence of 235 

interactions between individual moths and plant taxa, rather than strength of individual 236 

interactions, because read depth (metabarcoding) and pollen count (microscopy) do not 237 

correlate between plant species (Pornon et al., 2016). We measured interaction frequency 238 

by counting interactions across all individuals in each moth species; interaction frequency 239 

correlates positively with true interaction strength in mutualistic networks (Vázquez et al., 240 

2005). We calculated several quantitative metrics, as follows, to describe the diversity and 241 

specialisation of interactions forming each network. Improved detection of interactions could 242 

increase the complexity of the network, so we calculated two measures of network 243 

complexity: linkage density (average no. links per species) and connectance (proportion of 244 

possible interactions in the network that are realized). Likewise, improved detection of plant 245 

species with the same set of pollinator species could alter consumer-resource asymmetry 246 

and perceived specialization of species in the network, so we calculated H2’ (a frequency-247 

based index that increases with greater specialization), generality of pollinators, and of 248 

plants (average no. links to plant species per pollinator species, and vice versa). Finally, the 249 

resilience of the network to cascading species loss may be influenced by its complexity 250 
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(Dunne et al., 2002), so we measured the robustness of each network (mean robustness 251 

across 1000 bootstrapped simulations of pollinator species loss). For comparison, we 252 

repeated all network analyses both (i) with plant identities aggregated at family-level, 253 

because the methods might differ in their ability to distinguish closely-related species, and (ii) 254 

excluding all species of moth for which only one individual was sampled with each method, 255 

because the influence of such singletons on network metrics could potentially be large 256 

enough to bias our findings. Networks were analysed using the package bipartite (Dormann 257 

et al., 2009) and plotted using Food Web Designer 3.0 (Sint & Traugott, 2016). As we could 258 

only construct one network for each method, we recorded obvious differences between the 259 

metrics for each network but could not statistically assess the significance of those 260 

differences. 261 

Results 262 

Summary 263 

In total, we caught 683 moths of 81 species, generating two matched sub-samples, each 264 

containing 311 moths of 41 species (Table S4). We detected pollen on 107 individual moths 265 

with metabarcoding (34% of the sub-sample) and 70 (23%) with microscopy (Table 1). We 266 

initially identified 20 plant morphotypes in the microscopy sample and 25 OTUs in the 267 

metabarcoding sample (Table 2). After harmonising these we recorded 33 plant identities (at 268 

varying taxonomic resolution), of which 18 were detected with both methods, 11 with 269 

metabarcoding only (including three which failed to meet the minimum read depth threshold 270 

in any sample), and four by microscopy only (Fig. 2). 271 

Statistical comparisons between methods 272 

Metabarcoding was significantly more likely than microscopy to detect pollen (Fig. 3) on 273 

individual moths (𝜒2 = 10.95, P < 0.001), and to detect more than one pollen type on 274 

individual moths (𝜒2 = 12.00, P < 0.001). However, with non-pollen-carrying moths excluded, 275 
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the methods did not differ in the number of pollen types detected per individual moth (𝜒2 = 276 

1.12, P = 0.290). With data aggregated per moth species, the methods did not differ in the 277 

likelihood of detecting pollen (𝜒2 = 0.37, P = 0.545), but metabarcoding detected significantly 278 

more pollen types per moth species (𝜒2 = 18.09, P < 0.001); this difference was non-279 

significant when the estimate of true interaction richness was used (𝜒2 = 3.62, P = 0.057; 280 

Table S5). 281 

Construction and analysis of networks 282 

For each method, we constructed a quantitative pollen-transport network (Fig. 4). The 283 

estimated sampling completeness of interactions was higher for the microscopy network 284 

(75.7%) than the metabarcoding network (43.2%). Some network metrics differed markedly 285 

between the two methods (Fig. 5), though no statistical comparison was appropriate. 286 

Specifically, linkage density and generality of pollinators were higher in the metabarcoding 287 

network than the microscopy network, but all other metrics were similar. With plant 288 

assignments aggregated at family level, the metabarcoding network had higher generality of 289 

pollinators and lower generality of plants than the microscopy network (Table S6). The 290 

difference between network metrics calculated with and without species of moth for which 291 

only one individual had been sampled was negligible in all cases (Table S6), indicating that 292 

these singletons did not bias our results. 293 

Discussion 294 

Methodological comparison 295 

Our realised observations of the plant-pollinator system were generally similar between the 296 

