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Abstract: Glioblastomas (GBM) are the most common grade 4 brain tumours; patients have very
poor prognosis with an average survival of 15 months after diagnosis. Novel research lines have
begun to explore aberrant protein arginine methylation (ArgMe) as a possible therapeutic target
in GBM and ArgMe inhibitors are currently in clinical trials. Enzymes known as protein arginine
methyltransferases (PRMT1-9) can lead to mono- or di-ArgMe, and in the latter case symmetric
or asymmetric dimethylation (SDMA and ADMA, respectively). Using the most common GBM
cell line, we have profiled the expression of PRMTs, used ArgMe inhibitors as tools to investigate
post-translational modifications cross-talk and measured the effect of ArgMe inhibitors on cell
viability. We have identified novel SDMA events upon inhibition of ADMA in GBM cells and
spheroids. We have observed cross-talk between ADMA and lysine acetylation in GBM cells and
platelets. Treatment of GBM cells with furamidine, a PRMT1 inhibitor, reduces cell viability in 2D and
3D models. These data provide new molecular understanding of a disease with unmet clinical needs.
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1. Introduction

Glioblastoma (GBM) is a very aggressive form of brain tumour with a universally poor prognosis.
Clinical treatment options for GBM are mainly based on radio- and chemotherapy (principally
temozolomide) regimens after surgical resection [1]. However, survival remains unacceptably low at
an average of 15 months [2] and current research efforts are focused on combining temozolamide with
other anticancer agents and on the development of new drugs to increase survival [3,4].

Arginine methylation (ArgMe) is a protein post-translational modification (PTM) specifically
catalysed by enzymes known as protein arginine methyl transferases (PRMTs); the major PRMTs
being PRMT1 and -5 [5–7]. PRMTs transfer methyl groups from S-adenosyl-L-methionine to produce
monomethyl arginine. Additionally, Type I PRMTs, including PRMT1, -2, -3, -4, -6, and -8, lead to
asymmetric dimethylation of arginine (ADMA), whilst Type II PRMTs including PRMT5 and -9 cause
symmetrical dimethylation of target Arg residues (SDMA). PRMT7 is unique in that it produces
monomethyl arginine only [8]. The three distinct ArgMe modifications (monomethylation, ADMA and
SDMA) cause differential effects on protein functions and ultimately cell biology. Cell-permeable
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ArgMe inhibitors have been developed over the last decade and PRMT inhibition is currently
being investigated as a possible therapeutic measure for the treatment of cancer in cell and animal
models [9–13] and in clinical trials (identifiers NCT03573310, NCT02783300 and NCT03614728),
including GBM. These studies have focused on targeting the major enzymes, PRMT1 and -5, in part
due to the availability of very effective knock-down systems and specific inhibitors [14].

The present work addresses two knowledge gaps in the field. First, whether other members of the
PRMT family, other than PRMT1 and -5, can be targeted in GBM. Second, molecular off-target effects
of ArgMe inhibition are underexplored. In particular, the effects of inhibiting ArgMe on other PTMs
have not been investigated in the setting of GBM. Within this context, our work uses ArgMe inhibitors
as tools to identify PTM cross-talk in a commonly used GBM cell line.

2. Materials and Methods

2.1. Cell Culture and Drug Treatments

U87-MG cells were cultured in Dulbecco’s modified Eagle’s medium (Sigma, Kawasaki, Japan),
supplemented with 10% foetal bovine serum. U87-MG spheroids were produced by culture on
1.5% agarose gel following published protocols [15]. Cells were treated with the following PRMT
inhibitors: AdOx, AMI-1, GSK591 (all from Sigma), MS023 and furamidine (both from Tocris Bioscience,
Bristol, UK).

2.2. Platelet Isolation

Platelets were isolated from whole blood of healthy donors, as previously described [16],
resuspended in modified Tyrode’s buffer (20 mM HEPES, 134 mM NaCl, 2 mM KCl, 0.34 mM Na2HPO4,
12 mM NaHCO3, 1 mM MgCl2, 5.6 mM Glucose, pH 7.3), treated with furamidine for 4 h at 37 ◦C and
then lysed in Laemmli buffer. All protocols were completed in accordance with the University of Hull
and Hull York Medical School (HYMS) ethical guidelines. Work with platelets was approved by the
HYMS ethics committee and was completed under the project ‘1501: the study of platelet activation
signalling and metabolism’.

