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The induction of the Ntb phase in mixtures  

 

We report the induction of the Ntb phase over a wide temperature and concentration range in 

a binary system. This was achieved by addition of a flexible dopant without LC properties 

to a flexible dimer exhibiting only a nematic LC phase. The Ntb phase was identified by 

POM, DSC and XRD techniques.  

 

Keywords: Twist-bend nematic; Liquid crystal dimers; liquid crystal - non liquid crystal 

mixtures; nematic-nematic transition 

1. Introduction 

The Ntb phase, characterized by spontaneous formation of chiral domains with a helical pitch on 

the 10 nm scale and pseudo-layer structure, formed by chemically non-chiral compounds is one of 

the recently observed examples of chiral symmetry breaking in liquid crystals [1–7]. Previously 

this effect has been more associated with higher ordered liquid crystal (LC) phases, such as 

lamellar, columnar and cubic arrays [8–12]. Ntb phase formation is most commonly associated with 

systems containing two mesogens separated by flexible odd-numbered spacers. However, 

examples of bent-core mesogens, as well as oligomeric and main-chain polymers have been 

reported too [13–16]. The Ntb mesophase is relatively robust to the addition of linear mesogens and 

it can even be stabilised by adding nematogens [17,18]. Moreover, it can be formed by supra-

molecular association of mesogenic groups [18,19] and has been observed in multicomponent 

mixtures [20,21]. Until now, the question of whether Ntb phase behaviour can be induced 

systematically by adding a dopant to a conventional nematic and hence modulating the assembly 

behaviour of the nematogen has not been investigated.  
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Here, we show that it is possible to achieve Ntb phase formation systematically by adding 

a non-LC dopant to a nematic dimer. The molecules used in this study were selected for their 

structural simplicity in order to ease future theoretical and experimental studies, to link 

conceptually to existing systems and to obtain relatively low transition temperatures, making 

physical investigations more accessible. 

 

2. Experimental 

The known compound CBOC5OCB (Figure 1(a)) with a nematic phase range of almost 85 

oC was selected as the matrix [22]. The material CBC3CB (Figure 1(a)), which is not liquid 

crystalline was selected as a dopant. The structural similarity to CBOC5OCB was selected to 

ensure full miscibility over a wide concentration range.  

For the first step in the investigation, a phase diagram between these two materials was 

constructed. Mixtures were investigated by Polarizing Optical Microscopy (POM), Differential 

Scanning Calorimetry (DSC) and X-ray Diffraction (XRD). The experimental details and the 

instrumentation used in this work are presented in the ESI. 

 

3. Results and Discussion 

The temperature-composition phase diagram, as a function of CBC3CB mol%, collected 

on cooling is presented in Figure 1(b). Composition information and transition temperatures are 

listed in the ESI (Table 1). The LC behaviour of the mixtures was found to be monotropic, in other 

words not thermodynamically stable. However, on cooling the compositions were stable for at 

least a day, thus allowing for their detailed characterization. 
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[Insert Figure 1 here] 

Progressing from the pure CBOC5OCB, on the left of the phase diagram, the added 

presence of CBC3CB results in a near linear decrease of the stability of the N phase. This is 

expected as the ‘non-LC’ dopant is added and indicates that the constituent dimers are fully 

miscible [23] on cooling in compositions up to roughly 63 mol% of CBC3CB. The introduction 

of 11.8 mol% of CBC3CB (mixture 6), was sufficient to induce Ntb phase formation, with a phase 

onset at 86.6 °C. Surprisingly, the Ntb phase is observed up to 63.1 mol% of CBC3CB (mixture 3), 

where the composition contains predominantly a material which is not liquid crystalline. 

Additionally, the crystallization temperatures decrease with increasing CBC3CB content. 

Interestingly, no crystallization of the samples was detected at concentrations higher than 22.3 

mol% of CBC3CB (mixture 5) in DSC experiments. Optically detectable crystallization occurred 

after the samples were left at room temperature for at least 24h. 

After induction of the Ntb phase at 11.8 mol% CBC3CB, a slight stabilisation of the phase 

was observed at 22.3 mol% (mixture 5). Further addition of the non-LC dimer destabilised the 

phase with the N-Ntb temperature transitions exhibiting an almost linear dependence on 

composition until the phase was no longer detected above 63.1 mol% of CBC3CB. 