DNA-based (metabarcoding) and microscopy-based methods for detecting and identifying 297 

pollen-transport by moths, but nonetheless showed some key differences. Metabarcoding 298 

detected more pollen OTUs in total than microscopy, detected pollen on a greater proportion 299 

of individual moths, and was more likely to detect multiple pollen OTUs on a moth. When 300 
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moths were aggregated to species level, metabarcoding detected more pollen types in total 301 

per moth species. These differences were most likely because metabarcoding had a greater 302 

ability to separately closely-related or morphologically-similar pollen into multiple identities, 303 

and possibly also because the pollen capture technique for metabarcoding (shaking the 304 

whole proboscis in extraction buffer) is likely to be more efficient than the equivalent for 305 

microscopy (swabbing the proboscis with sticky gel), allowing a greater proportion of each 306 

moth’s pollen load to be removed and analysed with the metabarcoding approach. Pollen 307 

capture by shaking, as used for the metabarcoding approach (Fig. 1), cannot be readily 308 

adapted for a microscopy approach, because collecting pollen grains from a liquid rinse for 309 

subsequent mounting on a microscope slide would not be practical. 310 

We also observed differences between the networks detected by each method. There was 311 

higher linkage density in the fully-resolved metabarcoding network than its equivalent 312 

microscopy network, but no difference in linkage density between the two networks when 313 

plant identities were aggregated at family-level (Fig. 5). This provides further evidence for 314 

the greater ability of metabarcoding to separate closely-related plant identities within families 315 

resulted in the detection of more interactions using this approach than using microscopy. 316 

Additionally, there was higher generality of pollinators in the fully-resolved metabarcoding 317 

network than its equivalent microscopy network, whereas when plant identities were 318 

aggregated at family-level, generality of pollinators was higher to a lesser degree in the 319 

metabarcoding network, but generality of plants was lower in the metabarcoding network 320 

than in the microscopy network (Fig. 5). This indicates that the metabarcoding approach 321 

detected interactions with more plant families per pollinator species, which may have been 322 

because metabarcoding had greater ability to separate morphologically-similar pollen from 323 

different families, or simply because metabarcoding detected more plant OTUs per pollinator 324 

species (Fig. 3). 325 

Estimated sampling completeness of interactions differed conspicuously between networks 326 

(Table S6). Despite containing more interactions, the metabarcoding network was estimated 327 
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to be less completely sampled than the microscopy network. This is probably because 328 

metabarcoding detected more ‘rare’ interactions (‘singletons’, detected only once), being 329 

more effective at distinguishing morphologically-similar pollen. This would result in a higher 330 

ratio of singletons to doubletons (interactions detected twice) and therefore a proportionally 331 

greater estimated value of interaction richness. This demonstrates that sampling method can 332 

substantially affect estimation of sampling completeness of interactions in network studies.  333 

Pollen transported by moths 334 

We identified several plants using metabarcoding that were not initially identified as the 335 

same species by microscopy. Because many plants have morphologically-similar pollen, we 336 

conservatively chose not to identify novel moth-flower associations by microscopy unless the 337 

identification was unambiguous. Among the plants initially identified only by metabarcoding 338 

were species for which moths were not previously recorded in the literature as pollinators or 339 

flower-visitors (Macgregor et al., 2015), highlighting that much is still unknown about 340 

pollination by moths. Some of these fitted the moth-pollination ‘syndrome’ (Grant, 1983), 341 

being white and fragrant: Sambucus nigra (Adoxaceae), Philadelphus coronarius 342 

(Hydrangeaceae), Filipendula ulmaria (Rosaceae) and Ligustrum vulgare (Oleaceae; though 343 

not Syringa vulgaris, not separable in this study). However, others did not and are typically 344 

associated with other pollinators: for example, Polemonium caerulum (Polemoniaceae) and 345 

Trifolium spp. (Fabaceae) are visited by bees (Palmer-Jones et al., 1966; Zych et al., 2013), 346 

Verbena officinalis (Verbenaceae) is most likely visited by bees and butterflies (Perkins et 347 

al., 1975), whilst species of Epipactis (Orchidaceae) are generalist, with previously-known 348 

visitors including diurnal Lepidoptera (Jakubska-Busse & Kadej, 2011).  349 

We found pollen from plants that, in this region, are chiefly associated with domestic 350 

gardens, including two species of Hydrangeaceae, species from the tribe Mentheae 351 