2.3. Western Blot

U87-MG cells and spheroids were seeded onto 6-well and 96-well plates, respectively, at an
appropriate density and treated with PRMT inhibitors for 48–144 h. Cells were harvested and lysed in
5% SDS. Proteins (20–100 µg) were separated by SDS-PAGE in 12% gels and transferred to nitrocellulose
membranes. Membranes were blocked in 5% milk powder in TBST (50 mM Tris-HCl, 150 mM NaCl,
0.05% Tween-20, pH = 7.4) for 1 h and incubated in primary antibody (diluted in 5% milk in TBST)
overnight at 4 ◦C. Following three washes with TBST, membranes were incubated with HRP-conjugated
secondary antibody (Dako, Beijing, China) for 1 h at room temperature, washed and signals visualised
by incubation with HRP substrate (Millipore, Burlington, MA, USA). All PRMT antibodies were from
Abcam. SDMA, ADMA and Lys acetylation antibodies were from Cell Signaling Technologies (Danvers,
MA, USA). Representative blots of at least two independent experiments are shown. Glyceraldehyde
3-phosphate dehydrogenase (GAPDH) was used as a control for total protein loading.

2.4. Cell Viability Assays

Cells were seeded onto 96-well plates at an appropriate density and treated with either a serial
dilution (0–100 µM) or 100 µM PRMT inhibitors. Cell viability was determined by MTS assay according
to instructions of the manufacturer (Abcam, Cambridge, UK). Absorbance was measured using a
microplate reader. A minimum of 3 biological replicates are represented by averaged values ± SD.
Statistical significance of differences between paired samples were determined using Student’s t-test.
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3. Results

3.1. U87-MG Cells Express a Wide Range of PRMTs and the Use of PRMT Inhibitors Decreases ArgMe Profiles

To gain an understanding of the scope of ArgMe in U87-MG cells, we first profiled the expression
of PRMT1-9 using Western blot and antibodies specific to each PRMT. We could detect expression of
all PRMTs, except for PRMT4/CARM1 (Figure 1). To directly characterise ArgMe in U87-MG cells,
we used a panel of ArgMe inhibitors specific for given PRMTs. We incubated U87-MG cells with
general, Type I PRMT and PRMT5 inhibitors (Table 1) for 48–72 h.

Table 1. Protein arginine methyltransferases (PRMT) inhibitors used in this work and their specificities
(see text for references).

Inhibitor Specificity

AdOx Broad
AMI-1 Broad
MS023 PRMT1, -3, -6

Furamidine PRMT1
GSK591 PRMT5

Incubation of U87-MG cells with furamidine led to loss of ADMA of a protein next to the 95 kDa
marker, while the intensity of the lower band at 55 kDa increased (Figure 2, left panel). The effect of
furamidine was specific because incubation of cells with the general ArgMe inhibitor AdoX suppressed
ArgMe activity (Figure 2, central panel). Intriguingly, incubation of cells with MS023 (and, to a lesser
extent, AMI-1) recapitulated the loss of ADMA at both the 55 and 95 kDa marks (Figure 2, right panel).
Given that furamidine is specific to PRMT1, while MS023 is a broad Type I PRMT inhibitor [17],
we argue that the increase in ADMA at 55 kDa may well be due to other Type I PRMT activity upon
specific inhibition of PRMT1 by furamidine. As expected, GSK591 did not inhibit ADMA. Together,
these data identify other potential PRMTs that can be of interest in GBM research out of the PRMT1/5
paradigm and suggest diverse ArgMe activity in U87-MG cells, which can be efficiently inhibited using
small molecules.
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Figure 1. Detection of PRMT expression in U87-MG cells. Expected molecular weights (arrows), from
left to right: PRMT1—42 kDa, PRMT2—46 kDa, PRMT3—60 kDa, PRMT5—73 kDa, PRMT6—42 kDa,
PRMT7—78 kDa, PRMT8—45 kDa, PRMT9—94 kDa. Full membranes representative of at least
two independent experiments are shown. The PRMT5 membrane was subsequently blotted with
anti-PRMT1 and anti-GAPDH antibodies (bands labelled as #1 and #2, respectively). Additional bands
recognized by the PRMT1 antibody could correspond to PRMT1 isoforms, of which at least eight are
known in the 36–43 kDa range [18].
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Figure 2. Detection and inhibition of ADMA in U87-MG cells. Left and central panels, dose-response of
ADMA inhibition by furamidine and AdOx, respectively. Right panel, ADMA profiles after incubation
of U87-MG cells with 100 µM of the indicated inhibitor for 48 h. ADMA was detected using an
α-ADMA antibody (#13522 Cell Signaling Technologies, Danvers, MA, USA). For each panel, GAPDH
is shown below as a total protein loading control.