We note a much steeper decrease of the N phase stability on addition of further CBC3CB 

to CBOC5OCB than that of the Ntb mesophase. Looking at the phase diagram one could anticipate 

an intersection of the stability ranges of the N and the Ntb phases, with a direct Iso-Ntb phase 

transition, but this was not detected. On the contrary what was actually observed was large regions 

with co-existing isotropic, nematic and crystal phases, but no Ntb phase, at 68.1 mol% of CBC3CB 

(eg mixture 2;see Figure S1 in the ESI for POM micrograph). This is indicative of demixing of the 
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materials. As this region of the phase diagram is not the focus of this report, it will not be discussed 

further. With further increase of CBC3CB only the crystal phase was observed in the mixtures.  

We note that recently the N-Ntb transition was reported on isolated droplets of pure 

CBOC5OCB under extensive supercooling using POM [24,25]. Unfortunately, we were not able 

to recreate this experiment under controlled conditions (see Figure S2 in the ESI for a POM 

micrograph). 

The enthalpies associated with the Iso-N and N-Ntb transitions, obtained from DSC 

measurements, are plotted as a function of mol% and are presented in Figure 2. The N-Ntb 

transition enthalpies increase in value with addition of CBC3CB, reaching those observed for pure 

dimers, such as CBC7CB [26], CBC9CB [17], and CBC11CB [27]. An example is mixture 3 (63.1 

mol%) with an N-Ntb enthalpy of 0.47 kJ mol-1. Additionally, the enthalpy values for the Iso-N 

transition decrease as the content of the CBC3CB dimer increases in the mixtures intersecting the 

corresponding curve for the N-Ntb transition, as can be seen in Figure 2. These observations 

correlate fully with earlier results found for dimers and mixed systems showing N-Ntb transitions 

[24,28–30], where the width of the N phase has been directly related with the values of the 

transition enthalpies for the Iso-N transition as well as increased enthalpy values for the N-Ntb 

transition.  

[Insert Figure 2 here] 

The Ntb phase induced in the mixtures was identified by its distinctive defect texture using 

POM. Typical examples from mixture 4 are shown in Figure 3(b,c). A sample observed on 

untreated glasses under crossed polarizers exhibiting the Schlieren texture of the nematic phase 

(Figure 3(a)) transformed into a blocky texture marking the N-Ntb transition (Figure 3(b)). On 

further cooling the texture developed into a polygonal defect pattern, (Figure 3(c)). In Figure S3 
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(ESI), the DSC curves on cooling of all the Ntb forming mixtures are presented. Broad peaks for 

the Iso-N transition are attributed to biphasic regions typical in mixtures, in contrast to sharp 

transitions in the pure compounds.  

[Insert Figure 3 here] 

X-ray investigations on magnetically aligned samples confirm our phase assignment in all 

studied mixtures. For mixture 4 the integrated intensities (normalized over the maximum values) 

collected between 120 °C and 40 °C on cooling and plotted against the diffraction angle 2θ are 

shown in Figure 3(d). Data for CBOC5OCB at 130 °C are also included. For the composition 4 in 

the N phase, the diffraction patterns show only short-range orientational order; see for example 

Figure 3(e) at 100 °C. The equatorial peak at 100 °C corresponds to a side-to-side separation of 

4.55 Å, a typical value for calamitic LCs [31]. In the small-angle region, a single peak is obtained 

for both nematic phases with d-spacing values ranging from 10.8 Å, in the N phase, to 10.6 Å in 

the Ntb phase, values of about half the molecular length of the mesogens (d2, Table 2 in the ESI). 

This peak is relatively temperature independent. A similar peak is obtained in the N phase of pure 

CBOC5OCB (eg at 130 °C in Figure 3(d)) yielding a value of 12.2 Å (d2) about half the molecular 

length of CBOC5OCB, in an all staggered conformation (27.5 Å), implying a locally interdigitated 

antiparallel organization.  