(Lamiaceae; includes many species grown as culinary herbs, though wild species might also 352 

have occurred), Buddleja davidii (Scrophulariaceae; though a railway ran adjacent to the 353 
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farm and B. davidii is widely naturalised along railways in the UK) and Verbena officinalis 354 

(Verbenaceae). Individual moths may have carried pollen several hundred metres from the 355 

closest gardens to the field site. This provides new evidence to support previous suggestions 356 

that moths could play an important role in providing gene flow among plant populations at 357 

the landscape-scale (Miyake & Yahara, 1998; Young, 2002; Barthelmess et al., 2006), and 358 

even at continental scales for species of moths that undergo long-distance migrations 359 

(Chang et al., 2018). Such gene flow could provide benefits from nocturnal pollination even 360 

to plant species that are primarily diurnally-pollinated and not pollination-limited. 361 

Finally, we detected several insect-pollinated crop species (only some of which require 362 

pollination for crop production): specifically, soybean Glycine max and pea Pisum sativum 363 

(Fabaceae), potato Solanum tuberosum (Solanaceae), and Brassica/Raphanus sp. (includes 364 

oil-seed rape; Brassicaceae). Floral phenology suggests Prunus sp. (Rosaceae) was likely 365 

to be cherry (P. avium, P. cerasus or a hybrid) rather than wild P. spinosa. Similarly, Rubus 366 

sp. (Rosaceae) could have been wild blackberry (matching to R. caesius, R. plicatus and R. 367 

ulmifolius) but also matched raspberry R. idaeus. There is currently an extreme paucity of 368 

evidence in the existing global literature to support a role of moths in providing pollination 369 

services by fertilizing economically-valuable crops (Klein et al., 2007; Macgregor et al., 370 

2015). Although our findings do not prove that any of the crops recorded receive significant 371 

levels of nocturnal pollination by moths, they do highlight a vital and urgent need for further 372 

research into the potential role of moths as pollinators of agricultural crop species. 373 

Current methodological limitations 374 

We identified limitations with both methods, relating to the accuracy and taxonomic 375 

resolution of pollen identification and the non-quantitative interaction data they generated. 376 

Firstly, there was little initial overlap between identifications made by each method (of 20 377 

initial assignments from microscopy and 25 from metabarcoding, only 3 plant identifications 378 

were shared between methods at genus- or species-level). Because we applied the methods 379 
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to separate samples of moths, some differences were expected between the pollen species 380 

transported. In two cases (Silene and Tilia), species identified by microscopy were discarded 381 

from the metabarcoding assignments by application of the 50-reads threshold. Both species 382 

had very low abundance in microscopy samples (<20 pollen grains per sample), suggesting 383 

precautions against cross-sample contamination with metabarcoding might mask detection 384 

of low-abundance pollen. The remaining mismatches were most probably misidentifications 385 

by one or other method. Using images of pollen from species identified by metabarcoding as 386 

a reference for microscopy, we re-identified several pollen morphotypes, increasing 387 

agreement between the methods (19 identifications matched across methods, of which 10 388 

were at genus- or species-level; Table 1). This indicates that creation of a reliable pollen 389 

reference collection for the field site might have improved our initial identifications made by 390 

microscopy; however, because moths can disperse (and transport pollen) over considerable 391 

distances (Jones et al., 2016), this could also have increased the risk of misidentifying pollen 392 

of a species absent from the field site (but regionally present) as morphologically-similar 393 

pollen of an alternative species that was present at the field site. Misidentifications were 394 

arguably more likely under microscopy than metabarcoding, due to the conservative 395 

approach used when applying BLAST and the difficulty of unambiguously identifying pollen 396 

by microscopy. 397 

Secondly, several assignments made with metabarcoding were not resolved beyond family-398 

level. Although rbcL is a popular marker region for plant barcoding (Hawkins et al., 2015) 399 

and has been shown to identify over 90% of Welsh plants to at least genus-level using blastn 400 

(de Vere et al., 2012), interspecific sequence diversity within rbcL is nonetheless extremely 401 

low within some families (e.g. Apiaceae; Liu et al., 2014). In some cases, reference 402 

sequences from multiple genera did not differ across our entire fragment, leading BLAST to 403 

match query sequences to species from several genera with equal confidence. Such 404 

instances could not have been further resolved  using our fragment, even by alternative 405 

assignment methods. Sequencing a longer fragment might increase interspecific sequence 406 
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variation; improvements in sequencing technology may facilitate accurate sequencing of 407 

such longer amplicons (Hebert et al., 2017). Using another locus than rbcL might improve 408 

taxonomic resolution; loci including ITS2 and matK are also used to metabarcode pollen 409 

