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A Box Particle Filter Method for Tracking Multiple
Extended Objects
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Abstract—Extended objects generate a variable number of
multiple measurements. In contrast with point targets, extended
objects are characterized with their size or volume, and ori-
entation. Multiple object tracking is a notoriously challenging
problem due to complexities caused by data association. This
paper develops a box particle filter method for multiple extended
object tracking, and for the first time it is shown how interval
based approaches can deal efficiently with data association
problems and reduce the computational complexity of the data
association. The box particle filter relies on the concept of a
box particle. A box particle represents a random sample and
occupies a controllable rectangular region of non-zero volume
in the object state space. A theoretical proof of the generalized
likelihood of the box particle filter for multiple extended objects
is given based on a binomial expansion. Next the performance of
the box particle filter is evaluated using a challenging experiment
with the appearance and disappearance of objects within the area
of interest, with real laser rangefinder data. The box particle
filter is compared with a state-of-the-art particle filter with point
particles. Accurate and robust estimates are obtained with the
box particle filter, both for the kinematic states and extent param-
eters, with significant reductions in computational complexity.
The box particle filter reduction of computational time is at
least 32% compared with the particle filter working with point
particles for the experiment presented. Another advantage of the
box particle filter is its robustness to initialization uncertainty.

Index Terms—sequential Monte Carlo methods, extended ob-
jects, multiple object tracking, non-linear estimation, box particle
filter.

I. INTRODUCTION

FOR decades scientists and engineers have focused their
attention on finding estimates of states of objects (e.g.

the centre of gravity location of an airplane) and their size
(in a two dimensional consideration) or their volume (in the
three dimensional space). Such extended objects are often
considered in intelligent transportation systems (crowds of
people [1], a convoy of vehicles [2]), surveillance (ships
[3]), robotics (a swarm of unmanned aerial vehicles jointly
performing a task), to name a few. There are also results with
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different types of data: radar [3], image and video [4], laser
range sensors [5], LiDAR data (radioactive clouds [6]) and
others.

Extended objects are characterized by their size and orien-
tation, in contrast to point objects ([7], [8]) where the whole
is approximated with a single point. Extended objects may
generate varying numbers of multiple measurements which
require efficient data association algorithms. While tracking
point objects has been widely studied, and efficient solutions
have been developed, the problem of extended object tracking
is still challenging and requires new efficient approaches.
Moreover, tracking multiple extended objects is not sufficiently
studied, except for recent works, e.g. [8]. Extended objects
can spawn, merge and cross their trajectories. The methods
for extended object tracking can be broadly classified into
several categories: random finite set statistics methods (the
probabilistic hypothesis density (PHD) filter [9], [10], Car-
dinality PHD filter [11], multi-Bernoulli Filters [12] etc.),
sequential Monte Carlo methods and Markov Chain Monte
Carlo methods for Bayesian state space models [7], analytical
type of methods [13], [14]. The reader is referred to the
surveys [7], [8] where detailed classification of the methods
for extended object tracking is given.

Various models for the representation of the shape of an
object have been explored. In [3], the shape of an object is
modelled as an ellipse and the parameters of the ellipse are
directly related to the measurements. In [15] multiple ellipses
are considered for the modeling of a single extended object.
The concept of a spatial distribution over the object extent was
introduced in [16], where the parameters specify the region of
the spatial distribution. This concept has also been applied in
a track-before-detect setting [17]. In [18], the extent parameter
is represented by a random matrix. In [19], the shape of an
object is described by an implicit function instead of in a
parametric form. Similarly, the shape contour describing the
extent is modelled with a Gaussian Process in [20].

In general, when model complexities lead to solutions for
state space models without a closed form, particle based ap-
proximations are utilized. However, particle based approaches
typically suffer due to high computational requirements. This
paper proposes a box particle filter (Box PF) method for
solving the multiple extended object tracking problem. The
Box PF is a combination of interval based techniques and
the Bayesian framework. The Box PF for point object state
estimation has been used in a number of applications, in-
cluding localization problems [21] and terrain navigation [22],
[23]. The theoretical justification of the point object Box PF
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method is derived in [24], [25]. Filters based on the box
concept have been shown to have significant computational
efficiency without sacrificing accuracy, robustness to different
types of uncertainty in the measurements, and robustness to
filter initialization . Preliminary results for the tracking of a
single extended object with the Box PF are reported in [26]
and tested with simulation data, without a comparison with
other approaches. The likelihood function of the Box PF is
derived in [27] from geometrical considerations.

The novel contribution of this paper is the development of
a Box PF method for multiple extended object tracking with
clutter. A theoretical proof of the generalized likelihood is
given based on a binomial expansion. An efficient implemen-
tation of the generalized Box PF method for multiple extended
object tracking in clutter is developed. For the first time it is
shown how interval based approaches can be used to deal with
data association and to reduce the computational complexity in
the data association process. Finally, a comparison with a state-
of-the-art PF using point samples and clustering algorithm over
a challenging real dataset is presented.

The remainder of this paper is structured in the following
manner: Section II gives details of the general problem formu-
lation for multiple extended object tracking. In Section III the
new Box PF for multiple extended object tracking is presented.
In Section IV an evaluation of the effectiveness of the proposed
method is presented and conclusions are drawn in Section V.

II. MULTIPLE EXTENDED OBJECT TRACKING AS STATE
AND PARAMETER ESTIMATION

The multiple extended object tracking problem can be for-
mulated as joint state and parameter estimation in the presence
of multiple measurements coming simultaneously from the
border or surface of multiple objects. It is also considered
that some of the measurements may not originate from an
object, in this case referred to as clutter. The latent states of all
the objects are combined into a single state vector with fixed
dimension, xk = (x>1,k,x

>
2,k, . . . ,x

>
NT ,k

)>, NT represents the
maximum number of extended objects, and k ∈ {1, 2 . . . T}
the discrete time steps, with T representing the final time step.
The notation (·)> denotes the transpose operator.

In extended object tracking, each extended object sub-state

vector is defined as xi,k =
(
X>i,k,Θ

>
i,k

)>
. The subset of

states, Xi,k, comprises all the states related to the kinematics
(e.g. position coordinates, velocities) of the centroid of motion
of the object. This typically includes the position, velocity
and any other higher order position derivatives defined by the
motion model. The subset of states, Θi,k, comprises all the
parameters used to model the extent of the object. This allows
for the extent of the object to be represented by a variety of
parametric shapes. It is assumed that the kinematic states and
parameter states are independent.

At each time step, k, an unordered set of measurements
is collected, Zk = {z1,k, z2,k . . . zMk,k}, where Mk =∑NT

i M i
T,k + MC,k represents the total number of measure-

ments at time step k. The number of measurements M i
T,k

originating from the visible border or surface of the source
is considered as a Poisson-distributed random variable with a

mean value λT,i, i.e., M i
T,k ∼ Poisson(λT,i). Similarly, the

number of clutter measurements is MC,k ∼ Poisson(λC),
where λC is the mean value of the clutter measurements.

