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Abstract 

A large literature exists on techniques for extracting probability distributions for 
future asset prices from option prices. No definitive method has been developed 
however. The parametric ‘mixture of normals’, and non-parametric ‘smoothed 
implied volatility’ methods remain the most widespread approaches. These though are 
subject to estimation errors due to discretization, truncation, and noise. Recently, 
several authors have derived ‘model free’ formulae for computing the moments of the 
risk neutral density (RND) directly from option prices, without first estimating the full 
density. The accuracy of these formulae is studied here for the first time. The Black-
Scholes formula is used to generate option prices, and error curves for the first 4 
moments of the RND are computed using the ‘model-free’ formulae. It is found that, 
in practice, the formulae are prone to large and economically significant errors, 
because they contain definite integrals that can only be solved numerically. We show 
that without mathematically equivalent expressions with analytical solutions the 
formulae are difficult to deploy effectively in practice.   
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1. Introduction 

Methods for extracting implied probability distributions for the prices or returns of an 

asset at a future time, from series of synchronously observed market prices of options 

on the asset, have been extensively studied since the mid 1990s [see e.g. Bliss and 

Panigirtzoglou (2002), Jackwerth (2004), and more recently Figlewski (2007) for 

reviews]. Breeden and Litzenberger (1978) made explicit the exact relationship 

between option prices and the risk neutral density (RND) [see Appendix A for details 

and proof]. In the risk-neutral pricing framework the price of an option is equal to its 

discounted expected payoff under the risk neutral measure. Evaluating the integral of 

the payoff function over the risk neutral measure and discounting at the risk free rate 

can thus price an option. Given a continuum of observed option prices, this pricing 

calculation can be inverted for European exercise options, and the full RND for the 

price (return) of the underlying asset at maturity extracted. Useful information 

contained in the shape of the distribution can thus be recovered. RNDs have numerous 

important applications in finance. These include: Pricing securities [Cox and Ross 

(1976)]; Estimating value-at-risk (VaR) for risk management purposes [Ait-Sahalia 

and Lo (2000)]; Studying risk aversion and risk preferences [Bliss and Panigirtzoglou 

(2004)]; Assessing financial market expectations regarding future asset prices, interest 

rates, and exchange rates, in connection with setting monetary policy [Lynch and 

Panigirtzoglou (2008)]. However, existing methods for extracting RNDs are 

variously, computationally cumbersome, data intensive, and or subject to estimation 

errors due to discreteization, truncation, and noise issues in the raw options data. No 

definitive method has been developed, but two approaches are popular with 

practitioners, namely, the mixture of normals [Ritchey (1990)], and the smoothed 

implied volatility method [Shimko (1993)]. Tests suggest the latter method produces 
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better results [see e.g. Bliss and Panigirtzoglou (2002) and Andersson and Lomakka 

(2003)].   

 

In many applications it is enough to know the first four moments of the RND. Hence a 

more parsimonious representation will suffice. Based on recent theoretical 

developments, several authors have derived exact formulae for computing the 

moments of the RND directly from option prices without first estimating the full 

density distribution. These formulae have the advantage of being ‘model free’, in the 

sense of not being subject to the assumptions of any option pricing model. New 

approaches for extracting the RND, by using these formulae to compute its moments 

in a first step, have also been developed.  Of course, when these formulae are applied 

to observational data, they also are subject to estimation errors due to discretization, 

truncation, and noise issues in the data. Jiang and Tian (2007), and Dennis and 

Mayhew (2002, 2009), have studied the errors arising from discrete implementation of 

the ‘model free’ implied variance, and the implied skewness and kurtosis respectively, 

and show that they are economically significant. What is perhaps less well appreciated 

is that the solutions to the formulae themselves exhibit sensitivity to their inputs, even 

for realistic ranges of values, and are thus capable of being biased estimates. 

  

The contribution of this paper is to demonstrate that applying the ‘model free’ 

formulae for the first four moments of the RND produce large and economically 

significant errors independently of those resulting from the observation issues 

discussed above. This is shown by solving the formulae as exactly as possible in a 

continuous strike price framework, for realistic ranges of inputs and constructing error 
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curves. This is important because it shows that the formulae are of limited 

applicability in their current forms. 