(Bell et al., 2016b). Sequencing two or more of these loci simultaneously might also improve 410 

assignment resolution (de Vere et al., 2012), though at greater cost.  411 

Thirdly, some studies have weighted interactions in networks using the number of pollen 412 

grains transported, as a proxy for interaction strength (e.g. Banza et al., 2015). This 413 

approach is impossible with metabarcoding, as the number of pollen grains in a sample does 414 

not correlate with read depth (Pornon et al., 2016), and metabarcoding cannot definitively 415 

distinguish pollen from other sources of plant DNA (e.g. residual nectar on mouthparts). 416 

However, an insect’s pollen load also may not be a true indicator of its efficacy as a 417 

pollinator (Ballantyne et al., 2015); pollinator effectiveness differs between pairwise 418 

interactions through variation in floral morphology, pollinator morphology and behaviour, 419 

location of pollen on the pollinator’s body, and other temporal and spatial factors besides the 420 

quantity of pollen transported. Instead, interaction frequency (counting occurrences of an 421 

interaction, but disregarding individual interaction strength) predicts the relative strength of 422 

pollination interactions well (Vázquez et al., 2005), and was successfully generated with both 423 

microscopy and metabarcoding in our study. 424 

Merging metabarcoding and pollination network analysis 425 

Following several recent studies which have constructed diurnal plant-pollinator networks 426 

using DNA metabarcoding (Bell et al., 2017; Pornon et al., 2017), we have further 427 

demonstrated the potential of metabarcoding by using it to construct nocturnal pollen-428 

transport networks for the first time (Fig. 4). We provide a detailed and reproducible 429 

methodology to integrate molecular advances and ecological network analysis. Our results 430 

clearly demonstrate that the capacity of metabarcoding to generate pollen-transport 431 

interaction data is comparable to that of previously-used methods, such as microscopy. 432 
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Additionally, metabarcoding may carry several practical advantages over flower-visitor 433 

observations or microscopy for studies analysing pollination networks. 434 

One such advantage is that metabarcoding is reproducible across studies, pollinator guilds, 435 

and ecosystems. It is freed from observer biases inherent both in morphological identification 436 

of pollen, and in other means of detecting pollination interactions such as flower-visitor 437 

observations, where distribution of sampling effort among flower species can affect network 438 

structure (Gibson et al., 2011) and sampling often focuses on a subset of the floral 439 

assemblage (e.g. Tiusanen et al., 2016). Metabarcoding can be conducted without system-440 

specific expertise in morphological pollen identification, or prior knowledge about locally-441 

present plants or likely interactions (although such information can be used, if available and 442 

robust, to increase the taxonomic resolution of species identifications). Metabarcoding may 443 

reveal previously unsuspected detail in networks (Pornon et al., 2017), especially those 444 

involving moths or other under-studied pollinator taxa. 445 

Metabarcoding may also allow more efficient processing of samples, and therefore the 446 

analysis of larger numbers of samples, than microscopy (Fig. 6). Most pollination-network 447 

studies have focused on evaluating a single network, or a small number of networks under 448 

variant conditions (e.g. Burkle et al., 2013). Constructing multiple replicated networks across 449 

a range of treatments, sites or time points, and testing for structural differences (e.g. 450 

Lopezaraiza–Mikel et al., 2007), is a powerful alternative, but can be hampered by the 451 

difficulty of generating enough data for multiple, well-sampled networks. For metabarcoding, 452 

investment mainly scales per-plate (≤ 96 samples) rather than per-sample (Derocles et al., 453 

2018), whereas for microscopy, investment of materials and especially time increases 454 

linearly for every sample, although sample-processing speed might increase slightly after an 455 

initial period of learning (Fig. 6). Importantly, this increased efficiency is coupled with 456 

increased reproducibility, as molecular tools treat all samples identically regardless of their 457 

complexity. 458 
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Finally, DNA metabarcoding can streamline the generation of suitable data for incorporating 459 

phylogenetic information into ecological networks (Evans et al., 2016). Recent studies have 460 

found significant relationships between phylogenetic and resource overlap in mutualistic and 461 

antagonistic networks (Rezende et al., 2007; Elias et al., 2013; Peralta et al., 2015); 462 

metabarcoding permits simultaneous generation of both interaction and relatedness data. 463 

