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Fighting over burrows: the emergence of dominance hierarchies in
the Norway lobster (Nephrops norvegicus)
Valerio Sbragaglia1,*, David Leiva2, Anna Arias3, Jose Antonio Garcıá3, Jacopo Aguzzi3 and Thomas Breithaupt4

ABSTRACT
Animals fight over resources such as mating partners, territory, food
or shelter and repeated contests lead to stable social hierarchies in
different phyla. The group dynamics of hierarchy formation are not
characterized in the Norway lobster (Nephrops norvegicus). Lobsters
spend most of the day in burrows and forage outside of them
according to a diel (i.e. 24 h-based) activity rhythm. Here, we use a
linear and generalized mixed model approach to analyse, in seven
groups of four male lobsters, the formation of dominance hierarchies
and rank-related changes in burrowing behaviour. We show that
hierarchies emerge within 1–3 days and increase in steepness over a
period of 5 days, while rank changes and number of fights gradually
decrease over a 5-day period. The rank position determined by open
area fights predicts the outcome of fights over burrows, the time spent
in burrows, and the locomotor activity levels. Dominant lobsters are
more likely to evict subordinate lobsters from their burrows and are
more successful in defending their own burrows. They spend more
time in burrows and display lower levels of locomotor activity outside
the burrow. Lobsters do not change their diel activity rhythms as a
result of a change in rank, and all tested individuals showed higher
activity at night and dusk compared with dawn and daytime. We
discuss how behavioural changes in burrowing behaviour could lead
to rank-related benefits such as reduced exposure to predators and
energy savings.

KEY WORDS: Contest behaviour, Fitness, Locomotor activity,
Steepness, Biological rhythms, Temporal niche

INTRODUCTION
Contest behaviours are common among animal taxa and result from
conflicts over fitness-related resources (Wilson, 1975; Huntingford
and Turner, 1987; Hardy and Briffa, 2013). Animals fight for access
to mates, territory, food or shelter (Huntingford and Turner, 1987).
In social groups, dominance hierarchies emerge from repeated
interactions between pairs of individuals and a consistent outcome
in favour of the same dyad member (Drews, 1993). Many
dominance hierarchies are linear and can be characterized by their
steepness (De Vries et al., 2006). Steepness is defined as the size of
the absolute differences between adjacently ranked individuals in

the overall success in winning dominance encounters (i.e.
dominance success; De Vries et al., 2006). The formation and
maintenance of linear dominance hierarchies is characterized by a
gradual polarization (increased steepness) of dominance ranks over
time, leading to a reduction in the frequency and duration of
agonistic interactions (Chase, 1982; Hemelrijk, 1999; Issa et al.,
1999; Goessmann et al., 2000; Kravitz and Huber, 2003;
Herberholz et al., 2007). The social rank in a hierarchy depends
on physical superiority (size, strength) or on specific previous
experiences of the group members such as wins in previous
encounters, prior residency, or knowledge of resource value (Ranta
and Lindström, 1992, 1993; Rutherford et al., 1995; Barki et al.,
1997; Goessmann et al., 2000).

Animals invest considerable energy into winning contests and
suffer injuries in escalated fights (Briffa and Sneddon, 2007; Briffa,
2013). This raises questions regarding the adaptive benefits of being
dominant. Evidence from numerous studies on mammals shows a
positive relationship between dominance rank and reproductive
success (Ellis, 1995). Similarly, in the female mate choice of fish
(Paull et al., 2010) and crustaceans (Atema and Steinbach, 2007),
dominant males profit by being preferred over subordinates. In most
crustaceans, however, females are receptive for only a short period
of the year (Jormalainen, 1998) but male contests take place
throughout the year. This highlights the importance of other non-
reproductive resources such as food and shelter as drivers for the
formation of dominance hierarchies (Stocker and Huber, 2001;
Herberholz et al., 2007; Fero and Moore, 2008).

In decapod crustaceans, the social rank usually correlates with
access to shelter (e.g. Gherardi and Daniels, 2004). Shelters or
burrows constitute important ecological resources to avoid
predation (e.g. Blanchard and Blanchard, 1989; Jennions et al.,
2003) or secure mating success (e.g. Simmons, 1986; Backwell and
Passmore, 1996; Atema and Steinbach, 2007). In the American
lobster, Homarus americanus, dominant males sequentially attract
and mate with multiple females as a result of securing suitable
mating shelters (Atema and Steinbach, 2007). Dominant crayfish,
Orconectes propinquus, are more successful in shelter evictions
than lower ranked crayfish, a behaviour that is correlated with
control over space and shelter and hence important for predator
avoidance and access to food (Fero and Moore, 2008).

The social rank can also be linked to the biological rhythm of
animals (Bovet, 1972; Hansen and Closs, 2005). The diel (i.e. 24 h-
based) partitioning of time in the use of ecological resources, such
as shelters, can provide fitness advantages (Kronfeld-Schor and
Dayan, 2003). Circadian clocks help organisms to anticipate and
stay synchronized with periodical diel fluctuations of environmental
variables, and have been documented in all phyla. The most
important environmental synchronizers are diel cycles of light and
temperature (Dunlap et al., 2004). These temporal cues determine a
diel temporal niche (partitioning on a 24 h temporal scale; Castillo-
Ruiz et al., 2012; Hut et al., 2012). However, such partitioning is notReceived 2 July 2017; Accepted 13 October 2017
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rigid and can be by-passed and modified by other abiotic and biotic
cues with a mechanism that is defined by switching or shifting
(Castillo-Ruiz et al., 2012; Hut et al., 2012) that may be also
associated with energy balance (Schmidt-Nielsen, 1972; Hut et al.,
2012). Information on how dominance hierarchies affect biological
rhythms of animals is scarce, and unknown for invertebrates. Bovet
(1972) demonstrated that when a group of four long-tailed field
mice (Apodemus sylvaticus) were co-housed for a long period of
time, the dominant individual had a different diel activity pattern
compared with the other three subordinates. Similarly, individual
giant kokopu fish (Galaxias argenteus) were shown to partition
their diel activity according to their rank (Hansen and Closs, 2005)
when food was limited. Unfortunately, in previous studies the
hierarchy was not described quantitatively (e.g. steepness or
linearity), limiting the conclusions from these studies.
The Norway lobster Nephrops norvegicus (Linnaeus 1758)