3.2. Using PRMT Inhibitors as a Tool to Investigate ADMA-SDMA and ADMA-Lys Acetylation Cross-Talks

Having established a cell model amenable for the study of ArgMe as well as the effectiveness of
PRMT inhibitors in our system, we set out to investigate ArgMe cross-talks. Based on previous data on
the cardiac arginine methylome [19], we hypothesised that ArgMe would cross-talk with other ArgMe
events and with Lys modifications. To test this hypothesis, we incubated U87-MG cells with specific
PRMT inhibitors and searched for new ArgMe and Lys acetylation and methylation marks.

Upon inhibiting Type I PRMTs with MS023 and furamidine, we observed new protein bands
revealed by SDMA antibodies at approximate molecular weights of 75 kDa and 45 kDa, respectively
(Figure 3a, left panel). These observations indicate that ADMA inhibition facilitates SDMA deposition
in trans, although the identity of the different proteins is unknown at the moment. MS023 is known to
target Type I PRMTs including PRMT1, -3, -6 and -8 [20], while furamidine is thought to be specific
for PRMT1 [17]. This difference in specificity could partially explain why distinct and new SDMA
bands were detected in each case. While AMI-1 inhibits mainly Type I PRMTs, it has also been shown
to inhibit PRMT5 [21], which likely explains why no new SDMA bands were detected upon incubation
of U87-MG cells with AMI-1. ADMA–SDMA cross-talk did not seem to be bidirectional because
incubation of cells with GSK591, which targets the Type II PRMT5 and inhibits SDMA, did not lead to
new ADMA events (Figure 2, right panel).

Cross-talk between ADMA and SDMA was observed consistently in 2D cell culture models.
To test if this interplay was conserved in 3D models, we grew U87-MG spheroids and treated them
with PRMT inhibitors. We anticipated new SDMA bands at 75 and 45 kDa in spheroids incubated
with MS023 and furamidine, respectively. Upon incubation of spheroids with MS023, we observed
a novel (though weak) SDMA band at ca. 75 kDa (Figure 3a, right panel, indicated by an arrow),
with concomitant reduction of the intensity of the protein band at 55 kDa. Although we did not
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detect extra SDMA bands when spheroids were incubated with furamidine (not shown), overall our
observations suggest similar PRMT activities in 2D and 3D culture models of U87-MG cells.

We then focused our attention on ArgMe-Lys PTMs. We could not detect cross-talk between
ArgMe and Lys methylation (not shown). On the other hand, inhibition of PRMT1 with furamidine
led to decreased Lys acetylation profiles, including loss of Lys acetylation of a protein at ca. 75 kDa
(Figure 3b). This indicates either non-specific inhibition of Lys acetyltransferases by furamidine,
which has not previously been described, or cross-talk between PRMT1-catalysed ArgMe and Lys
acetylation in U87-MG cells. To obtain independent evidence supporting ArgMe-Lys acetylation
cross-talk, we then used furamidine in a different cell model. Being anucleated cells, platelets are
a useful model to study PTMs because of their very limited capability of protein synthesis [22].
We incubated platelets with furamidine for 4 h and observed a significant and specific reduction
in ArgMe (Figure 3c, left panel) with concomitant loss of Lys acetylation of a protein at ca. 75 kDa
(Figure 3c, right panel), which is remarkably consistent with our results using U87-MG cells.
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Figure 3. ADMA cross-talks with SDMA and Lys acetylation. (a) Identification of novel SDMA
events (labelled with arrows) upon inhibition of U87-MG cells with MS023 and furamidine for 48 h
(2D models, left) and with MS023 for 96 h (3D models, right). The α-SDMA antibody used was
#13222 from Cell Signaling Technologies; (b) inhibition of Lys acetylation of a protein at ca. 75 kDa
(labelled with an arrow) upon treatment of U87-MG cells with furamidine; (c) in platelets, furamidine
led to reduced monoArgMe in a specific manner (solid arrow) while other ArgMe marks were not
affected (dashed arrow), left panel. The α-monoArgMe antibody used was #8711 from Cell Signaling
Technologies. Lys acetylation of a protein at ca. 75 kDa was lost upon treatment of platelets with
furamidine (right panel). The α-Lys acetylation antibody used in panels b and c was #9441 from Cell
Signaling Technologies. In all cases, the corresponding PRMT inhibitor was added at a concentration
of 100 µM.