When mixture 4 was cooled into the Ntb phase at 80 °C (Figure 3(f)) no significant change 

was recorded for the small-angle intensities. The wide-angle diffraction arcs became narrower and 

spread further to the meridian, expanding on further cooling into a circle-type pattern at 40 oC 

(Figure 3(g)). This suggests domain formation in the sample [18]. Moreover, it would be in line 

with a phase structure where mesogens in a helicoidal structure, but with a tilt to the helix, form 

right and left-handed domains which are oriented in the external field. The wide-angle peaks in 
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the θ-scans shifted slightly to smaller angles, suggesting a closer lateral molecular packing in the 

Ntb phase. The small-angle peaks yield values of 10.6 Å, consistent with the concept discussed 

above. Additionally, the slight reduction of the pseudo d-spacings, going from the N to the Ntb 

phase, could be due to increasing interdigitation of the molecules with either linear [5] or 

torsionally twisted hydrocarbon groups [32,33]. The correlation lengths (ξ) were calculated via the 

equation ξ=c/Δq, where c is the function used to describe the intensity profile and Δq is the full 

width at half maximum (FWHM), a variation of the Scherrer equation [34] (see Table 2 in the ESI 

for the tabulated ξ values). For both nematic phases these calculations gave quite small values 

ranging from 5.42 Å to  8.35 Å for the N phase to 7.35 Å to 9.83 Å for the Ntb phase. For the Ntb 

phase this value can be explained by the mesogens being at a tilt to the axis of a helix, with the 

helix axis being oriented overall parallel to the magnetic field [35]. Overall our XRD results are 

consistent with previous studies concerning the structure of the Ntb mesophase [32,33,35–40]. 

Recently, duplex formation has been proposed [38,41,42]. We note that for this system at low 

concentrations of CBC3CB (roughly 12 mol%) only one in five duplexes would contain species 

promoting helicoidal structure formation, this would indicate that either CBC3CB is very efficient 

as a dopant or alternatively disfavours the concept of duplexes. 

The structure of the nematic phases obtained in the studied mixtures is rationalized in the 

context of the shape and flexibility of the statistically achiral constituents. On mixing the two 

dimers, in the high-temperature N phase, the nematic environment of CBOC5OCB induces 

orientational order to CBC3CB molecules, absent in the pure CBC3CB fluid at the same 

temperatures. However, the CBC3CB present perturbs the ordering of CBOC5OCB and the 

temperature stability of the N phase decreases dramatically.  
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For the Ntb phase the arrangement is more complex. The introduction of moderate amounts 

of CBC3CB (11.8 mol%) are needed for Ntb formation and we observed a small increase of the 

mesophase stability at 22.3 mol% of the non-LC dopant. For higher concentrations a reduction of 

the Ntb stability occurs, before demixing starts after addition of more than 65 mol% CBC3CB. 

These results indicate that phase formation is not due to specific attractive molecule-to-molecule 

[19] or in our case host-dopant interactions. Moreover, our results suggest that interdigitation of 

the two types of molecules occurs. A schematic representation of the assembly is shown in Figure 

3(h) and a schematic representation of  the molecules can be seen in Fig 3(i). 

Given the smaller number of accessible conformational states of CBC3CB when compared 

to CBOC5OCB, due to its shorter spacer, we propose that CBC3CB acts as a template and that 

CBOC5OCB adjusts its conformational statistics so that CBOC5OCB is closer in shape to 

CBC3CB, becoming thus on average more bent and twisted;  this can be achieved for example by 

a number of eclipsed conformations of the central hydrocarbon chain in order to optimize their 

interactions, or in other words to minimize excluded volume [43]. This view is supported too by 

the increasing enthalpy values at the N-Ntb transition (See Fig. 2) with increasing CBC3CB 

content. 

The observed induction of a new liquid crystal phase is distinctly different from that where 

hydrogen bonding of species is employed for liquid crystal phase formation [44,45] or through 

halogen bonding [46] and different from liquid crystal phase formation due to excluded volume 

effects as reported recently [47] or by the balance between the charge-transfer interactions, dipolar 

interactions and excluded volume effects [48].  
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4. Conclusion 

To summarise, based on POM, DSC and XRD techniques, we report for the first time the 

induction of the Ntb phase in binary systems on adding a non-LC dopant, CBC3CB, to a nematic 

dimer, CBOC5OCB. The Ntb phase is formed in a wide concentration range going from roughly 

12-63 mol% of the dopant. We propose that Ntb phase induction is due to energy minimization by 

adjustment of molecular conformations of the non-chiral and flexible molecules, mainly of 

CBOC5OCB towards more bent and twisted conformations, thus favouring overall the formation 

of a chiral domain nematic phase. 

 

Acknowledgements  

CW, ZA, JH acknowledge the EPSRC project EP/M015726/1, the EPSRC NMSF is acknowledged for 

high resolution mass spectrometry. ER. acknowledges EU funding through the Erasmus+ programme. 