(hereafter referred to as Nephrops) is a burrowing decapod
inhabiting muddy bottoms of continental shelves and slopes of
theMediterranean Sea and European Atlantic Ocean (Farmer, 1975;
Sardà, 1995; Bell et al., 2006). Chapman and Rice (1971) were the
first to mention fighting behaviour of Nephrops over burrows in
the wild; the observed ritualized dyadic fight was then described in
the laboratory by Katoh et al. (2008), demonstrating that lasting
dyadic dominance relationships are based on the assessment of
chemical signals released with urine. The locomotor activity of
Nephrops outside the burrows is under the control of the circadian
clock and a light-driven burrow emergence behavioural rhythm has
been characterized in the laboratory in the presence of artificial
burrows (Aguzzi and Sardà, 2008; Katoh et al., 2013; Sbragaglia
et al., 2013a). Nephrops burrow emergence is nocturnal in shallow
water, while becoming diurnal in deep water. Such switching is
driven by light intensity as demonstrated by Chiesa et al. (2010). This
behavioural shift is probably coupled to the daily vertical migration of
predators and prey (Aguzzi et al., 2015) and to the fact that the burrow
represents a perfect strategy to escape predators as suggested by
stomach contents data of many predators (Serrano et al., 2003).
Here, we characterized the behavioural changes occurring during

the formation and maintenance of a dominance hierarchy in a group
of four size-matched Nephrops. We provided four burrows to allow
each lobster to display its specific daily burrowing behavioural
rhythm. The rationale of this experimental design comes from the
classic field observations by Chapman and Rice (1971) and new
laboratory findings by Aguzzi et al. (2011) demonstrating a strong
burrow-centred territoriality in the Norway lobster; fighting
behaviour over burrows occurred even if these were not a limited
resource (Aguzzi et al., 2011). Social interactions may influence
circadian activity and lead to temporal niche partitioning (Castillo-
Ruiz et al., 2012). So, in order to study the effect of a dominance
hierarchy on the daily burrowing activity rhythm of Nephrops each
individual needed access to a burrow.
We hypothesized that there will be rank-related changes in

competition over burrows as the hierarchy develops. High dominance
ranks are expected to confer significant benefits by: (i) winning
more fights over burrows; (ii) increasing the time spent in burrows;
and (iii) concentrating their diel activity rhythms to night hours and
inducing a temporal shift in subordinates.

MATERIALS AND METHODS
Compliance with ethical standards
The species used in this study is not an endangered or protected
species. Sampling and laboratory experiments followed the Spanish
legislation and internal institutional (ICM-CSIC) regulations

regarding animal welfare. Animal sampling was conducted with
the permission of the local authority (Generalitat de Catalunya). We
used the lobsters obtained in one single event of capture/sampling for
several experimental activities in order to maximize the cost/benefit
ratio and comply with the 3Rs principles (Russell and Burch, 1959).

Animal sampling and acclimation
Animals were collected at night-time by a commercial trawler on the
shelf area (100 m depth) off the Ebro delta (Tarragona, Spain). All
sorting operations on the deck and the transportation of individuals
to the laboratory followed the methodology described in Aguzzi
et al. (2008). In the laboratory, specimens were transferred to an
acclimation facility, hosted within a light-proof isolated chamber
under the following conditions: (i) constant temperature of 13±1°C,
as reported for the western Mediterranean continental slope
throughout the year (Hopkins, 1985); (ii) random feeding time, in
order to prevent entrainment through food-entraining oscillators, as
shown for crustaceans (Fernández De Miguel and Aréchiga, 1994);
and (iii) a light–darkness (LD) cycle, matching the duration of
photoperiod at the latitude of Barcelona (41°23′0″N). LD transitions
were gradually achieved within 30 min, in order to avoid lobster
photoreceptor degeneration (i.e. rhabdom deterioration and visual
pigments photolysis), as occurs when animals are subjected to sudden
bright light exposure (Gaten et al., 1990). The acclimation facility
hosted individual cells (25×20×30 cm) made with plastic nets of
different sizes, allowing full oxygenation and recirculation of water,
but not contact among animals in order to avoid injuries due to
fighting.

Experimental set-up
The experimental tank used in this study was previously developed
by Aguzzi et al. (2011). Briefly, the tank (150×70×30 cm) was
endowed with four burrows of 25 cm length with an inclination
of 20 deg to the entrance (see Fig. S1). Burrows were built by
assembling PVC pipes, considering the information we have
from field studies (Rice and Chapman, 1971). As burrow size is
correlated to animal size, we built the artificial burrows according to
an average lobster size of 45.00 mm (cephalothorax length). Sand
was glued to the bottom of the tank and on the internal walls of the
burrows to reproduce the habitat and facilitate locomotion of
lobsters. The rest of the tank was painted in black to facilitate video-
image analysis (see below). The tank was equipped with two
different sources of LED illumination (monochromatic blue:
472 nm; infrared: 850 nm). Monochromatic blue lighting was
installed to simulate LD conditions, while infrared (IR) light
allowed video-recording during darkness. A strip of LED
photodiodes (blue LEDs, N=84; IR LEDs, N=108) was inserted
into a transparent methyl methacrylate tube (140 cm long and
16 mm in diameter) and placed along the sides of the tank to get a
uniform illumination (see also Sbragaglia et al., 2013a). LD cycle
was controlled using the Arduino board ‘Arduino Uno’ (http://
www.arduino.cc), which is an open source electronics platform
based on easy-to-use hardware and software.