 

The remainder of the paper is organised as follows. Section 2 reviews the literature on 

‘model free’ implied moments of the RND. Section 3 outlines the methodology used. 

Section 4 presents the findings. Section 5 contains a summary and conclusions.    

  

2. ‘Model free’ Implied Moments: Literature Review 

 

The development of “model-free” methods of directly extracting the moments of the 

RND has emerged from three separate strands of research. First, work on the log 

contract, volatility, and variance swaps [Neuberger (1994), Carr and Madan (1998), 

Demeterfi et al (1999)]. Second, extraction of information on the underlying price 

processes from option prices [Derman and Kani (1994), Britten-Jones and Neuberger 

(2000)]. Third, studies of the characteristic function of the state price density 

(discounted RND), as an alternative spanning entity to options for pricing other 

securities [Bakshi and Madan (2000), Bakshi, Kapadia, and Madan (2003)].   

 

Demeterfi et al (1999) show how hedging an option on the logarithm of the price of 

an underlying asset (the log contract), provides a payoff equal to the variance of the 

asset’s returns.  No such contract is traded in practice; however the log contract can be 

replicated by a portfolio of European exercise options with a continuous range of 

strikes and maturities. This portfolio has a value equal to the payoff of the log 

contract. Dynamically hedging a log contract therefore captures realized variance 
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(volatility). The value of a variance swap, a forward contract F on future realized 

variance with strike K, depends on the future payoff ( ) NKVARR ×−2σ  discounted to its 

present value under the risk neutral measure, where 2
Rσ  is realized variance, N is the 

notional value and KVAR is the price of variance. KVAR is equal to the value of the 

portfolio that replicates the log contract.  Demeterfi et al (1999) derive formulae for 

valuing and pricing the variance swap, and directly obtaining the cost of the 

replicating portfolio. The key result, a formula for the fair value of future variance is 

given as equation (26) of their paper, and shown here as equation (1). 

 *

*

0 *
var 2 20

* 0

2 1 11 log ( ) ( )
SrT rT rT

S

S SK rT e e P K dK e C K dK
T S S K K

∞  
= − − − + +     

∫ ∫  (1) 

In equation (1) Kvar  is the fair price of future variance. S0  is the underlying asset 

price at time 0. K  is the strike price. P(K) and C(K) are the prices of out of the money 

calls and puts. S* is the value of the underlying asset at the boundary between the 

calls and the puts (e.g. at the money). T is the maturity of the option. 

 

Britten-Jones and Neuberger (2000) demonstrate how, given a continuum of European 

option prices with strikes and maturities ranging from zero to infinity, a condition can 

be derived which must be satisfied by all price processes consistent with the given set 

of option prices. Derman and Kani (1994), Dupire (1994, 1997), and Rubinstein 

(1994) showed that when volatility is deterministic, a unique price process exists that 

is consistent with option prices. Britten-Jones and Neuberger extended this analysis to 

a non-deterministic volatility setting, where many consistent price processes are 

possible. They derived their results in a discrete framework, using a time-price grid, 

and took limits as the interval sizes approach zero to obtain continuous counterparts. 
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In an appendix, they also derived their results directly in a diffusion setting. Britten-

Jones and Neuberger’s simple condition is given as Equation (10) in Proposition 1 of 

their paper and is shown here as equation 1a1.  

( ) ( )2 2[ , , ]( 1) ( 1) /
|

( , ) (1 ) ( , ) ( , / )
t h t

t
t

C t h K C t K u u uS SE S K
S C t Ku u C t K uC t K u

+
  + − − + −
 = =  − + +   

   (1a) 

In equation (1a) C(t, K) is the call option price at strike price K and future time t, h is 

the size of the discrete time intervals used in the setting and u is the geometric factor 

acting on stock prices that determines the possible stock prices given the discrete time 

intervals.  