GHM thanks Prof. Claudio Zannoni for the many fruitful discussions on the nature of nematic phases over 

the course of several joint EU funded projects.  

 

References 

[1]  Cestari M, Diez-Berart S, Dunmur DA, et al. Phase behavior and properties of the liquid-

crystal dimer 1’’,7’’-bis(4-cyanobiphenyl-4’-yl) heptane: A twist-bend nematic liquid 

crystal. Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 2011;84:031704. 

[2]  Borshch V, Kim YK, Xiang J, et al. Nematic twist-bend phase with nanoscale modulation 

of molecular orientation. Nat. Commun. 2013;4:2635. 

[3]  Chen D, Porada JH, Hooper JB, et al. Chiral heliconical ground state of nanoscale pitch in 

a nematic liquid crystal of achiral molecular dimers. Proc. Natl. Acad. Sci. U. S. A. 

2013;110:15931–15936. 

[4]  Panov VP, Balachandran R, Nagaraj M, et al. Microsecond linear optical response in the 

unusual nematic phase of achiral bimesogens. Appl. Phys. Lett. 2011;99:261903. 



10 

 

[5]  Mandle RJ, Archbold CT, Sarju JP, et al. The Dependency of Nematic and Twist-bend 

Mesophase Formation on Bend Angle. Sci. Rep. 2016;6:36682. 

[6]  Parsouzi Z, Pardaev SA, Welch C, et al. Light scattering study of the “pseudo-layer” 

compression elastic constant in a twist-bend nematic liquid crystal. Phys. Chem. Chem. 

Phys. 2016;18:31645–31652. 

[7]  Mandle RJ. The Dependency of Twist-Bend Nematic Liquid Crystals on Molecular 

Structure: A Progression from Dimers to Trimers, Oligomers and Polymers. Soft Matter. 

2016;12:7883–7901. 

[8]  Tschierske C, Ungar G. Mirror Symmetry Breaking by Chirality Synchronisation in 

Liquids and Liquid Crystals of Achiral Molecules. ChemPhysChem. 2016;17:9–26. 

[9]  Yoshizawa A, Kato Y, Sasaki H, et al. Optically Isotropic Homochiral Structure Produced 

by Intercalation of Achiral Liquid Crystal Trimers. J. Phys. Chem. B. 2016;120:4843–

4851. 

[10]  Roche C, Sun HJ, Prendergast ME, et al. Homochiral columns constructed by chiral self-

sorting during supramolecular helical organization of hat-shaped molecules. J. Am. Chem. 

Soc. 2014;136:7169–7185. 

[11]  Takezoe H. Spontaneous Achiral Symmetry Breaking in Liquid Crystalline Phases. Top. 

Curr. Chem. 2011;318:303–330. 

[12]  Buchs J, Vogel L, Janietz D, et al. Chirality Synchronization of Hydrogen-Bonded 

Complexes of Achiral N-Heterocycles. Angew. Chemie Int. Ed. 2017;56:280–284. 

[13]  Wang Y, Singh G, Agra-Kooijman DM, et al. Room temperature heliconical twist-bend 

nematic liquid crystal. CrystEngComm. 2015;17:2778–2782. 

[14]  Sreenilayam SP, Panov VP, Vij JK, et al. The Ntb phase in an achiral asymmetrical bent-

core liquid crystal terminated with symmetric alkyl chains. Liq. Cryst. 2017;44:244–253. 

[15]  Mandle RJ, Goodby JW. Progression from nano to macro science in soft matter systems : 

dimers to trimers and oligomers in twist-bend liquid crystals. RSC Adv. 2016;6:34885–

34893. 

[16]  Ungar G, Percec V, Zuber M. Liquid crystalline polyethers based on conformational 



11 

 

isomerism. 20. Nematic-nematic transition in polyethers and copolyethers based on 1-(4-

hydroxyphenyl)-2-(2-R-4-hydroxyphenyl)ethane with R = fluoro, chloro and methyl and 

flexible spacers containing an. Macromolecules. 1992;25:75–80. 

[17]  Tripathi CSP, Losada-Perez P, Glorieux C, et al. Nematic-nematic phase transition in the 

liquid crystal dimer CBC9CB and its mixtures with 5CB: A high-resolution adiabatic 

scanning calorimetric study. Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 

2011;84:041707. 