A. Birth and Disappearance of Extended Objects

In multiple object tracking, an object may enter or leave
the area observed by the sensors at any time. This is referred
to as the birth or death of an object, respectively. To cater
for a varying number of extended objects, a binary variable
representing the existence of each extended object is intro-
duced, inspired by [28], [29], ek = (e1,k, e2,k . . . eNT ,k)>

with ei,k ∈ {0, 1}, where the values of 0 and 1 correspond to
a non-existent and existent object, respectively. The existence
variable, ei,k, evolves according to a Markov chain with the
following property,

p(ei,k|ei,k−1 = `) =

{
Pe when ei,k = `,
1− Pe otherwise, (1)

where Pe represents the probability of existence.

B. Problem Formulation within the Bayesian Framework

It is required to estimate xk and ek, jointly considered
as sk = (x>k , e

>
k )>. Suppose that the initial probability

density function (pdf) of p(s0) is given. According to the
Bayesian framework the posterior state pdf given the sensor
measurements, p(sk|Z1:k), where Z1:k = {Z1, . . . ,Zk}, is
of interest. The posterior state pdf can be updated iteratively
through two steps. A prediction step

p(sk|Z1:k−1) =

∫
p(sk|sk−1)p(sk−1|Z1:k−1)dsk−1, (2)

followed by an update step

p(sk|Z1:k) =
p(Zk|sk)p(sk|Z1:k−1)

p(Zk|Z1:k−1)
, (3)

where p(sk|Z1:k−1) is the predictive posterior state pdf,
p(sk|sk−1) is the state transition pdf, p(Zk|sk) is the like-
lihood function and p(Zk|Z1:k−1) is a normalization factor.

C. State Transition Representation

The state transition pdf can be further factorized as:

p(sk|sk−1) =

NT∏
i=1

p(xi,k|xi,k−1, ei,k, ei,k−1)p(ei,k|ei,k−1).

(4)
The sub-state transition pdf for the ith object is defined as:

p(xi,k|xi,k−1, ei,k, ei,k−1) = pb(xi,k) {ei,k, ei,k−1} = {1, 0},
pd(xi,k) {ei,k} = {0},
p(xi,k|xi,k−1) {ei,k, ei,k−1} = {1, 1},

(5)

where pb(xi,k) and pd(xi,k) are the probability values of
an object birth and death respectively, and p(xi,k|xi,k−1)
represents the motion of existent extended objects.
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D. Likelihood Representation
The likelihood in equation (3) can be calculated in various

ways with different data association algorithms. One of the
best approaches, which alleviates the combinatorial complexity
in data association, is proposed in [30]. It adopts Poisson
assumptions for the number of measurements originating from
the objects and the number of clutter points. This generalized
likelihood function is of the form

p(Zk|sk) =
e−

∑
i∈I λT,i

Mk!

Mk∏
m=1

(
ρ+

∑
i∈I

λT,ip(z
m
k |xi,k)

)
, (6)

where I denotes a set corresponding to the index of active
targets at the current time step, λC and λT,i are the mean
values for the Poisson distribution describing the number
of measurements originating from clutter and the ith target
respectively, ρ = λC

AC
is the clutter density, AC represents the

area of the region where clutter may be emitted from, and
p(zmk |xi,k) is the measurement likelihood for a single object.

Consider the use of multiple sensors to observe the ex-
tended objects. The state of sensor s is known and given
by xs,k = (xs,k, ys,k, α1,k, α2,k)>, where (xs,k, ys,k) are
the sensor position coordinates, α1,k and α2,k represent two
parameters defining the angle of view of the sensor. When
an extended object is visible from sensor s, the sensor states
and object system sub-states geometrically define the visible
border of the extended object, Vk(xi,k,xs,k). For a single time
instance k, measurement zmk is related to a specific point on
the visible surface of an extended object. This point is referred
to as the mth point source and denoted by V m

i,k.
The relationship between zmk and V m

i,k is given by

zmk = h(V m
i,k) +wm

k , (7)

where h(·) is a non-linear function, and the measurement noise
wm
k is assumed (but not restricted) to be white zero mean

Gaussian, with a known covariance matrix Σ.
The measurement likelihood for a single object consists of

the combination of two pdfs,

p(zmk |xi,k) =

∫
p(zmk |V

m
i,k)p(V m

i,k|xi,k)dV m
i,k, (8)

where p(zmk |V
m
i,k) denotes the likelihood of the measurement

given a point source (based on (7)), and p(V m
i,k|xi,k) is the

likelihood of the point source given the object sub-states.
One simplified assumption about the distribution of the

point sources of measurements, given the object sub-states and
the sensor states, is a uniform distribution along the region
Vk(xi,k,xs,k), visible from the sensor position, i.e.

p(V j
i,k|xi,k) = UVk(xi,k,xs,k)(V k) =

1

||Vk(xi,k,xs,k)||
, (9)

where UVk(xi,k,xs,k)(·) is a uniform pdf with the support
Vk(xi,k,xs,k) and ||Vk(xi,k,xs,k)|| denotes some measure of
the region Vk(xi,k,xs,k), such as the Euclidean norm.

III. DERIVATION OF THE NEW EXTENDED OBJECT BOX
PARTICLE FILTER

No closed form solution exists for the prediction and
updating of the posterior state pdf in equations (2) and (3) due

to complexities in the state space model. Therefore, Monte
Carlo methods that approximate the posterior state pdf are
considered. The Box PF is a Monte Carlo method based on the
recently emerged concept of “generalized boxes”, also called
“box particles” [31]. A box is a controllable rectangular region
having a non-zero volume in the state space. The main idea
of the Box PF is to replace the point particles in general PF
algorithms with region-particles, i.e. with box particles.

A. Time Update Step of the Box Particle Filter
The Box PF represents the posterior pdf by a weighted

summation of uniform distributions,

p(sk−1|Z1:k−1) ≈
N∑
p=1

w
(p)
k−1U[s

(p)
k−1]

(sk−1), (10)

where the notation U[ · ](x) denotes a uniform distribution with
support1 [ · ], corresponding to a box particle, N is the number
of box particles, and w

(p)
k−1 is the normalized weight for box

particle p. The Box PF is suitable for various types of uncer-
tainties in the measurements: i.e. interval, stochastic and data
association uncertainties as shown in [32]. In this application,
the dimensions of sk corresponding to the existence vector,
ek, are still considered to have zero volume.