 

The authors show that all price processes satisfying their Proposition 1 have the same 

(risk neutral) expectation for squared price volatility (e.g. price variance) over any 

given time period, and thus imply the same one-period forecast of volatility. Because 

this forecast is common to all such processes they refer to it as the “model-free” 

implied volatility. The analytical formula needed to extract the “model-free” implied 

volatility for a period between any two arbitrary future dates, from current prices of 

options expiring on those dates is given as equation (13) of Proposition 2 of their 

paper shown here as equation 1b2. The authors note that this equation was derived 

                                                 

1 PROPOSITION 1: In any continuous risk-neutral process, the expectation of squared return, conditional 
on the stock price and time, is determined by the initial option prices as 

( ) ( )2 2[ , , ]( 1) ( 1) /
|

( , ) (1 ) ( , ) ( , / )
t h t

t
t

C t h K C t K u u uS SE S K
S C t Ku u C t K uC t K u

+
  + − − + −
 = =  − + +   

  (10) 

The converse is also true; any continuous martingale process for S that satisfies the above condition for 
all K ϵ K and t ϵ T will price all European options correctly by their expected payoffs. 
2 PROPOSITION 2: The risk-neutral expected sum of squared returns between two arbitrary dates t1 and t2 
is given from the set of prices of options expiring on these two dates as 
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independently by Carr and Madan (1998) in the context of pricing and hedging 

variance swaps, using results from Neuberger (1994), and the well- known Breeden 

and Litzenberger (1978) result.  

    
( ) ( )2

2
2 1

0 20 0

,
2

t t

t

C t K C t KdSE dK
S K

∞  − − 
  = 
   
∫ ∫    (1b) 

A simplification of equation 1b for the period between the current time and any 

arbitrary future date, is given as equation (14) of Britten-Jones and Neuberger (2000), 

and is reproduced here as equation (2). 

 
( ) ( )2

2
2 0

0 20 0

, max ,0
2

t t

t

C t K S KdSE dK
S K

∞  − − 
  = 
   
∫ ∫  (2) 

In equation (2) max(S0 - K,0) is the intrinsic value of  the option at time 0.  

 

Bakshi and Madan (2000) observe that though the payoff functions of other securities 

are spanned by options, this has not resulted in a simplification of security valuations, 

because options themselves are complex to value. They propose the use of an 

alternative spanning entity. Namely; the characteristic function of the state price 

density (SPD), which they argue, significantly simplifies option pricing. The SPD is 

the discounted risk-neutral density function, and its characteristic function can be 

obtained via a Fourier transform3. Theorem 1 of Bakshi and Madan (2000) 

demonstrates that in an arbitrage free setting, the continuum of characteristic 

functions and the continuum of options are equivalent classes of spanning securities. 

                                                                                                                                            

( ) ( )2

2
2 1

0 20 0

,
2

t t

t

C t K C t KdSE dK
S K

∞  − − 
  = 
   
∫ ∫    (13) 

3 Recent research discusses how the use of wavelets has advantages over Fourier transforms in option 
pricing (Ortiz-Gracia, and  Oosterlee, 2013). 
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It follows as a special case of Theorem 1 that all twice differentiable payoff functions 

can be algebraically spanned by a continuum of out-of-the-money calls and puts.  

 

Bakshi, Kapadia and Madan (2003), use the above result to derive formulae for the 

second, third, and fourth moments of the RND. They demonstrate how the risk neutral 

volatility, skewness, and kurtosis, can be obtained as functions of three payoffs, the 

quadratic, cubic, and quartic, corresponding to the second, third, and fourth powers of 

the returns on an asset. By Theorem 1 of Bakshi and Madan (2000), these payoffs can 

be expressed as linear combinations of prices of out of the money calls and puts on 

the asset. These formulae are “model free”, in that they are independent of any 

specific option pricing model. They are reproduced here as equations (3), (4), (5), (6), 

(7), and (8) respectively. The BKM(2003) skewness and kurtosis formulae are4: 

 
3

3/ 22

( , ) 3 ( , ) ( , ) 2 ( , )( , )
( , ) ( , )

r r

r

e W t t e V t tSKEW t
e V t t

τ τ

τ

τ µ τ τ µ ττ
τ µ τ

− −
=

 − 
 (3) 

 
2 4

22

( , ) 4 ( , ) ( , ) 6 ( , ) ( , ) 3 ( , )( , )
( , ) ( , )

r r r

r

e X t t e W t e t V t tKURT t
e V t t

τ τ τ

τ

τ µ τ τ µ τ τ µ ττ
τ µ τ

− + −
=

 − 
 (4) 

 

In equations (3) and (4); 

 
( ) ( )

2 20

2 1 ln 2 1 ln
( , ) ( , ; ) ( , ; )

t
tt

t

SK
SS K

S
V t C t K dK P t K dK

K K
τ τ τ

∞    − +   = +∫ ∫  (5) 