[18]  Ramou E, Ahmed Z, Welch C, et al. The stabilisation of the Nx phase in mixtures. Soft 

Matter. 2016;12:888–899. 

[19]  Jansze SM, Martinez-Felipe A, Storey JMD, et al. A twist-bend nematic phase driven by 

hydrogen bonding. Angew. Chemie - Int. Ed. 2015;54:643–646. 

[20]  Ribeiro de Almeida RR, Zhang C, Parri O, et al. Nanostructure and dielectric properties of 

a twist-bend nematic liquid crystal mixture. Liq. Cryst. 2014;41:1661–1667. 

[21]  Salili SM, Ribeiro de Almeida RR, Challa PK, et al. Spontaneously Modulated Chiral 

Nematic Structures of Flexible Bent-Core Liquid Crystal Dimers. Liq. Cryst. 

2017;44:160–167. 

[22]  Emsley JW, Luckhurst GR, Shilstone GN, et al. The Preparation and Properties of the 

α,ω-bis(4,4′-Cyanobiphenyloxy)Alkanes: Nematogenic Molecules with a Flexible Core. 

Mol. Cryst. Liq. Cryst. 1984;102:223–233. 

[23]  Humphries RL, James PG, Luckhurst GR. A molecular field treatment of liquid crystalline 

mixtures. Symp. Faraday Soc. 1971;5:107. 

[24]  Paterson DA, Abberley JP, Harrison WTA, et al. Cyanobiphenyl-based liquid crystal 

dimers and the twist-bend nematic phase. Liq. Cryst. 2017;44:127–146. 

[25]  Archbold CT, Mandle RJ, Andrews JL, et al. Conformational landscapes of bimesogenic 

compounds and their implications for the formation of modulated nematic phases. Liq. 

Cryst. 2017;44:2079–2088. 

[26]  Gorecka E, Salamonczyk M, Zep A, et al. Do the short helices exist in the nematic TB 

phase? Liq. Cryst. 2015;42:1–7. 



12 

 

[27]  Mandle RJ, Davis EJ, Archbold CT, et al. Microscopy studies of the nematic NTB phase 

of 1,11-di(1’’-cyanobiphenyl-4-yl)undecane. J. Mater. Chem. C. 2014;2:556–566. 

[28]  Paterson DA, Walker R, Abberley JP, et al. Azobenzene-based liquid crystal dimers and 

the twist-bend nematic phase. Liq. Cryst. 2017;44:2060–2078. 

[29]  Dawood AA, Grossel MC, Luckhurst GR, et al. On the twist-bend nematic phase formed 

directly from the isotropic phase. Liq. Cryst. 2016;43:2–12. 

[30]  Lopez DO, Robles-Hernandez B, Salud J, et al. Miscibility studies of two twist-bend 

nematic liquid crystal dimers with different average molecular curvatures. A comparison 

between experimental data and predictions of a Landau mean-field theory for the Ntb –N 

phase transition. Phys. Chem. Chem. Phys. 2016;18:4394–4404. 

[31]  Agra-Kooijman DM, Kumar S. X-Ray Scattering Investigations of Liquid Crystals. In: 

Goodby JW, Collings PJ, Kato T, et al., editors. Handb. Liq. Cryst. Vol.1. 2nd ed. 

Weinheim, Germany (DE): Wiley−VCH; 2014. 

[32]  Emsley JW, Lelli M, Joy H, et al. Similarities and differences between molecular order in 

the nematic and twist-bend nematic phases of a symmetric liquid crystal dimer. Phys. 

Chem. Chem. Phys. 2016;18:9419–9430. 

[33]  Sebastian N, Tamba MG, Stannarius R, et al. Mesophase structure and behaviour in bulk 

and restricted geometry of a dimeric compound exhibiting a nematic–nematic transition. 

Phys. Chem. Chem. Phys. 2016;18:19299–19308. 

[34]  Francescangeli O, Laus M, Galli G. Structure of the nematic mesophase with cybotactic 

groups in liquid-crystalline poly(urethane-ester)s. Phys. Rev. E. 1997;55:481–487. 

[35]  Stevenson WD, Ahmed Z, Zeng XB, et al. Molecular organization in the twist-bend 

nematic phase by resonant X-ray scattering at the Se K-edge and by SAXS , WAXS and 

GIXRD. Phys. Chem. Chem. Phys. 2017;19:13449–13454. 