The Box PF framework is based on the prediction and
update steps as presented by equations (2) and (3). For the
Box PF, the prediction step can be written as:

p(sk|Z1:k−1) ≈
∫
p(sk|sk−1)

N∑
p=1

w
(p)
k−1U[s

(p)
k−1

]
(sk−1)dsk−1

=

N∑
p=1

w
(p)
k−1

∫
[s

(p)
k−1

]

p(sk|sk−1)U[s
(p)
k−1

]
(sk−1)dsk−1.

(11)

Representing the transition pdf in equation (4) as a transition
function, f , an inclusion function [f ] (see [25] for more
details) where f([s]) ⊆ [f ]([s]) can be obtained. For the
inclusion function, with ∀ p = 1, . . . , N , if sk−1 ∈ [s

(p)
k−1]

then sk ∈ [f ]([s
(p)
k−1]). Thus, for all p = 1, . . . , N

p(sk|sk−1)U
[s

(p)
k−1]

(sk−1) = 0, ∀ sk 6∈ [f ]([s
(p)
k−1]). (12)

Using interval analysis techniques, the support of the function
for the pdf terms in (11) can be approximated by [f ]([s

(p)
k−1]).

In the Box PF algorithm each pdf term in (11) is approximated
by one uniform pdf component having as support the interval
[f ]([s

(p)
k−1]), i.e.,∫

[s
(p)
k−1

]

p(sk|sk−1)U[s
(p)
k−1

]
(sk−1)dsk−1 ≈ U[f ]([s

(p)
k−1

])
(sk). (13)

Combining (11) and (13) gives

p(sk|Z1:k−1) ≈
N∑
p=1

w
(p)
k−1U[f ]([s

(p)
k−1])

(sk)

=

N∑
p=1

w
(p)
k−1U[s

(p)

k|k−1
]
(sk). (14)

1The support of a function is the set of points where the function is not
zero-valued or, in the case of functions defined on a topological space, the
closure of that set.
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Approximating each pdf term in equation (14) using one
uniform pdf component may not be accurate enough. However,
as for the PF, it is sufficient to approximate the first moments
of the pdf. If a more accurate representation is required then
each term can be approximated as a mixture of uniform pdfs
as shown in [25].

B. Box Particle Filter Likelihood for Multiple Extended Ob-
jects

A reasonable assumption for the Box PF is that the likeli-
hood of a measurement given a point source has a bounded
support. This leads to the definition of an interval measure-
ment, [zmk ], and corresponding likelihood approximated by a
uniform distribution, i.e. p(zmk |V

m
i,k) = U[zm

k ]

(
h
(
V m
i,k

))
.

Brute Force Approach: As in the standard PF, the update
step for the Box PF assigns a weighting to each of the
predicted box particles. However, it is also required to apply an
interval technique, called contraction [33], to each box particle.
Contraction is used to eliminate regions of the predicted box
particles which are not consistent with the object emitted
measurements. This is a challenging task when dealing with
extended objects and clutter. To define the weight updates
and contraction, it is required to derive an expression for the
posterior state pdf.

Proposition 1: An alternative form of the generalized like-
lihood function of equation (6) is given by,

p(Zk|sk) =
e−

∑
i∈I λT,i

Mk!

(
ρMk

+

Mk∑
m=1

(Mk
m )∑
j=1

|I|m∑
n=1

ρMk−m
m∏
`=1

λT,(bm,n)`p(z
(am,j)`
k |x(bm,n)`,k)

)
,

(15)

where the notation | · | denotes the cardinality of a set,

((am,j)
Mk
m=1)

(Mk
m )

j=1 is a sequence of sequences corresponding
to the index for all combinations of measurements, and
((bm,n)Mk

m=1)
|I|m
n=1 is a sequence of sequences corresponding to

the index for all existent object to measurement associations.
Proof: See Appendix A.

Example: consider a state vector for the case of when there
are a maximum of three extended objects, where currently
only the first and third objects are existent, i.e. I = {1, 3},
with two measurements. The sequences are thus defined as:
(a1,1) = (1); (a1,2) = (2); (a2,1) = (1, 2); (b1,1) = (1);
(b1,2) = (3); (b2,1) = (1, 1); (b2,2) = (1, 3); (b2,3) = (3, 1);
(b2,4) = (3, 3), resulting in the following generalized likeli-
hood expression:

p(Zk|sk) =
e−(λT,1+λT,3)

2!

(
ρ2 + ρλT,1p(z

1
k|x1,k) + ρλT,3p(z

1
k|x3,k)+

ρλT,1p(z
2
k|x1,k) + ρλT,3p(z

2
k|x3,k)+

λ2
T,1p(z

1
k|x1,k)p(z

2
k|x1,k) + λT,1λT,3p(z

1
k|x1,k)p(z

2
k|x3,k)+

λT,3λT,1p(z
1
k|x3,k)p(z

2
k|x1,k) + λ2

T,3p(z
1
k|x3,k)p(z

2
k|x3,k)

)
.

(16)

This example highlights the fact that the evaluation of the
generalized likelihood for a single state results in a summation
of terms. Each term corresponds to a unique measurement

association and for each object assigned measurement, an
association with a specific object.

The posterior state pdf can be obtained through the com-
bination of the predictive posterior state pdf and generalized
likelihood:

p(sk|Z1:k) =
1

αk
p(Zk|sk)p(sk|Z1:k−1),

=

N∑
p=1

w
(p)
k−1e

−
∑

i∈I(p)
λT,i

αkMk!

(
ρMkU

[s
(p)
k|k−1

]
(sk)+

Mk∑
m=1

(Mk
m )∑
j=1

|I(p)|m∑
n=1

ρMk−m
m∏
`=1

λT,(bm,n)`×

p(z
(am,j)`
k |[x(p)

(bm,n)`,k|k−1])U[s
(p)
k|k−1

]
(sk)

)
. (17)

The expressions in the product of each of the latter terms can
be further reduced based on the decomposition of the mea-
surement likelihood for a single object, i.e. equation (8). For
notational convenience, (am,j)` and (bm,n)` are represented
by a` and b` respectively,

p(z
a`
k |[x

(p)
b`,k

])U
[s

(p)
k|k−1

]
(sk) =∫

U
[s

(p)
k|k−1

]
(sk)U[z

a`
k ]

(
h
(
V
a`
b`,k

))
UVk(xb`,k

,xs,k)(V
a`
b`,k

)dV
a`
b`,k

.

(18)

The terms within the integration form a constant function
with a support being the following region

Sa`,b`p =
{
sk∈ [s

(p)

k|k−1]|V
a`
b`,k
∈ Vk(xb`,k,xs,k), h

(
V
a`
b`,k

)
∈ [za`k ]

}
.

(19)
This represents a constraint and from its expression it can be

deduced that the predicted supports [s
(p)
k|k−1], from the time

update pdf approximation, have to be contracted with respect
to the interval measurements [Zk]. This forms the basis for
what is known as a constraints satisfaction problem (CSP). In
this paper the Constraints Propagation (CP) technique [33] is
used to contract the box particles.