Animals and experimental design
The intermoult adult male lobsters used in this study had a
cephalothorax length (CL; mean±s.d.) of 43.92±2.08 mm (N=28).
The right claw was 68.41±7.92 mm in length and the left claw was
68.66±8.58 mm. Individuals were randomly distributed among
seven independent groups and the differences in CL and claw length
were used as proxy for matching resource holding potential (RPH;
Maynard Smith and Parker, 1976; see also Table S1). The day
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before each experimental trial, a group of four lobsters was
randomly selected from the acclimation tanks and different tags
(Fig. S1) were fixed on the cephalothorax with fast-acting glue,
which was removable at the end of the experiment without damage
to the cuticle. Animals were then left in isolation (physical and
chemical) for 24 h to ensure recovery from stress induced by
handling and by previous chemical-mediated dominance
relationships that could have been established in the acclimation
facility (Katoh et al., 2008). Isolation took place in individual
aquaria (25×20×30 cm) hosted in the same light-proof isolated
chamber of the acclimation facility. Each isolation tank had an
independent open water system with the same conditions (i.e. water
temperature and photoperiod) of the experimental tanks. The
experimental trials started between 11:00 and 14:00 h when lobsters
were transferred from isolation to the experimental tank (Fig. S1).
Each trial lasted 5 days during which lobsters were exposed to a
12 h:12 h blue LD cycle (lights on and off at 08:00 and 20:00 h,
respectively). LD transitions were gradually achieved within 30 min
(see above).
The behaviour of lobsters was recorded using a digital camera

(UI-1545LE-M, IDS, Obersulm, Germany), with a 1280×1024
pixel resolution and awide-angular objective of 6.0 mm, F1.4 screw
C 1/2 lens (IDS), and a polarized filter. The camera was placed on a
tripod 1.5 m directly above the tank. Image acquisition was
controlled by the ISPY open source camera security software
(http://www.ispyconnect.com) creating a 5-day time-lapse video at
a frequency of acquisition of 1 s. All experimental trials were run
between June 2013 and July 2014 at an environmental temperature
of 13±0.5°C. The tank was provided with a continuous open flow
(4 l min−1) of filtered seawater at 13±1°C.

Behavioural analysis
The 5-day time-lapse videos were manually analysed by a trained
operator (V.S.) on days 1, 3 and 5, by annotating (i) the winner and
loser of each agonistic interaction (Atema and Voigt, 1995) during
which both members were out of the burrow, (ii) the number of
evictions (times that a lobster evicts or is evicted from a burrow),
and (iii) the time spent inside burrows by each lobster. In particular,
an agonistic interaction was considered when two lobsters
approached frontally within a distance of less than one body
length and one of them showed a clear losing behaviour (walking
backwards, walking away and accelerating, or tailflipping; for more
details, see Atema and Voigt, 1995; Katoh et al., 2008). We
considered two consecutive agonistic interactions when the time
gap between them was at least 15 s, as previously reported for this
species (Katoh et al., 2008). A successful eviction was scored when
a lobster (intruder) approached a burrow in which there was another
lobster (resident) and the resident left the burrow suddenly or after
they had fought for it. Fights to get possession of burrow were
usually longer than fighting in open space and characterized by
short breaks (e.g. durations between 10 s and 1 min), so we
considered two consecutive evictions as two distinct events when
the time gap between them was at least 2 min. The core output of
this behavioural analysis was a 4×4 matrix for each representative
day (1, 3, 5) reporting the number of wins for all possible dyads.

Automated behavioural tracking
In order to evaluate the correlation between hierarchy and locomotor
activity rhythms, automated tracking was used to calculate the
distance covered by lobsters out of the burrows (García Del Arco
et al., 2016; see also Fig. S2). The time-lapse videos were analysed
using an automated behavioural tracking routine developed in

‘Python’ (Python Language Reference, version 2.7; available at
www.python.org using OpenCV library). The customized script is
available upon request from the corresponding author. The final
output of the behavioural tracking was a time series of movement
(cm) for each lobster binned at 10 min intervals.

Interaction matrix treatment and statistics
Dominance hierarchies can be characterized by two properties:
linearity and steepness (De Vries, 1995; De Vries et al., 2006). Here,
we only analysed the steepness of the hierarchy as the group sizewas
too small to apply linearity statistics. Ranks were analysed for
days 1, 3 and 5 by taking into account each animal’s wins and losses
in all interactions, generating an interaction matrix (Wilson, 1975;
Huntingford and Turner, 1987; Hardy and Briffa, 2013). We used
both ordinal ranks (‘1, 2, 3, 4 ranking’ and ‘α, β, γ, δ ranking’with 1
or α being the most dominant lobster) and cardinal ranks (David’s
score, with 3 being the highest value of dominant rank) to
characterize relative position in the hierarchy. The David’s score
identifies the overall success of an individual that is determined by
weighting each dyadic success measure by the unweighted estimate
of the interactant’s overall success, so that relative strengths of the
other individuals are taken into account. Then the values are
normalized to the highest potential David’s score that can be
obtained by an individual in a group of size N. Thus, defeating a
high-ranking animal is weighted heavier than defeating a low-
ranking one (De Vries et al., 2006). We then used the values of
steepness to characterize the formation of the dominance hierarchy.
Steepness values are between 0 (egalitarian hierarchy) and 1
(despotic hierarchy). Moreover, we considered it as a proxy of
dominance hierarchy stability, when after a randomization test with
10,000 runs the steepness had a P value <0.05. The P value is used
to test whether the observed steepness differs significantly from
zero. If it does, the hierarchy is considered to be established.
All matrix analysis was performed using the R packages ‘steepness’
and ‘DyaDA’ (Leiva et al., 2010; https://cran.r-project.org/web/
packages/steepness/index.html).