3.3. Inhibition of ArgMe Leads to Decreased U87-MG Cell Viability in 2D and 3D Models

To explore the significance of ArgMe in U87-MG cells, we asked what effect PRMT inhibitors have
on U87-MG cell viability. We first incubated U87-MG cells with several concentrations of furamidine
and found a dose-dependent reduction in cell viability (Figure 4a). We incubated cells with our panel of
ArgMe inhibitors under standard 2D cell culture conditions (Figure 4b) as well as spheroids (Figure 4c).
We observed decreased cell viability when cells were incubated with furamidine in both the 2D and
3D models. This effect was specific, because incubation of cells with GSK591, AMI-1 or MS023 did not
statistically affect U87-MG viability.
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4. Discussion

There is a clear need for novel and more effective therapeutic approaches for the treatment of GBM.
Our timely work contributes to the molecular understanding of GBM by describing the PRMTs that
are expressed in the common GBM cell line U87-MG, by identifying PTM cross-talk upon treatment
of U87-MG cells with ArgMe inhibitors and by analysing the effect of ArgMe inhibitors on U87-MG
cell viability.

We have observed off-target PTM events as a consequence of ArgMe inhibition, including new
SDMA bands and loss of Lys acetylation. ADMA-SDMA cross-talk seemed to be conserved in
MS023-treated 2D and 3D U87-MG models, although the intensity of the proposed, new SDMA
band was lower in spheroids. This may be due to reduced diffusion of ArgMe inhibitors into
spheroids, which could also explain why the effects of furamidine on cell viability were decreased in
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3D compared to 2D U87-MG models. We expected similar effects on PTM cross-talks when incubating
cells with MS023 and furamidine as both have recently been described as ADMA inhibitors [17,20],
but that was not the case. It is unlikely that these differing results are due to the detection of kinetic
intermediates because of the relatively high inhibitor concentrations used (100 µM) and length of
exposure (48–72 h). We favour the hypothesis that PRMT1 inhibition by furamidine enables other
Type I PRMT activity (as suggested by Figure 2) which, in turn, could lead to cross-talk with Type II
PRMTs and Lys acetyltransferases. It is known, for example, that several PRMTs and the ubiquitous
Lys acetyltransferase p300 are modified by ArgMe [23–25].

This study has limitations related to its small size. First, our observations open an intriguing
question with respect to the effects of ArgMe inhibitors on cell viability (described here for U87-MG
cells and by other groups in the wider cancer field), that is, is the reduced viability of cells treated with
ArgMe inhibitors a direct consequence of ArgMe inhibition, or rather the effect of other methylation
and acetylation marks on unknown proteins subsequent to ArgMe inhibition (or both)? We anticipate
that the impact of using ArgMe inhibitors on other PTMs and associated disease outcomes will
shortly gain much visibility, bearing in mind the launch of clinical trials to test PRMT inhibitors in the
setting of cancer (including GBM cohorts). The molecular mechanisms of any therapeutic effects will
need investigation and our work suggests that PTM interplays can play a role. Second, the present
work relies on antibody specificity to draw the conclusion that ADMA cross-talks with SDMA and
Lys acetylation. Although the α-ADMA, α-SDMA and α-Lys acetylation antibodies that we have
used are state-of-the art in the field [26–46], mass spectrometry-based proteomics approaches would
complement our experiments and enable the identification of the proteins and mechanisms involved
in PTM cross-talks. In particular, approaches to labelling Arg residues modified by methylation with
14C and 13CD3 have been developed [47,48], and would prove very useful to identify the specific
proteins undergoing methylation in further investigations of ADMA–SDMA cross-talk. In this respect,
the development of tools for studying PTM cross-talk is critical and this Special Issue of Proteomes will
undoubtedly contribute to it.
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