The contracted box particle is represented by [s
a`,(p)
k ]. It is

important to note that contraction only occurs on the sub-states
corresponding to the object indexed by b`, i.e. [s

a`,(p)
k ] =

([x
(p)
1,k|k−1], ..., [x

a`,(p)
b`,k

], ..., [x
(p)
NT ,k|k−1], [e

(p)
k|k−1])> where

[x
a`,(p)
i,k ] represents the sub-states of object i contracted by

the measurement indexed by a`. Following the definition of
the set Sa`,b`p in equation (19), equation (18) can be rewritten
as follows

p(z
a`
k |[x

(p)
b`,k

])U
[s

(p)
k|k−1

]
(sk)=

|[sa`,(p)k ]|
|[s(p)

k|k−1]|
U

[s
a`,(p)

k
]
(sk)p(z

a`
k |[x

(p)
b`,k

]).

(20)

Note, the notation | · | for a box denotes the interval length
(respectively the box volume in the multidimensional case),
in contrast to the cardinality of a set. If the entire product is
considered,

∏m
`=1 p(z

a`
k |[x

(p)
b`,k

])U
[s

(p)

k|k−1
]
(sk), the contracted

box, U
[s

a1,(p)

k ]
(sk), is further contracted in the same manner

as described by equations (19) and (20) by each measurement
likelihood for a single object. In terms of interval arithmetic,
the product of contracted boxes is equivalent to the intersection
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of the box particles contracted by the individual measurements,
m∏
`=1

p(z
a`
k |[x

(p)
b`,k

])U
[s

(p)
k|k−1

]
(sk) =

|[sa,(p)k ]|
|[s(p)

k|k−1]|
U

[s
a,(p)
k

]
(sk)

m∏
`=1

p(z
a`
k |[x

(p)
b`,k

]), (21)

where [s
a,(p)
k ] =

⋂m
`=1[s

a`,(p)
k ]. This results in the following

reduced form of the posterior state pdf in (17),

p(sk|Z1:k) =

N∑
p=1

w
(p)
k−1e

−
∑

i∈I(p)
λT,i

αkMk!

(
ρMkU

[s
(p)
k|k−1

]
(sk)+

Mk∑
m=1

(Mk
m )∑
j=1

|I(p)|m∑
n=1

|[sam,j ,(p,n)

k ]|ρMk−m

|[s(p)

k|k−1]|
×

U
[s

am,j,(p,n)

k
]
(sk)

m∏
`=1

λT,(bm,n)`p(z
(am,j)`
k |[x(p)

(bm,n)`,k
])

)
.

(22)

This is a brute force approach which considers every possible
measurement association. It is clear from the indices of the
summations that a single predicted box particle can result in
a summation of a large number of terms. For example, in
the case of 3 objects and 15 measurements, each predicted
box particle would result in over 1 billion weighted boxes
after the update. Thus, the brute force implementation is not
computationally tractable.

Standard Approach: There are two causes for why such a
considerable number of boxes exists. The first cause is the
uncertainty in which measurements are from which objects.
This uncertainty can be reduced through the introduction of
clustering. The clustering algorithm assigns the index of each
measurement to a single cluster set Ci, where i ∈ 1, .., Nc,
with Nc the total number of clusters, assumed unknown.
Measurements which are close to each other, according to
a specific metric, are assigned to the same cluster. The
validity of utilizing clustering is based on the assumption
that measurements from a single object are typically located
within the vicinity of each other in the measurement space.
However, care is taken to ensure that the algorithm is robust
to sub-optimal clustering. Employing clustering, results in the
following approximation of the posterior state pdf:

p(sk|Z1:k) ≈
N∑
p=1

w
(p)
k−1e

−
∑

i∈I(p)
λT,i

αkMk!

(
ρMkU

[s
(p)
k|k−1

]
(sk)+

Mk∑
m=1

(Mk
m )∑
j=1

|I(p)|dj∑
n=1

|[sam,j ,(p,n)

k ]|ρMk−m

|[s(p)

k|k−1]|
×

U
[s

am,j,(p,n)

k
]
(sk)

m∏
`=1

λT,(bm,n)`p(z
(am,j)`
k |[x(p)

(bm,n)`,k
])

)
,

(23)

where dj is the number of clusters that the jth unique combi-
nation of object assigned measurements originates from, and
the sequences (bm,n) are reduced to only consider the mea-
surements to object associations where measurements from
the same cluster are assigned to the same object. Considering
the same example of 3 objects and 15 measurements, if the
clustering algorithm results in 3 clusters, each indexing 5 of
the measurements, the number of weighted box particles after
the update per predicted box particle is reduced from over

State Space

Contraction
TechniquesClutter Meas.

Object Meas.

ContractionTechniques

Measurement Space

Fig. 1. Illustration of the consistency between a set of box particles and
object or clutter measurents.

1 billion to 830 584. Although this reduces the number of
weighted boxes by orders of magnitude for each box particle,
this still results in a large computational burden.

Interval Analysis Approach: The second cause for the large
number of boxes is the uncertainty in which measurements are
emitted by an object or are clutter. Using an interval based
approach, it is possible to reduce the number of boxes due to
this uncertainty.

The weight of each term in the posterior state pdf describes
how likely the associations are, given the measurements. As
observed in equation (21), each term is non-zero on the
predicted state interval contracted by all the assigned object
measurements. This interval is equivalent to the intersection of
the contraction results for each of the measurements assigned
as object originated. Each term can have clutter measurements
assigned as object measurements. However, the contraction
due to a clutter measurement can be an interval which does
not exist, or is disjoint with the contracted intervals from the
object originated measurements, as illustrated in Fig. 1. Since
the overall result is dependent on the intersection, even a single
clutter measurement assigned as an object measurement may
result in the corresponding term having a zero weight. The
computation of these terms can be avoided by approximating
the intersection with the relaxed intersection. The relaxed in-
tersection, first introduced in [34], corresponds to the classical
intersection between intervals with the exception that it is
allowed to relax a certain number of intervals in order to avoid
an empty intersection.

Utilizing the relaxed intersection, the following approxima-
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tion for the posterior state pdf is obtained,

p(sk|Z1:k)≈
N∑
p=1

w
(p)
k−1e

−
∑

i∈I(p)
λT,i

αkMk!

(|I(p)|d∑
n=1

|[sa,(p,n)
k ]|ρMk−u(p)

|[s(p)

k|k−1]|

U
[s

a,(p,n)
k

]
(sk)

u(p)∏
`=1

λT,(bn)`p(z
(a)`
k |[x(p)

(bn)`,k
])

)
, (24)

where u(p) is the number of consistent intervals which results
in a non-empty relaxed intersection. In order to determine the
contracted state, [s

a,(p,n)
k ], the sub-states of each object are

considered individually. The index for all the measurements
assigned to object i, according to clustering, is defined by
the set B. Since only these measurements contract the sub-
state of object i, the resulting contraction result for all mea-

surements is given by [x
a,(p,n)
i,k ] =

{|B|−u(p)
i }⋂

`∈B [x
`,(p,n)
i,k ] with

u(p) =
∑
i∈I(p) u

(p)
i .