Statistical approach
We modelled the data using mixed models (Zuur et al., 2009). We
focused on the following response variables: (i) steepness values
(the value of steepness was eliminated from two groups at day 5
because of the presence of observational zeros in the matrix, when
one lobster remained for the whole 24 h in the burrow);
(ii) frequency of agonistic interactions (this justified the low
absolute values reported in the results); (iii) number of times a
lobster succeeded in evicting other lobsters; (iv) number of times a
lobster was evicted; (v) the amount of time each lobster spent in
burrows; and (vi) locomotor activity out of the burrow. Then we used
the following fixed effects: day number (as continuous variable); time
(with four levels: day, from 1 h after light dimmed on to 1 h before
light dimmed off; dusk, from 1 h before to 1 h after light dimmed off;
night, from 1 h after light dimmed off to 1 h before light dimmed on;
dawn, from 1 h before to 1 h after light dimmed on); rank of lobsters
(normalized David’s score or ordinal rank position); and
cephalothorax length. Finally, we used day number, groups and
individuals as random effects. We implemented one model for each
response variable cited above (see Table 1). We modelled steepness,
agonistic interactions and burrow occupancy time using linear mixed
models (LMM), whereas number of evictions and distance covered
out of the burrow were modelled by means of generalized linear
mixed models (GLMM) using a Poisson family distribution.
Locomotor activity and time spent in burrows were log transformed
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as necessary to meet modelling assumptions (normal distribution and
heteroscedasticity).
The specific structure of each full model is reported in Table 1. A

top-down approach was then used to select the best model (Zuur
et al., 2009). The fitting of the models has been evaluated following
information criteria statistics based on deviance (Bolker et al.,
2009). Additionally, R2 (marginal and conditional) measures have
been used for quantifying the proportion of explained variance by
the fixed and random effects in each model (Nakagawa and
Schielzeth, 2013). We chose the model that met these criteria in

decreasing order of priority: (1) a higher marginal R2, as it reflects
the explained variance by means of the fixed effects included in the
model; (2) a higher conditional R2, as it reflects the explained
variance of the fixed and random effects included in the model; and
(3) a lower information criteria statistical value, as it represents a
better fit of the model.

This resulted in the following models for the different response
variables investigated (Table 2): (i) the simplest model that better
described the temporal changes of steepness did not include random
effects; (ii) the selected model for describing temporal changes in
the frequency of agonistic interactions corresponded to a random
intercept model with groups as random effect; (iii) the simplest
model selected to describe the number of evictions won was a
random-effects (intercepts and slopes) model; (iv) the simplest
model describing the number of times lobsters suffered evictions
was the same as for eviction success but with a significant effect of
size (CL); (v) the simplest model that described the changes of
burrow occupancy did not include random-effect parts; (vi) the
simplest model that described the changes in locomotor activity was
a random intercept model without interaction between rank and
time. Wald chi-squared tests were carried out for making decisions
concerning fixed effects, while multicomparisons within different
marginal means for each level of the same fixed term were
calculated with Tukey’s post hoc test (95% confidence intervals).
Finally, the Pearson correlation coefficient between the frequency of
agonistic interactions and the locomotor activity out of the burrow
was estimated using daily (1, 3 and 5) pooled data according to time

Table 2. Summary table of the selected models

Models Goodness of fit Fixed effect Estimate

(i) Steepness AIC: −4.91 Intercept 0.55 (0.049)***
RV∼1+Day BIC: −2.41 Day number 0.056 (0.020)*

R2: 0.30
(ii) Agonistic interactions AIC: −384.12 Intercept 0.018 (0.0048)***
RV∼1+day+time+1|groups BIC: −353.32 Day number −0.0019 (0.0008)*

R2
GLMM(m): 0.15 Time (dusk) [a] 0.031 (0.004)

R2
GLMM(c): 0.34 Time (night) [a] 0.030 (0.004)

Time (dawn) [b] 0.018 (0.004)
Time (day) [b] 0.014 (0.004)

(iii) Number of evictions won AIC: 272.65 Intercept 1.36 (0.46)**
RV∼rank+1|groups/individuals BIC: 292.10 Rank (ordinal) −0.80 (0.16)***

R2
GLMM(m): 0.22

R2
GLMM(c): 0.61

(iv) Number of evictions suffered AIC: 327.35 Intercept 15.09 (6.12)*
RV∼rank+CL+1|groups/individuals BIC: 349.23 Rank (ordinal) 0.74 (0.17)***

R2
GLMM(m): 0.43 CL −0.39 (0.14)**

R2
GLMM(c): 0.73

(v) Time in burrows (log) AIC: 260.42 Intercept 8.74 (0.22)***
RV∼1+day+rank BIC: 288.04 Day number 0.09 (0.029)*

R2
adjusted: 0.10 Rank (ordinal) −0.26 (0.063)***

(vi) Locomotor activity (log) AIC: 990.15 Intercept 4.93 (0.34)***
RV∼1+day+rank+time+1|groups BIC: 1043.17 Day number −0.15 (0.029)***

R2
GLMM(m): 0.12 Rank (cardinal) −0.27 (0.042)***

R2
GLMM(c): 0.37 Time (dusk) [a] 5.97 (0.32)

Time (night) [a] 6.07 (0.32)
Time (dawn) [b] 5.15 (0.32)
Time (day) [b] 5.01 (0.32)

The simplest selected models are reported together with their goodness of fit and fixed effects estimation with errors between parentheses. (i) Selected model for
steepness did not include random effects. R-squared index was used for the final model. (ii) Selected model for agonistic interactions corresponded to a random
intercept model including heterogeneity due to groups. (iii) Selected model for number of evictions won corresponded to a random-effects (intercepts and slopes)
model. (iv) Selected model for number of evictions suffered corresponded to a random-effects (intercepts and slopes) model. (v) Selected model for time spent in
burrows (log) did not include a random-effect part. Heterogeneity due to groups was included, and adjusted R-squared index was used for this final model. (vi)
Selected model for locomotor activity (log) corresponded to a random intercept model including heterogeneity due to groups. *P<0.05; **P<0.01; ***P<0.001.
Letters (a,b) in brackets indicate the output of Tukey’s post hoc test (a>b). AIC, Akaike's information criterion; BIC, Bayesian information criterion; R2

GLMM(m) and
R2

GLMM(c), marginal and conditional R2, respectively.