The BKM(2003) cubic and quartic formulae are5: 

                                                 

4 These are taken from formulae (5) and (6) of Bakshi, Kapadia and Madan (2003). 
5 These are taken from formulae (8) and (9) of Bakshi, Kapadia and Madan (2003). 
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20

12 ln 4 ln
( , ) ( , ; )

12 ln 4 ln
( , ; )
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∫

∫

 (7) 

In the above equations S t and K, have their usual interpretations. C and P are call and 

put prices respectively. The options are assumed to be trading on date t and maturing 

at time (t+τ).  The first moment ( , )tµ τ is given as; 

 ( , ) 1 ( , ) ( , ) ( , )
2 6 24

r r r
r e e et e V t W t X t

τ τ τ
τµ τ τ τ τ= − − − −  (8) 

 

Rompolis and Tzavalis (2004) have generalised the Bakshi, Kapadia and Madan 

(2003) approach to any moment of the RND. In Corollary 1 of their paper they derive 

the Breeden and Litzenberger (1978) result from their Proposition 1, which itself is a 

corollary of Theorem 1 of Bakshi and Madan (2000). Proposition 2 of Rompolis and 

Tzavalis (2004) and its Corollaries 2 and 3, provide general analytical formulae for 

conditional asset return moments of order m, where m = 1, and m ≥ 2. These are 

reproduced here as equations (9) and (10) below. The Rompolis and Tzavalis (2004) 

formula are6: 

 ( ) ( ),1 2 20

1 11 , , 1t

t

Sr
t tS

e C K dK P K dK
K K

τ
ρµ τ τ

∞ = − − − 
 ∫ ∫  (9) 

                                                 

6 These are taken from formulae (8) and (9) of Rompolis and Tzavalis (2004) 
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K S S

τ
ρ

τ

µ
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−
∞
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        − −      
         =  

       
+ − −       

        

∫

∫
 (10) 

In equations (9) and (10) ρ is the conditional asset return, where the future log return 

is defined as ρt(ST) = ln(ST/St), m is the order of moment, and τ is the (T-t) period  

option maturity. 

 

Rompolis and Tzavalis (2004) suggest an implementation of their formulae to 

observational data, by first using a cubic spline to interpolate discrete option prices, 

and then computing the risk neutral moments using equations (9) and (10) above. 

They test this approach against the usual procedure of extracting the full RND in a 

first step and then computing its moments. In a Monte Carlo simulation using data 

generated by the Heston (1993) stochastic volatility model they find their proposed 

procedure has a mean percentage error of under 1% for moments of all orders, and 

outperforms the method based on extracting the full RND in a first step.  

 

Rompolis and Tzavalis (2004), demonstrate that the Britten-Jones and Neuberger 

(2000) ‘model free’ variance [equation (2) in this paper] is implied by their 

Proposition 2, and is a special case of their equation (10). Jiang and Tian (2007) 

demonstrate that the Britten-Jones and Neuberger (2000) implied variance formula  

and the model free implied variance formula developed by Demeterfi et al (1999)7 

                                                 

7 This is used as the basis for calculating the CBOE’s VIX volatility index. 
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[equation (1) in this paper] are equivalent. Thus, three different expressions for the 

implied variance which are essentially equivalent, have been separately developed. 

 

         

2.1 Empirical Implementations of the Implied Moments 

Option prices are only quoted for finite sets of discrete strike prices and maturities, 

thus empirical applications of model free implied moments involve approximating 

integrals, or replacing integration over continuous strike prices and maturities, with 

summation over their discrete counterparts. This results in the introduction of 

discretization and truncation errors. Several authors have performed tests to assess the 

resulting biases.  

 

Dennis and Mayhew (2002) consider the empirical implementation of the Bakshi, 

Kapadia and Madan (2003) model free skewness formula. They generate option prices 

using the Black-Scholes model with constant values for maturity, volatility, risk free 

rate, and the stock price, since this will guarantee a skewness of zero. First, they 

assess the impact of discrete strike price intervals and find that when integrating over 

a range of strike prices from $30 to $70, a strike price interval of $5 produces a 

downward bias in skewness of approximately -0.07, and one of $2.50 produces a 

downward bias in skewness of approximately -0.05. They observe that since strike 

price intervals are mostly constant, at least the bias will be the same for all 

observations. Next, they consider the effects of an asymmetrical domain of 

observation, where the number of put options and call options are not equal. They find 

that the bias introduced by asymmetry can be significant, but can be avoided by using 
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the largest range of strikes consistent with a symmetrical domain of integration. 