Considering the same example of 3 objects and 15 measure-
ments, if the clustering algorithm results in 3 clusters, each
indexing 5 of the measurements, the number of weighted box
particles after the update per predicted box particle is reduced
from 830 584 with the approximate posterior in equation (23)
to 27 with the approximate posterior in equation (24).

Two issues remain with the calculation of the approximate
pdf in equation (24). Firstly, the relaxed intersection does not
explicitly indicate the indices of the u measurements which
result in the non-zero intersection, which means it is not
possible to evaluate the corresponding measurement likelihood
for a single object expressions. Secondly, it is required to
ensure that the box particle weight is represented by a single
scalar value. If the measurement likelihood for a single object
could be evaluated, this result may not be the case. There
are several approaches which could be used to overcome this,
such as selecting the midpoint of the box particle for measure-
ment likelihood for a single object evaluation. However, the
approach adopted in this paper overcomes both the remaining
issues by approximating the measurement likelihood for a
single object with a uniform distribution, as done previously
in [1],

p(zjk|xi,k) ≈ Ur(xi,k)(z
j
k). (25)

where r(xi,k) represents the region in the measurement space
where measurements from object i may exist, based on the
model of object i, and sensor noise characteristics. This
approximation is valid if the uncertainty in the sensor error
is significantly smaller than the extent of the object. In sum-
mary, the posterior at the previous time step, p(sk−1|Z1:k−1),
is approximated by {w(p)

k−1, [s
(p)
k−1]}Np=1, and the posterior

at the current time step, p(sk|Z1:k) is approximated by
{{w(p,n)

k , [s
(p,n)
k ]}Np=1}

|I(p)|d
n=1 , where [s

(p,n)
k ] = [s

a,(p,n)
k ], and

w
(p,n)
k =

w
(p)
k−1e

−
∑

i∈I(p)
λT,i |[sa,(p,n)

k ]|ρMk−u(p)

|[s(p)

k|k−1]|
×

∏
`∈I(p)

(
λT,`

|[r(x`,k)]|

)u`

.

(26)

C. Box Particle Filter Resampling

The number of box particles representing the posterior state
pdf grows randomly with each time step. To curb the increase
in the number of box particles, a resampling step is introduced,
where the number of resampled particles is equal to the
original number of box particles. In addition, the resampling
step also relieves particle degeneracy. The resampling step in
the Box PF differs from the resampling step of the generic
PF. The resampling step in the Box PF can be performed by a
division of box particles [32] (the box particle which has been
selected n times during resampling can be partitioned into n
disjoint smaller boxes) or by other techniques.

A summary of the Box PF for multiple extended object
tracking is given in Algorithm I.

Algorithm I. A Box Particle Filter for
Multiple Extended Object Tracking

Initialization
Initialize the box particles based on the available prior information
about the objects kinematic and parameter state.

Repeat for K time steps, k = 1, ...K, the following steps:

1) Prediction
Propagate the box particles through the state evolution model
to obtain the predicted box particles. Apply interval inclusion
functions as described in [35]. (The implementation presented
in this paper is based on the INTLAB [36] toolbox, which
contains a number of built-in routines for interval calculations.)

2) Measurement Update

a) Upon receiving the measurements, form intervals around
them, taking into account the uncertainty of the sensor,
thus obtaining the measurement likelihood boxes [Zk].

b) Cluster the measurements to obtain the set Ci, where i ∈
1, .., Nc.

c) Solve the CSP in Eq. (19) using the CP algorithm to
obtain the contracted box particles for each measurement
[s
a`,(p,n)
k ].

d) Determine the combined contracted box particle,
[s

a,(p,n)
k ], and the number of consistent intervals, u,

through the calculation of the relaxed intersection.
e) Generate the set of weighted box particles according to

equation (26).
3) Output

Obtain a box estimate for the state of the extended objects
based on the maximum box particle weight:

[x̂k] = argmax
xk

w
(p)
k (27)

and a point estimate x̂k for the extended shape using the mid-
points of the box estimates of the state vector [x̂k].

4) Resampling
Resample N particles with high weights by division. Finally,
reset the weights: w(p)

k = 1/N .

IV. PERFORMANCE EVALUATION

A. Testing Environment

The method performance is evaluated using data obtained
from the HAMLeT (Hazardous Material Localization and
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Fig. 2. The layout of the corridor for the experiments. The three laser
scanner devices are indicated with crossed boxes. In this snapshot several
measurements from the sensor located at the top left of the figure are displayed
in red.

Person Tracking) system environment [37] (Fraunhofer FKIE,
Germany). The data is from a prototype security system
developed by an EU funded project, representing an airport
corridor. This data consists of range and bearing components
obtained by three laser rangefinder devices. The measurement
devices are positioned at three key locations in a curved
corridor (see Fig.2). The scenario presented in this paper
consists of three people who enter and traverse the corridor
while being observed by the sensors. The trajectories of the
people is illustrated in Fig. 3.

Throughout their motion, each person moves in and out of
the area visible by the sensors at different times. The sensors
are positioned on the wall at the level of height of the hip.

B. Person Modeling

In the HAMLeT test environment it is of interest to track
multiple people. Each person is modelled as an extended
object in a two dimensional plane with a circular extent,
as in Fig. 4. The sub-states of the state vector correspond-
ing to the kinematics of each extended object is a vector,

-2 -1 0 1 2

x (m)

-6

-5

-4

-3

-2

-1

0

1

y
 (

m
)

Person 1

Person 2

Person 3

Fig. 3. Trajectories of the people moving through the corridor for the
experiment.

Xi,k = (xci,k, ẋ
c
i,k, y

c
i,k, ẏ

c
i,k)>, which comprises of the po-

sition coordinates, xci,k, y
c
i,k, and respective velocity compo-

nents, ẋci,k, ẏ
c
i,k. In this scenario the subset of states of the

state vector that comprises the parameters used to model the
extent of each object reduces to a scalar representing the radius
of the circle used to approximate the extent, Θi,k = Ri,k.