Table 1. Summary table with the structure of the full models

Response variable Fixed effects Random effects

(i) Steepness Day number Day number; groups
(ii) Agonistic

interactions
Day number Day number; groups

(iii) Number of evictions
won

CL; day number; rank Day number; groups;
individuals

(iv) Number of evictions
suffered

CL; day number; rank Day number; groups;
individuals

(v) Time in burrows
(log)

Day number; time; rank Day number; groups;
individuals

(vi) Locomotor activity
(log)

Day number; time; rank;
rank×time

Day number; groups;
individuals

Response variables used in models (i) and (ii) were obtained for each group,
whereas models (iii), (iv), (v) and (vi) included response variables calculated
for each lobster. CL, cephalothorax length.
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of the day (day, dusk, night, dawn). All analyses were run using the
last version of R (https://www.R-project.org/) with additional
packages ‘lsmeans’ (Lenth, 2016), ‘car’ (https://CRAN.R-project.
org/package=car), ‘nlme’ (https://CRAN.R-project.org/package=
nlme) and ‘lme4’ (https://CRAN.R-project.org/package=lme4).

RESULTS
The social hierarchies of seven groups of Norway lobsters
developed gradually, becoming more stable over the course of
5 days. At the end of day 1, only two groups had an established
hierarchy indicated by a steepness (S) significantly different from 0
(group 3, S=0.7, P=0.021; group 4, S=0.67, P=0.035; Table 3,
Fig. 1). On days 3 and 5, all groups had fully developed hierarchies
(Table 3). Changes in rank (expressed as normalized David’s score,
Ndv) were less frequent from day 3 to day 5 (seven rank changes)
than from day 1 to day 3 (20 rank changes; permutation test with
9.999 replications; P<0.001; Fig. 1). Moreover, hierarchies become

steeper over the experiment. In fact, day number had a significant
(χ21,17=7.22, P<0.01) effect on steepness. Hierarchy steepness
increased linearly (estimated value±s.e., 0.056±0.020) over time
(model i in Table 2; Fig. 2A).

Concurrent with the stabilization of the hierarchy, day number had
a significant (χ21,84=5.23,P<0.05) effect on the frequency of agonistic
interactions. Contest frequency decreased linearly (−0.0019±0.0008)
throughout the experiment (model ii in Table 2; Fig. 2B). Time of
day had a significant effect (χ23,84=28.73, P<0.001) on overall
agonistic interactions (model ii in Table 2; Fig. 2C); fighting was
more frequent at dusk (0.031±0.004) and night (0.030±0.004) than at
dawn (0.018±0.004) or during daytime (0.014±0.004) with more
marked differences on days 3 and 5 (Fig. 2C).

Rank significantly (χ21,84=25.31, P<0.001) affected the chance of
winning a fight over a burrow (model iii in Table 2; Fig. 3A). The
decrease of one ordinal rank position was associated with a 55%
(e−0.80) decrease in the number of evictions won. Body size, in

Table 3. The emergence of the dominance hierarchy in each of the seven groups

Group Day no. Rank Normalized David’s score Steepness P-value

1 1 α β γ δ 2.16 1.76 1.53 0.54 0.51 0.238
3 β γ α δ 1.87 0.75 2.85 0.52 0.81*** <0.001
5 β γ α δ 1.76 0.66 2.93 0.64 0.80** 0.002

2 1 α β γ δ 2.05 1.68 1.56 0.71 0.41 0.456
3 γ β α δ 1.14 1.88 2.17 0.80 0.48* 0.011
5 γ β α δ 1.37 1.50 2.23 0.90 − 0.003

3 1 α β γ δ 2.78 1.45 1.26 0.51 0.70* 0.021
3 γ δ β α 1.67 0.61 1.69 2.01 0.42* 0.039
5 α δ β γ 2.95 0.46 1.57 1.01 0.80** 0.003

4 1 α β γ δ 2.75 1.37 1.34 0.53 0.67* 0.035
3 α δ β γ 2.90 0.32 2.02 0.75 0.90*** <0.001
5 α δ β γ 2.20 0.78 1.51 1.50 − <0.001

5 1 α β γ δ 2.05 1.63 1.38 0.93 0.36 0.575
3 β γ α δ 1.98 1.17 2.71 0.13 0.86*** <0.001
5 β γ α δ 2.11 0.88 2.75 0.27 0.86*** <0.001

6 1 α β γ δ 2.21 1.85 1.50 0.45 0.56 0.153
3 β α γ δ 1.27 2.96 1.08 0.69 0.70* 0.023
5 γ α δ β 1.14 2.93 0.57 1.35 0.73** 0.013

7 1 α β γ δ 2.28 1.83 1.23 0.65 0.55 0.144
3 γ α β δ 1.54 2.14 2.00 0.32 0.59* 0.017
5 β α γ δ 1.96 2.19 1.51 0.33 0.60** 0.007