[36]  Jokisaari JP, Luckhurst GR, Timimi BA, et al. Twist-bend nematic phase of the liquid 

crystal dimer CB7CB: orientational order and conical angle determined by 129Xe and 2H 

NMR spectroscopy. Liq. Cryst. 2015;42:708–721. 

[37]  Meyer C, Luckhurst GR, Dozov I. The temperature dependence of the heliconical tilt 



13 

 

angle in the twist-bend nematic phase of the odd dimer CB7CB. J. Mater. Chem. C. 

2015;3:318–328. 

[38]  Tuchband MR, Shuai M, Graber KA, et al. Double-Helical Tiled Chain Structure of the 

Twist Bend Liquid Crystal Phase in CB7CB. arXiv:1703.10787 [cond-mat.soft]. 2017; 

[39]  Vanakaras AG, Photinos DJ. A molecular theory of nematic-nematic phase transitions in 

mesogenic dimers. Soft Matter. 2016;12:2208–2220. 

[40]  Krzyzewska K, Jaroch T, Maranda-Niedbala A, et al. Supramolecular organization of 

liquid-crystal dimers - bis-cyanobiphenyl alkanes on HOPG by scanning tunneling 

microscopy. Nanoscale. 2018; 

[41]  Salamonczyk M, Vaupotic N, Pociecha D, et al. Structure of nanoscale-pitch helical 

phases: blue phase and twist-bend nematic phase resolved by resonant soft X-ray 

scattering. Soft Matter. 2017;13:6694–6699. 

[42]  Mandle RJ, Goodby JW. Nanohelicoidal Nematic Liquid Crystal Formed by a Non-Linear 

Duplexed Hexamer. Angew. Chemie - Int. Ed. 2018;57:7096–7100. 

[43]  Goodby JW, Mandle RJ, Davis EJ, et al. What makes a liquid crystal? The effect of free 

volume on soft matter. Liq. Cryst. 2015;42:593–622. 

[44]  Martinez-Felipe A, Imrie CT. The role of hydrogen bonding in the phase behaviour of 

supramolecular liquid crystal dimers. J. Mol. Struct. 2015;1100:429–437. 

[45]  Walker R, Pociecha D, Abberley JP, et al. Spontaneous chirality through mixing achiral 

components: A twist-bend nematic phase driven by hydrogen-bonding between unlike 

components. Chem. Commun. 2018;54:3383–3386. 

[46]  Cavallo G, Terraneo G, Monfredini A, et al. Superfluorinated ionic liquid crystals based 

on supramolecular, halogen-bonded anions. Angew. Chemie - Int. Ed. 2016;55:6300–

6304. 

[47]  Knezevic A, Dokli I, Sapunar M, et al. Induced smectic phase in binary mixtures of twist-

bend nematogens of twist-bend nematogens. Beilstein J. Nanotechnol. 2018;9:1297–1307. 

[48]  Sugisawa S, Tabe Y. Induced smectic phases of stoichiometric liquid crystal mixtures. 

Soft Matter. 2016;12:3103–3109. 



14 

 

 

List of figure captions 

Figure 1. a) Molecular structures and phase sequences of the compounds used in this study, 

b)Temperature-concentration phase diagram for the CBC3CB-CBOC5OCB binary mixtures as a 

function of CBC3CB mol%. The squares represent the Iso-N transition. The diamonds indicate the 

N-Ntb transition. The circles mark the Crystallization. The triangles denote the Iso-Cr transition. 

The star symbol marks the demixing composition (mixture 2). The lines are a guide to the eye. 

Figure 2. Enthalpy values associated with the Iso-N and N-Ntb transitions as a function of 

CBC3CB mol%. 

Figure 3. (a-c) Optical textures on untreated glasses under crossed polarizers on cooling of mixture 

4; a) N phase at 95 oC; b) Ntb phase at 80 oC; c) Ntb phase 77 oC. The scale bar represents 100 μm, 

d)θ-scans for mixture 4 between 40-120°C (CBOC5OCB at 130 oC included) and two-dimensional 

diffraction patterns; e)N at 100 oC; f)Ntb at 80 oC, g) Ntb at 40 oC; h) Possible helicoidal 

arrangement of interdigitated CBC3CB and CBOC5OCB molecules in the Ntb phase, i) schematic 

depiction of the molecular shapes of CBC3CB, twisted and ben conformation of CBOC5OCB and 

fully extended CBOC5OCB. 

 