In this paper the nearly constant velocity motion model [38]
is considered as a representation of the motion of each person.
In two dimensions, the motion of each extended object is thus
given by

Xi,k = AXi,k−1 + ΓηX , (28)

where A = diag(A1,A1), A1 =

(
1 Ts
0 1

)
, Γ =(

T 2
s /2 Ts 0 0
0 0 T 2

s /2 Ts

)>
, Ts is the sampling interval and

ηX ∼ N (0,QX) is the system dynamics noise, with covari-
ance matrix QX . It is assumed that QX =diag(Q1σ

2
x,Q1σ

2
y),

where Q1 =

(
T 4
s /4 T 3

s /2
T 3
s /2 T 2

s

)
and σx and σy are the accel-

eration noise standard deviations for the x and y coordinate,
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Fig. 4. Notations and definitions for a single circular extended object.

respectively. The evolution model for the extent parameter is
assumed to be

Θi,k = Θi,k−1 + ηΘ, (29)

where ηΘ ∼ N (0, σ2
R).

The visible border for a circular extended object is (see
Fig. 4),

Vk(xi,k,xs,k) = (xci,k +Ri,k cos(θk), y
c
i,k +Ri,k sin(θk)), (30)

where θk ∈ [θ1,k, θ2,k], with the jth point source defined as,

V j
i,k = (xci,k +Ri,k cos(θ

j
k), y

c
i,k +Ri,k sin(θ

j
k)). (31)

The measurement zjk collected from a sensor is in polar
coordinates and consists of range djk and bearing βjk. The
observation equation is thus given by

zjk = (djk, β
j
k)> = h(V j

i,k) +wj
k, (32)

where h(·) is

h(V j
i,k) =

√
(xci,k+Ri,k cos(θ

j
k)−xs,k)2+(yci,k+Ri,k sin(θ

j
k)−ys,k)2

tan−1

(
yci,k+Ri,k sin(θ

j
k
)−ys,k

xc
i,k

+Ri,k cos(θ
j
k
)−xs,k

)  .

(33)

The measurement noise wj
k = (wjd,k, w

j
β,k)>, is zero mean

Gaussian, with a known covariance matrix Σ = diag(σ2
d, σ

2
β).

The application of the CP for a circular extended object in
the Box PF is summarized in Algorithm II and illustrated in
Fig. 5.

z
2

z
1

Fig. 5. Illustration of the contraction of a box particle by a single
measurement for a circular extended object. The square box represents a
measurement. The filled circular region represents the projection of a box
particle sub-states for a single object to the measurement space. The dotted
line illustrates the reduction in the interval shape due to contraction by the
measurement.

Algorithm II. Solving the CSP For
Circular Extended Object Tracking

1) Transform the range and bearing measurements into the x-y
plane using an inclusion function:[

zj1

]
= [Cz1 ]

([
djk

]
,
[
βjk

])
,[

zj2

]
= [Cz2 ]

([
djk

]
,
[
βjk

])
,

(34)

where [zj1] and [zj2] represent the x and y dimension converted
box measurements respectively, and [Cz1 ](·) and [Cz2 ](·)
represent the corresponding inclusion functions.

2) Perform contraction on the sub-states corresponding to each
object for each particle and measurement based on the follow-
ing equations
[
R

(p)
k

]
=

[
R

(p)
k

]
∩

√([zj1] −
[
x
(p)
c,k

])2
+

([
z
j
2

]
−
[
y
(p)
c,k

])2 , (35)
[
x
(p)
c,k

]
=

[
x
(p)
c,k

]
∩

[zj1] ±
√[

R
(p)
k

]2
−
([

z
j
2

]
−
[
y
(p)
c,k

])2 ,

[
ẋ
(p)
c,k

]
=

[
ẋ
(p)
c,k

]
∩


[
x
(p)
c,k

]
−
[
x
(p)
c,k−1

]
Ts

 ,

[
y
(p)
c,k

]
=

[
y
(p)
c,k

]
∩

[zj2] ±
√[

R
(p)
k

]2
−
([

z
j
1

]
−
[
x
(p)
c,k

])2 ,

[
ẏ
(p)
c,k

]
=

[
ẏ
(p)
c,k

]
∩


[
y
(p)
c,k

]
−
[
y
(p)
c,k−1

]
Ts

 ,

[
z
(p)
1,j

]
=
[
z
j
1

]
∩

[x(p)
c,k

]
±

√[
R

(p)
k

]2
−
([

z
j
2

]
−
[
y
(p)
c,k

])2 ,

[
z
(p)
2,j

]
=
[
z
j
2

]
∩

[x(p)
c,k

]
±

√[
R

(p)
k

]2
−
([

z
(p)
1,j

]
−
[
x
(p)
c,k

])2 .

3) Contract the original measurements with the contracted con-
verted measurements:[

d
(p),j
k

]
=
[
djk

]
∩
[
C−1
z1

] ([
z
(p)
1,j

]
,
[
z
(p)
2,j

])
,[

β
(p),j
k

]
=
[
βjk

]
∩
[
C−1
z2

] ([
z
(p)
1,j

]
,
[
z
(p)
2,j

])
,

(36)

4) Repeat steps 2) and 3) sequentially until the gain in amount
of contraction is sufficiently small. The amount of contraction
could be checked or the steps could be iterated a fixed amount
of times.
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C. Performance Comparison

The algorithms’ evaluation is performed on a mobile com-
puter with Intel(R) Core(TM) i7-4702HQ CPU @ 2.20GHz
and with 16 GB of RAM. A comparison is made between
the performance of the Box PF, a state-of-the-art PF, here
after referred to as the border parameterized (BP) PF, and
the output of a purely clustering approach. The BP PF is the
extended object tracking PF presented in [30] adapted for a
varying number of extended objects, further details can be
found in Appendix B. The clustering approach used is the
DBSCAN algorithm [39]. This is a density based clustering
algorithm which groups the measurements that are closely
packed together into a single cluster. This clustering algorithm
is well suited to the problem as it does not require knowledge
of the number of clusters, and the density of the measurements
from each object is consistent. The centroid of an object is
estimated as the mean of all measurements assigned as a
cluster. The radius of an object is approximated as the maximal
distance between the centroid and any measurement assigned
to the cluster. A threshold variable was introduced to reduce
the effects of clutter. The results are averaged over a total of
100 independent runs where the measurements are perturbed
by the measurement noise for each run. The performance
is evaluated based on the Optimal Sub-Pattern Assignment
(OSPA) [40] for the position of the objects, cardinality for the
existent variables, the statistics of the existent object extents,
and the average simulation time.

D. Filter Parameters and initialization

The Box PF utilizes the output of the DBSCAN algorithm.
DBSCAN requires two parameters, ε = 0.43, related to the
density of the clusters, and the minimum number of points
required to form a dense region, which is selected as 1. In this
simulation the region r(xi,k) is represented by equation (31).

The other parameters used in simulation for the performance
evaluation are as follow: σx = 0.05 m/s2, σy = 0.05 m/s2,
σR = 0.05 m, σd = 0.025 m, σβ = 0.1π/180 rad, Ts = 1 s,
λT = 50, ρ = 1× 10−4, Pe = 0.9, F = 30.