The position of the lobsters in the hierarchy at days 1, 3 and 5 is expressed with ordinal ranks (rank) and also with cardinal rank (normalized David’s score). The
steepness of the hierarchy is then reported for each day together with the P value (*P<0.05; **P<0.01; ***P<0.001). The P value is used to test whether the
observed steepness differs significantly from the steepness to be expected under the null hypothesis of random win chances for all pairs of individuals.
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Fig. 1. Temporal changes of the dominance
index in the Norway lobster, Nephrops
norvegicus. Dominance is expressed with the
normalized David’s scores for days 1, 3 and 5 for
each of the groups analysed (1–7) in this study. In
each plot, the four symbols indicate the four tags
used to distinguish lobsters. Crossing of the lines
indicates a rank reversal between days.
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contrast, did not predict the number of evictions won (Fig. 3B).
Rank also significantly (χ21,84=19.95, P<0.001) affected the chance
of getting evicted from a burrow (model iv in Table 2; Fig. 3C). The
decrease of one ordinal rank was associated with a 109% (e0.74)
increase in the number of evictions suffered. In contrast to its
lacking influence on evictions won, size of the lobsters significantly
(χ21,84=7.54, P<0.01) affected the chance of getting evicted (model
iv in Table 2; Fig. 3D); larger lobsters suffered fewer evictions.
Day number significantly (χ21,82=3.99, P<0.05) affected the time

spent in burrows. Burrow occupation increased linearly (0.09±0.029)
throughout the experiment (model v in Table 2; Fig. 4A). Rank of
the lobsters significantly (χ21,82=12.74, P<0.001) affected the
occupancy of burrows; a decrease in the ordinal rank of lobsters
was accompanied by a decrease of time spent in burrows (Table 2;
Fig. 4B).
Day number significantly (χ21,332=27.50, P<0.001) affected

locomotor activity. Activity decreased linearly (−0.15±0.029) over
time (model vi in Table 2; Fig. 5A). Locomotor activity was affected
by cardinal ranks (normalized David’s score Ndv; χ21,332=13.23,
P<0.001). It decreased linearly (−0.27±0.042) from low to high ranks
(Ndv) (Table 2; Fig. 5B). Time of day also significantly
(χ23,332=100.12, P<0.001; model vi in Table 2; Fig. 5C) affected
locomotor activity. Lobsters were overall more active outside the
burrows at night (6.07±0.32) and dusk (5.97±0.32) than at dawn
(5.15±0.32) or during daytime (5.01±0.32). There was no difference
between ranks in the locomotor activity across the different time
periods of the day. The simplest selected models for locomotor

activity did not find a significant interaction effect between time of
day and rank (model vi in Table 2). This suggests that a change in
dominance rank does not result in a shift in diel activity pattern.
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Finally, we found a significantly positive correlation (r=0.81; N=84;
P<0.001) between frequency of agonistic interactions and locomotor
activity outside the burrow (see also Fig. S3).

DISCUSSION
Our study characterized for the first time the group dynamic of
dominance hierarchy formation in Nephrops. Concurrent with a
gradual reduction in agonistic interactions, hierarchies markedly
increased in steepness over a 5-day period. The emergence of a
dominance hierarchy has rank-related consequences for members of
the group. Higher ranked animals were more successful in evicting
other lobsters and were evicted less frequently than lower ranked
animals. Dominant lobsters spent a longer time inside the burrow
and covered shorter distances during their movement outside the
burrow compared with lower ranked lobsters. In the following
sections the hierarchy formation in the Norway lobster is compared
with that of other decapod crustaceans, and results are discussed to
explain what could be the benefits that higher rank lobsters gain
with the use of an important resource, the burrow.

Over the 5-day period the hierarchy steepness increased with a
linear trajectory, indicating the tendency of the system to reach
stability through polarization of dominance ranks. This is mirrored
by a linear decrease in frequency of agonistic interactions, indicating
that the more stable the system is, the fewer fights and rank reversals
occur. Most studies of decapod crustacean agonistic behaviour use
the degree of linearity to characterize stability of the dominance
hierarchy (Allee and Douglas, 1945; Hazlett, 1968; Cobb and
Tamm, 1975; Sastry and Ehinger, 1980; Vannini and Gherardi,
1981; Goessmann et al., 2000), although in small groups (less than
six members) the probability of obtaining significant results just by
chance is very high. Currently, there are no available statistical
procedures to adjust P-values. Steepness is an appropriate index to
characterize the hierarchy formation in small groups of animals
(De Vries et al., 2006) and the available R package ‘steepness’
makes it easy to calculate (https://cran.r-project.org/web/packages/
steepness/index.html). In this study, the steepness followed a linear
trajectory, but an extension of the number of observations could lead
to a more stable point of the hierarchy (i.e. higher values of
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Data are presented with a linear modelling fit
function (black line) and 95% confidence
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steepness). This would allow modelling of the dynamics of
hierarchy systems with different trajectories (potential or plateau
curves). Finally, we observed some rank reversals that did not
prevent the hierarchy from reaching stability. Rank reversals have
also been documented in studies on the cichlid fish Oreochromis
mossambicus (Oliveira and Almada, 1996) and juvenile crayfish
Astacus astacus (Goessmann et al., 2000), and in both cases, as we
observed here, they did not influence the stability of the hierarchy.
There could be important benefits conveyed by a high rank status