Conclusions 464 

In this study, we constructed pollen-transport networks using matched samples of moths to 465 

compare between two methods for detecting and identifying pollen: DNA metabarcoding and 466 

traditional light microscopy. We showed that the state-of-the-art DNA metabarcoding 467 

approach is capable of generating pollen-transport interaction networks that are similar to 468 

those detected using microscopy. Indeed, with metabarcoding, we detected pollen on more 469 

individual moths and detected more pollen types per moth species. These differences 470 

indicate that direct comparisons between networks constructed using metabarcoding and 471 

those constructed using traditional methods such as microscopy should be treated with 472 

appropriate caution, but a combination of both metabarcoding and traditional methods may 473 

provide the most detailed information (Wirta et al., 2014). Metabarcoding additionally 474 

revealed a range of previously undocumented moth-plant interactions, and provided new 475 

evidence for two possible benefits of nocturnal pollination: landscape-scale provision of plant 476 

gene flow, and potential provision of the pollination ecosystem service. The metabarcoding 477 

approach has considerable potential for studying pollen-transport networks and species-478 

interactions more generally.  479 
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Tables 662 

Table 1: Summary of basic interaction data for each method. The samples were 663 

duplicate subsets of the total sample, and each comprised 311 individuals of 41 species. 664 

Plant types for metabarcoding were operational taxonomic units (OTUs; identified by a 665 

BLAST search against a curated reference database) and for microscopy were morphotypes 666 

(identified using identification keys). Percentages in brackets are of the relevant sub-sample. 667 

 Metabarcoding Microscopy 

No. pollen-carrying moths 107 (34.4%) 70 (22.5%) 

No. pollen-carrying species 15 (36.6%) 17 (41.5%) 

No. plant types identified 26 20 

Plant types initially identified 

to species level 

11 (42.3%) 1 (5%) 

Plant types initially identified 

to at least genus level 

17 (65.4%) 16 (80%) 

Plant types detected on one 

moth only 

10 (38.5%) 5 (25%) 

No. moths carrying pollen 

from >1 plant types 

36 (11.6%) 13 (4.2%) 

No. unique interactions (total 

no. interactions) 

62 (155) 52 (88) 

 668 

 669 
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Table 2: harmonised plant OTUs identified by metabarcoding and microscopy. In 670 

column 4, † indicates an assignment initially identified by metabarcoding, but failing to meet 671 

the minimum read depth threshold in any sample (Table S7). In column 5, ‡ indicates an 672 

assignment that was re-identified by comparison to pollen of species identified by 673 

metabarcoding. 674 

Family Final 

identification 

Initial 

assignment 

(metabarcoding) 

No. 

samples 

Initial 

assignment 

(microscopy) 

No. 

samples 

Adoxaceae Sambucus 

nigra 

Sambucus nigra 3 Viburnum sp.‡ 3 

Amaranthaceae Atriplex sp. Atriplex sp. 1 Persicaria 

maculosa 

(Polygonaceae)‡ 

4 

Apiaceae Apioideae Apiaceae 3 Apiaceae 5 

Araliaceae Hedera helix Hedera helix 1 - 0 

Asteraceae Asteraceae 1 Asteraceae 4 Taraxacum sp.‡ 1 

 Asteraceae 2 Asteraceae 22 - 0 

 Asteraceae 3 Asteraceae 1 - 0 

 Anthemideae 

1 

Asteraceae 1 Anthemis sp. 4 

 Anthemideae 

2 

Asteraceae 0† - 0 

 Jacobaea Jacobaea 6 Cirsium sp.‡ 5 
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vulgaris vulgaris 

Brassicaceae Brassica / 

Raphanus sp. 

Brassicaceae 4 Lamium sp. 

(Lamiaceae)‡ 

5 

Caprifoliaceae Lonicera sp. - 0 Lonicera sp. 3 

Caryophyllaceae Silene sp. Silene sp. 0† Silene sp. 3 

Fabaceae Ulex 

europaeus / 

Cytisus 

scoparius 

Fabaceae 10 Veronica sp. 