The filters utilize a uniform distribution to initialize each
object sub-state when an object birth occurs. In the case of the
Box PF, the same uniform region where the BP PF randomly
generate particles from is subdivided so that the entire region
is encompassed by all the box particles. This region, for each
object sub-state, is located at the entrance/exit of the corridor:
[xc] = [−1.5,−0.5] ∪ [0.5, 1.5] m, [ẋc] = [−0.1, 0.1] m/s,
[yc] = [−1, 0] m, [ẏc] = [−0.1, 0.1] m/s, [R] = [0, 0.3] m.

E. Results

The performance of the filters is examined for 3 cases: a
small, medium, and large number of particles. The average
OSPA results for each case are illustrated in Fig. 6 to 8. The
spikes in the results correspond to a mismatch in cardinality.
In the case of the Box PF and BP PF, this is caused by the
fact that only a small number of measurements are observed
from the objects when they first enter the observable region
of a sensor. In the case of the clustering algorithm, the spikes
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Fig. 6. Comparison of the average OSPA for the BP PF with 5000 particles,
the Box PF with 32 particles, and DBSCAN clustering.
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Fig. 7. Comparison of the average OSPA for the BP PF with 2500 particles,
the Box PF with 16 particles, and DBSCAN clustering.
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Fig. 8. Comparison of the average OSPA for the BP PF with 1000 particles,
the Box PF with 4 particles, and DBSCAN clustering.
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Fig. 9. Comparison of the average cardinality for the BP PF with 5000
particles, the Box PF with 32 particles, and DBSCAN clustering.
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Fig. 10. Comparison of the average cardinality for the BP PF with 2500
particles, the Box PF with 16 particles, and DBSCAN clustering.

are caused by poorly selected parameters in the clustering
algorithm. This highlights the robustness of the Box PF to
the selection of parameters for the clustering algorithm. When
cardinality errors are not present, the clustering algorithm
performs on par with the filtering approaches with respect
to OSPA. This is aligned with the findings in [41], [42]
where clustering algorithms are applied in the context of object
tracking.

In the case of the filters, decreasing the number of particles
increases the amount of error, however, it is worth noting that
a decrease in the number of particles for the BP PF also causes
the filter to become unstable when three objects are within the
scene.

The average cardinality results for each case are illustrated
in Fig. 9 to 11. The cardinality of the Box PF is significantly
more robust to different numbers of box particles and cluster-
ing parameters.

The performance of the approaches for the estimation of
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Fig. 11. Comparison of the average cardinality for the BP PF with 1000
particles, the Box PF with 4 particles, and DBSCAN clustering.

TABLE I
EXISTENT OBJECT EXTENT STATISTICS.

Algorithm N Mean (m) Standard
Deviation (m)

Box PF
4 0.23 0.03
16 0.21 0.04
32 0.2 0.05

BP PF
1000 0.24 0.13
2500 0.23 0.13
5000 0.21 0.11

Clustering 0.3 0.07

the extent parameter is illustrated by the mean and standard
deviation of the extent parameter for all active objects over
all time steps, this is illustrated in Table I. The contraction
operation leads to the Box PF sustaining significantly lower
variations in the extent, even with higher numbers of particles.
The rudimentary approach of approximating the extent in the
clustering approach leads to an over estimate of the extent
which is sensitive to clutter.

The computational time for each of the considered cases
under the same conditions is given in Table II. It is noted
here that employing the INTLAB [36] toolbox with MATLAB
for performing the Box PF simulation is just one way of
implementing the Box PF code. This toolbox was initially
designed and optimized for estimating rounding errors. Faster
realizations of the Box PF in C/C++ are also possible. For in-

TABLE II
AVERAGE MATLAB COMPUTATIONAL TIME COMPARISON.

Algorithm N Computation Time (s)

Box PF
4 43.38
16 118.56
32 282.24

BP PF
1000 67.68
2500 168.53
5000 417.66

Clustering 4.25
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stance, in [43] the Box Probability Hypothesis Density Filter is
shown to be 10.9 times faster than the Probability Hypothesis
Density Filter working with point particles (both implemented
in C++). Further optimization is considered possible for the
Box PF realization, thus the results in Table II would represent
a minimum efficiency improvement. The Box PF is also a
very attractive solution from the perspective of distributed
estimation, as shown in [44]. The clustering approach offers
the greatest computational saving, but this comes at a cost of
poor estimation of the objects extents which are sensitive to
clutter.

An attractive benefit of the Box PF, not clearly illustrated
in the results presented thus far, is the ability of the filter
to handle large regions of initial uncertainty. For example,
the prior distribution on the sub-states related to the velocity
components of each object is a uniform distribution with the
following region of support: [−0.1, 0.1]. This region caters
for objects moving in any direction and was sufficient for the
objects in the examined scenario, but when the magnitude is
increased, the BP PF is unable to lock on to new born objects.
This is due to the fact that the velocity of the object is not
directly observed, causing the filter to diverge. However, due
to contraction and the division of boxes in the resampling
step, the Box PF is capable of handling larger regions of
uncertainty. As an example, increasing the region to [−1, 1],
caused the BP PF to diverge in all three cases, where the Box
PF performance was unaffected. This issue can be resolved by
the BP PF by utilizing a larger number of particles, but this
comes at the cost of an even greater computational complexity.
In addition, filtering approaches have track continuity when
the detection probability is low. This enables the estimates
(by using the priors) to be more robust to misdetection. In
scenarios with inaccurate sensors, it is also anticipated that
filtering approaches would benefit from the evolution model
to maintain tracking.

V. CONCLUSIONS

This paper presents a Box PF method for multiple extended
object tracking. A theoretical derivation of the generalized
likelihood function of the Box PF in the presence of clutter is
presented. The proved equation is further modified to minimize
the computational complexity. It is shown that the Box PF can
work efficiently with four to thirty two box particles, whereas
the particle filter working with point particles needs hundreds
and thousands of particles to achieve the same accuracy.
The Box PF has been shown to have several advantages
when compared to the BP PF. This includes a significant
computational gain, more than 32%, which could potentially
be further exploited through an implementation on a platform
that is efficient in interval arithmetic. The Box PF exhibits
robustness for a significantly smaller number of box particles
which completely encompass the initialization region. The
performance of the method is validated with real data from
laser rangefinder sensors.

Future work will focus on the expansion and validation
of the method for more general application settings, such as
asynchronous multirate sensor networks [45], and correlated
sensor noise [46].
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APPENDIX

A. Expanded Generalized Likelihood Proof

According to equation (15), given I, for any value of Mk:

Mk∏
m=1

(
ρ+

∑
i∈I

λT,ip(z
m
k |xi,k)

)
= ρMk +

Mk∑
m=1

(Mk
m )∑
j=1

|I|m∑
n=1

ρMk−m×

m∏
`=1

λT,(bm,n)`p(z
(am,j)`
k |x(bm,n)`,k).