for Nephrops in shelter competition as well as in the dynamics of
hierarchy emergence. Shelter is an important resource in decapod
crustaceans. Crayfish (Orconectes rusticus and O. virilis) fights are
longer and more intense in the presence of shelters than fights over
food resources (Bergman and Moore, 2003). Shelter use also
correlates with dominance hierarchy in O. rusticus (Fero et al.,
2007). Seeking shelter in burrows during the daytime could be an
effective strategy for Nephrops to avoid diurnal predation at
continental margin depths where sunlight is reduced but still a
major driver of benthopelagic coupling (Aguzzi et al., 2015).
Although megabenthic crustaceans are the major prey of demersal
predatory fish, Nephrops was found very rarely in the stomachs of
these predators (Serrano et al., 2003). The main predator of
Nephrops throughout much of its range is the Atlantic cod, Gadus
morhua (Chapman, 1980; Johnson et al., 2013). Cod are active at
day, dusk and dawn and show an activity pattern that allows them to
consume both diurnal and nocturnal prey (Righton et al., 2001;
Reubens et al., 2014). However, even cod consumption represents a
relatively low mortality rate in Nephrops compared with the effects
of commercial fishing (Johnson et al., 2013). This is probably due to
the protection that burrows provide against most predators, so higher
dominance ranks could confer benefits to lobsters by allowing an
increased use of burrows. It must be considered that we provided
one burrow per animal and lobsters preferentially occupied only one
burrow independently of their ranks (see Fig. S4). Evictions without
a consequent occupation of evicted lobsters’ burrows may be related
to a strategy of dominant lobsters to reduce aggressive interactions
with conspecifics by forcing subordinates to emigrate (Hemelrijk,
2000; Fero and Moore, 2008) or by reducing competition for
females. For example, in the American lobster (Homarus
americanus) dominant males occupy shelters large enough to
allow cohabitation with a female but regularly patrol the nearby
shelters to evict other resident lobsters (Atema and Steinbach,
2007).
Reduced locomotor activity outside the burrow might further

reduce susceptibility to predation, providing benefits to higher
ranked Nephrops over lower ranks. Locomotor activity creates
strong visual and mechanosensory stimuli that are perceivable by
predatory fish. Moreover, in the presence of water currents,
Nephrops activity out of the burrow is inhibited and in their quick
excursions lobsters are preferentially oriented downstream, a
strategy that could increase detection of predatory fish that
preferentially move upstream in water flow (Sbragaglia et al.,
2015). Finally, decreased activity confers an additional advantage
by saving metabolic energy (Kramer and Mclaughlin, 2001).
American lobsters subjected to extended exercise on an underwater
treadmill showed an immediate and strong increase in heart and
ventilation rate, revealing high energy costs of locomotion (Rose
et al., 1998). A similar situation occurs also in Nephrops where diel
locomotor activity rhythms are coupled with cardiac activity and
oxygen consumption (Aguzzi and Sardà, 2008).
Agonistic behaviour and locomotor activity were positively

correlated, and they both increased at night and dusk compared with

day and dawn (see also Fig. S3). The parallel development of both
agonistic and non-agonistic behaviours with a clear predictive value
of the dominance rank supports the idea of common neural
mechanisms for these behaviours (Herberholz et al., 2003).
Interestingly, we did not detect clear peaks of activity at dawn,
confirming previous results gained from individually tracked N.
norvegicus (Sbragaglia et al., 2013b). Farca Luna et al. (2009)
demonstrated that agonistic behaviour in the marbled crayfish is
under the control of the circadian clock; the same could also be true
for N. norvegicus but we cannot demonstrate it with our
experimental design. Furthermore, the interaction between rank
and time of the experiment did not have a significant impact on
locomotor activity. It means that the rank of lobsters did not induce
switches in diel locomotor activity; in fact, all lobsters increase their
locomotor activity at night and dusk independent of their ranks.
Different reasons may account for this. First, the period of
observation could have been too short and extending it could lead
to a higher stability of the system and maybe to a switch of daily
activity, but in a related (unpublished) study we did not observe any
changes in daily activity rhythms even after 10 days. Secondly, we
cannot exclude that a more naturalistic setting including food and
predator cues (e.g. odour) would have triggered more competition
among lobsters and maybe a switch in the daily activity related to
rank position. Our results suggest that in Nephrops, despite the
presence of a temporal niche switching of burrowing activity
rhythms driven by light intensity (Chiesa et al., 2010; Hut et al.,
2012), agonistic interactions have no effect on such behavioural
rhythms.

The benefits for higher ranks related to spending more time
inside burrows and covering less distance outside of it in natural
populations of Norway lobsters may be less significant today as
predation mortalities are declining relative to those caused by
commercial fishing (Johnson et al., 2013). However, the
understanding of how dominance hierarchy influences burrow-
related behaviour of Nephrops could be important for fishery
management. One of the most popular assessment techniques of
Nephrops abundances is underwater television surveying, where the
presence of intact burrow complexes is used to assess the abundance
of Norway lobsters on the basis of the postulated equivalence one
burrow/one animal (reviewed by Sardà and Aguzzi, 2012). In this
context, the present results are of relevance, indicating that in high-
density areas dominant lobsters may evict subordinates and control
several burrows at once. However, the results presented here must be
interpreted with caution as the dynamic of burrow occupancy in a
closed tank could be different from the open situation in the wild.
Very little is known about Nephrops spatial ecology in the field in
relation to size and sex. It is evident that lobsters in the wild are free
to change burrows or even build new ones, rendering the field
situation less competitive. For example, in the American lobster
(H. americanus) the frequency and level of agonistic interactions
observed in the field are much lower than those found in semi-
natural laboratory settings (Stein et al., 1975; Atema et al., 1979;
Karnofsky et al., 1989; Karnofsky and Price, 1989; Atema and
Voigt, 1995; Atema and Steinbach, 2007). Aggressive interactions
form an important part of burrow-related behaviour in Norway
lobsters. Dominance hierarchies regulate access to burrows and
could confer energetic and survival benefits primarily to the
dominant animals. Burrow occupation may bring about additional
benefits to high-ranked Nephrops males such as increased
reproductive success (see study on American lobsters by Atema
and Voigt, 1995). In contrast toH. americanus, femaleNephrops do
not appear to recognize the social status of males (T.B., unpublished