(Plantaginaceae)

‡ 

2 

 

 

 Trifolium sp. Trifolium sp. 9 

 Glycine max Glycine max 2 

 Pisum 

sativum 

Pisum sativum 3 Asparagaceae‡ 5 

Hydrangeaceae Hydrangea 

sp. 

Hydrangea sp. 0† - 0 

 Philadelphus 

coronarius 

Philadelphus 

coronarius 

1 Fritillaria sp. 

(Liliaceae)‡ 

2 

Lamiaceae Mentheae Lamiaceae 2 - 0 

Malvaceae Tilia 

platyphyllos 

Tilia platyphyllos 0† Tilia sp. 3 

Oleaceae Ligustrum 

vulgare / 

Syringa 

Oleaceae 23 - 0 
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vulgaris 

Orchidaceae Epipactis sp. Epipactis sp. 2 - 0 

Papaveraceae Papaver sp. Papaver sp. 1 Ericaceae‡ 1 

Polemoniaceae Polemonium 

caeruleum 

Polemonium 

caeruleum 

0† - 0 

Ranunculaceae Ranunculus 

sp. 

Ranunculus sp. 0† Helleborus sp.‡ 1 

Rosaceae Prunus sp. Prunus sp. 1 Rosaceae 6 

 Rubus sp. Rubus sp. 26 Rubus sp. 13 

 Filipendula 

ulmaria 

Filipendula 

ulmaria 

1 - 0 

Rubiaceae Galium 

aparine 

Galium aparine 1 Galium sp. 1 

Scrophulariaceae Buddleja 

davidii 

Buddleja davidii 19 Buddleja sp. 20 

Solanaceae Solanum 

tuberosum 

Solanum sp. / 

Solanum 

tuberosum 

7 Viola sp. 

(Violaceae)‡ 

1 

Verbenaceae Verbena 

officinalis 

Verbena 

officinalis 

1 - 0 

 675 

 676 

 677 

678 
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Figure legends 679 

Figure 1: visual summary of the two methods applied to detect and identify pollen 680 

transport by moths. Full methods are in Appendix S1. For metabarcoding, the steps shown 681 

are: 1. Field sampling of moths. 2. Excise proboscis. 3. Remove pollen by shaking. 4. Extract 682 

DNA by HotSHOT method. 5. Amplify DNA by 3-step PCR protocol. 6. Sequence DNA. 7 683 

Assign DNA sequence identities. 8. Analyse interactions and construct networks. For 684 

microscopy, the steps shown are: A. Field sampling of moths. B. Swab proboscis with 685 

fuchsin-stained gel. C. Mount gel on microscope slide. D. Identify and count pollen under 686 

microscope. E. Analyse interactions and construct networks. 687 

 688 
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Figure 2: matrix of interactions detected in this study. White circles indicate interactions 689 

detected by microscopy only, black circles indicate interactions detected by metabarcoding 690 

only, and half-black-half-white circles were detected by both methods. 691 

 692 

  693 
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Figure 3: comparisons between DNA metabarcoding and microscopy approaches of: 694 

proportion of (a) individual moths and (b) moth species found to be carrying pollen; number 695 

of pollen types detected for (c) individual moths and (d) moth species; proportion of 696 

individual moths carrying more than one pollen type (e); and estimated number of pollen 697 

types per moth species (f). For (c), (d) and (f) only pollen-carrying individuals and moth 698 

species were included. Significance indicates Likelihood Ratio Test for detection method in 699 

GLMMs (* : P <0.05; ** : P <0.01; *** P <0.001). Error bars show 95% confidence intervals. 700 

 701 
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Figure 4: networks constructed using DNA metabarcoding and microscopy from 702 

replicated, matched samples of moths. Species are colour-coded by family (see key); 703 

families appear from top to bottom in the order listed. For moths, bar height indicates relative 704 

species abundance, and link width indicates number of individuals carrying pollen of each 705 

plant species. For plants, bar height indicates number of individual moths on which each 706 

pollen type was detected, and link width indicates proportion of those moths belonging to 707 

each moth species. 708 

 709 
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Figure 5: network metrics calculated for each detection method (Table S6). Solid lines 711 

connect metrics for fully-resolved data, dashed lines connect metrics when plant species 712 

were aggregated at the family level. 713 

 714 
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Figure 6: estimated change in investment as number of samples increases for 716 

metabarcoding and microscopy methods. Lines are hypothetical and not based on formal 717 

costing of methods. 718 
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