(37)

To simplify notations, define: cm,i = p(zmk |xi,k) and
C(c1,I , c2,I , ..., cMk,I ;ψ) represents the summation
of all ψ unique combinations of cm,i terms
multiplied by the associated object densities, with
C(c1,I , c2,I , ..., cMk,I ; 0) = 1, C(c1,I , c2,I , ..., cMk,I ;−1) =
0, and C(c1,I , c2,I , ..., cMk,I ;Mk + 1) = 0. For
example, if I = {1, 2}, then C(c1,I , c2,I , c3,I ; 2) =
λ2
T,1c1,1c2,1 + λT,1λT,2c1,1c2,2 + λT,1λT,2c1,2c2,1 +
λ2
T,2c1,2c2,2 + λ2

T,1c2,1c3,1 + λT,1λT,2c2,1c3,2 +
λT,1λT,2c2,2c3,1 + λ2

T,2c2,2c3,2 + λ2
T,1c1,1c3,1 +

λT,1λT,2c1,1c3,2 + λT,1λT,2c1,2c3,1 + λ2
T,2c1,2c3,2. A

useful decomposition of the expression in this form is:
C(c1,I , c2,I , ..., cMk+1,I ;ψ) = C(c1,I , c2,I , ..., cMk,I ;ψ) +∑
i∈I λT,icMk+1,iC(c1,I , c2,I , ..., cMk,I ;ψ−1). The compact

form of equation (37) is

Mk∏
m=1

(
ρ+

∑
i∈I

λT,icm,i

)
=

Mk∑
m=0

ρMk−mC(c1,I , c2,I , ..., cMk,I ;m).

(38)
Base case: Mk = 1:

ρ+
∑
i∈I

λT,ic1,i =
1∑

m=0

ρ1−mC(c1,I ;m)

= ρ1−0C(c1,I ; 0) + ρ1−1C(c1,I ; 1)

= ρ+
∑
i∈I

λT,ic1,i. (39)

Inductive hypothesis: Suppose equation (38) holds for all
values of Mk.

Inductive step: Consider the scenario with Mk+1 measure-
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ments,
Mk+1∏
m=1

(
ρ+

∑
i∈I

λT,icm,i

)
= Mk∏

m=1

ρ+∑
i∈I

λT,icm,i

ρ+∑
i∈I

λT,icMk+1,i


=

Mk∑
m=0

ρMk−mC(c1,I , c2,I , ..., cMk,I ;m)×ρ+∑
i∈I

λT,icMk+1,i


=

Mk+1∑
m=0

ρMk+1−mC(c1,I , c2,I , ..., cMk,I ;m)

+
∑
i∈I

λT,icMk+1,i

Mk+1∑
m=0

ρMk+1−m×

C(c1,I , c2,I , ..., cMk,I ;m− 1)

=

Mk+1∑
m=0

ρMk+1−m
(
C(c1,I , c2,I , ..., cMk,I ;m)

+
∑
i∈I

λT,icMk+1,iC(c1,I , c2,I , ..., cMk,I ;m− 1)

)

=

Mk+1∑
m=0

ρMk+1−mC(c1,I , c2,I , ..., cMk+1,I ;m). (40)

By the principle of mathematical induction, the proposition
holds for all Mk ∈ N.

B. Border Parameterized Particle Filter
In [30] a PF for tracking multiple extended objects is pre-

sented. However, in this case the number of extended objects is
fixed and known. This algorithm has been adapted to consider
a varying number of extended objects as in Section II-A. With
respect to the notation developed in Section II-B, the BP PF
represents the posterior state pdf with the following discrete
approximation

p (sk|Z1:k) =

N∑
p=1

w
(p)
k δ

(
sk − s(p)

k

)
, (41)

where δ(·) is the Dirac delta function, and the weights,
{w(p)

k }Np=1, are normalized so that
∑
p w

(p)
k = 1.

The transition pdf, described in (4), is used to modify the set
of particles, represented by {s(p)

k|k−1}
N
p=1.The weight of each

particle is re-evaluated based on the latest set of measurements
and the generalized likelihood function of (6).

Since the measurement likelihood for a single object,
p(zjk|xi,k), is analytically intractable, a Monte Carlo method
is used to approximate it, as in [17] and [47]. For
each particle existent object subspace, x(p)

i,k|k−1, the sup-

port of p(V j
i,k|x

(p)
i,k|k−1) is defined by a uniform distribu-

tion over the angular range [θ1,k, θ2,k] of the visible border
Vk(x

(p)
i,k|k−1,xs,k) with respect to the object center. A sampled

point source can be obtained by first sampling from:{
θ

(b,f)
k

}N,F
b=1,f=1

∼
(
U[θ1,k,θ2,k](θk)

)
, (42)

followed by the substitution of
{
θ

(b,f)
k

}N,F
b=1,f=1

into equa-

tion (31), resulting in a random set of samples denoted as

Jk =
{
V
j,(b,f)
i,k

}N, F

b=1,f=1
, where F is the number of samples

from the object border. The Monte Carlo approximation for
the measurement likelihood for a single object is then given
by:

p(zjk|x
(p)
i,k|k−1) =

∫
p(zjk|V

j
i,k)p(V j

i,k|x
(p)
i,k|k−1)dV j

i,k,

≈ 1

F

∑
V j

i,k∈Jk

p(zjk|V
j
i,k). (43)

The BP PF is summarized in Algorithm III.

Algorithm III. The Border Parameterized Particle Filter
for Multiple Extended Object Tracking

Initialization
k = 0, Initialize the set of particles based on the available prior
information, {s(p)

0 ∼ p(s0)}. Set initial weights {w(p)
0 }Np=1 = 1

N
.

Repeat the following steps for T time steps, k = 1, ...T :

1) Prediction
Propagate the particles, {s(p)

k−1}
N
p=1 with the state transition pdf

(equation (4)) to obtain the predicted particles, {s(p)

k|k−1}
N
p=1.

2) Measurement Update
On the receipt of a new measurement:

a) Evaluate the measurement likelihood for a single object,
p(zjk|x

(p)

i,k|k−1), according to (43) for all the measure-
ments.

b) Calculate the weights w(p)
k , p = 1, ..., N using terms

from step 2-a) and equation (6).
3) Output

Calculate the estimated state vector x̂k based on the maximum
particle weight:

x̂k = argmax
xk

w
(p)
k (44)

4) Resampling
a) Compute the effective sample size

Neff =
1∑N

p=1

(
ŵ

(p)
k

)2
b) Selection

If Neff ≤ Nthresh (with e.g. Nthresh = 2N/3) resam-
ple the particles. Finally, reset the weights: w(p)

k = 1/N .
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