4631

RESEARCH ARTICLE Journal of Experimental Biology (2017) 220, 4624-4633 doi:10.1242/jeb.165969

Jo
u
rn
al

o
f
Ex

p
er
im

en
ta
lB

io
lo
g
y

http://jeb.biologists.org/lookup/doi/10.1242/jeb.165969.supplemental
http://jeb.biologists.org/lookup/doi/10.1242/jeb.165969.supplemental


observation; and Katoh, 2011). Moreover, we do not know how
important dominance and burrow occupancy are for female mate
choice. Further investigations in semi-natural conditions or direct
observations in the wild are necessary to get a better understanding
of the behaviour of this ecologically and commercially important
species.
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Garcıá Del Arco, J. A., Masip, D., Sbragaglia, V. and Aguzzi, J. (2016). Using
ORB, BoW and SVM to identify and track tagged Norway lobster Nephrops
norvegicus (L.). 7th International Workshop on Marine Technology: MARTECH
2016. Instrumentation viewpoint, pp. 50-52. Vilanova i la Geltrú: SARTI.
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SUPPLEMENTARY MATERIAL 

Fig. S1. Field of view of the video camera. A frame of the videos used to film the 

behavioural activity of lobsters in the experimental tank. The white numbers indicated 

the four artificial burrows. The different tags used to identify the lobsters with the video 

imaging analysis are presented on the right. 
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Fig. S2. The automated tracking of locomotor activity. The different logic steps of 

the algorithm used for the automated tracking of locomotor activity of lobsters. The 

algorithm works using different logic steps in order to automatically track the locomotor 

activity and at the same time identify the different tags of lobsters (Fig. A2). Key steps 

of the process are described as follow. First, the differences among two consecutive 

frames are evaluated using a background subtraction (OpenCV). The objects in one 

frame are identified focusing on a previously selected main Region Of Interest (ROI); 

the area of each object is analysed dividing the main ROI into smaller areas (sROIs) 

adapted to the size of the object. Then, the image is binarized using the algorithm Otsu 

(OpenCV) to extract the profiles of all the forms (in this case the different tags of the 

lobsters) that are recognized in each sROIs. The recognized forms are compared by the 

moments extraction procedure (the geometric properties of each form) with a training 

library of images previously created using the tags presented in Figure S1; a form (tag) 

is associated to an object (lobster) when there is a positive match with one of the form 

of the training library otherwise the object is discarded. Finally, the centroid (position in 

a xy plan) of the object with the associated tag is recorded. The positions of the centroid 

is used to calculate the distance covered by the object between consecutive frames; in 

the case that there are no consecutive detections of the same object, the last detection is 

always considered as the last position of the object. The data are stored in a MySQL 

database and time series are created using a SQL script. 
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Fig. S3. Locomotor activity and agonistic interactions. The distance covered by 

lobsters out of the burrow together with the number of agonistic interactions of a 

representative group of four lobsters at day 1, 3 and 5. The locomotor activity out of the 

burrow is indicated by the different coloured lines and expressed as displacement in cm 

over time (binned at 10 m intervals). The grey circles represent the number of agonistic 

interactions (binned at 1 h intervals). White and black bars at the top represent Light and 

Darkness hours. 
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Fig S4. Time spent in each different burrow.  The burrow occupancy for each of the 

4 burrows (% over total and in order of preference) has been calculated for each lobster 

at day 1 (a), 3 (b) and 5 (c). Then, the first and second burrow of preference (according 

to the % of occupancy over total) was used to run one-way repeated measures ANOVA. 

The repeated measures were the 7 groups; the independent variables were the rank of 

lobsters; the dependent variable was % of burrow occupancy and was square root 

transformed to satisfy ANOVA assumptions (normal distribution and equal variance). 

Significant differences among ranks were not detected for any of the tests. Results are 

summarized here. Day 1: First burrow of preference: (ANOVA, F(3,6) = 2.15, P = 

0.129); Second burrow of preference: (ANOVA, F(3,6) = 0.55, P = 0.654). Day 3: First 

burrow of preference: (ANOVA, F(3,6) = 1.20, P = 0.338); Second burrow of 

preference: (ANOVA, F(3,6) = 1.80, P = 0.183). Day 5: First burrow of preference: 

(ANOVA, F(3,6) = 0.86, P = 0.479); Second burrow of preference: (ANOVA, F(3,6) = 

0.30, P = 0.826). 
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Table S1. Size-matching groups. The distribution of individuals among the seven 

groups taking into account their cephalothorax length (CL), the size of the right (RC) 

and left (LC) claws. The difference in CL (expressed as percentage) between the larger 

and the smaller lobster is reported for each group. All the values are expressed in mm.  

Group CL RC LC Difference CL (%) 

1 

39.82 53.11 54.93 

10.42 
42.36 63.28 60.47 

43.97 69.02 69.00 

43.90 68.35 64.56 

2 

40.84 60.41 62.03 

7.35 
41.63 63.04 67.09 

40.80 58.38 59.19 

43.80 68.31 70.34 

3 

47.00 88.78 92.57 

12.64 
45.50 75.61 76.82 

43.50 66.89 67.30 

49.00 85.50 85.97 

4 

43.20 71.65 71.82 

3.80 
42.70 62.60 58.70 

43.30 71.90 68.32 

42.10 68.70 61.10 

5 

43.50 67.90 69.20 

5.67 
44.70 67.50 68.20 

43.80 64.20 68.70 

42.30 69.10 66.40 

6 

44.79 63.00 61.40 

5.48 
45.82 68.20 70.20 

43.44 69.90 64.00 

44.77 59.00 62.00 

7 

44.79 76.50 79.50 

6.87 
45.92 63.60 69.40 

47.86 82.30 83.70 

44.78 68.80 69.70 
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