Finally, they consider the truncation bias resulting from a finite set of option prices. In 

this case, their results indicate that at least 20 strikes are required to avoid a 

downward bias in the calculated skewness. If there are only ten strikes available the 

resulting bias in skewness will be approximately -0.1. 

 

Jiang and Tian (2005) empirically tested the Britten-Jones and Neuberger (2000) 

model free implied volatility using S&P 500 index options data. They concluded that 

it is an efficient forecast of future volatility, and is also unbiased after a constant 

adjustment. They performed simulation tests on a discrete version of equation (2) to 

assess any biases, prior to applying it empirically. Using the structure (e.g. range in 

moneyness, number, and intervals) of strike prices for S&P 500 options offered on 23 

September 1988 as a template, they generated cross sections of option prices from the 

Heston (1993) stochastic volatility model, parameterised identically to Bakshi, Cao, 

and Chen (1997). The risk free rate was assumed to be zero, and the unconditional 

mean of the volatility process was set to 0.2. The following procedure was then used: 

As proposed by Shimko (1993) they first converted the generated option prices to 

implied volatilities using the BS formula. Next, they interpolated between available 

strike prices by fitting a smooth function (cubic splines) to the implied volatilities. 

The implied volatility function beyond the range of available strikes was assumed to 

be flat. Finally, the BS formula was used again, to convert the smoothed implied 

volatilities back to call prices, and the model free implied volatility was extracted.  

The model free implied volatility was found to be in error by 0.0016, 0.0009, 0.0003, 

0.0001, and 0.0001 over time intervals of 30, 45, 60, 75, and 90 days to maturity 
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respectively. Since the true volatility originally set for the test was 0.2, Jiang and Tian 

(2005) conclude that the errors are negligible in all cases. They consider that their 

tests verify the model free implied volatility and their implementation method. 

 

Jiang and Tian (2007) tested the Chicago Board Options Exchange (CBOE)’s 

implementation of the  Demeterfi et al (1999) model free implied variance (volatility) 

formulae, used to calculate the VIX volatility index. They concluded that the CBOE 

procedure for constructing the index is flawed, and produces economically significant 

errors. In a simulation using option prices generated from the BS formula they found 

that volatility was estimated with a 1.6% error, in the base case considered, which 

equates to $310 dollars for a single VIX futures contract. They found this error was 

almost wholly due to discretization, and that the strike price interval of 2.5% of asset 

price was too coarse for the VIX calculation. When the BS input parameters were 

varied over typical input ranges, it was found that the errors varied between +3.1% 

and –13.8% of the true volatility, and that truncation errors could be as large as -15% 

and discretization errors as large as 6.3% of the true volatility. The approximation 

errors also tended to increase with maturity.  Jiang and Tian (2007) propose an 

improved procedure for calculating the VIX index based on smoothing as in  Jiang 

and Tian (2005). The procedure in the former is improved by imposing a smooth 

pasting condition where the linear extrapolation and cubic spline interpolations meet, 

thereby ensuring a smooth function everywhere. In tests of their proposed procedure 

using option prices generated by the stochastic volatility with jumps (SVJ) model,  

Jiang and Tian (2007) find that the maximum error is 0.08% and most errors are 

within less than 0.05% of the true volatility. In comparison, the VIX procedure 
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produces errors of +0.79% to –1.98%8. For robustness, further tests were performed 

using prices generated by the BS formula, Heston (1993) model, and Duffie, Pan, and 

Singleton (2000) stochastic volatility with time varying jumps models. The results 

suggest the proposed procedure is consistently accurate across all specifications 

compared to the CBOE procedure, which performs poorly even under the simple 

Black-Scholes model.  

 

Dennis and Mayhew (2009) presents some additional test results for the Bakshi, 

Kapadia, and Madan (2003) formulae for (model free) skewness and kurtosis not 

included in Dennis and Mayhew (2002). Using the same initial parameter values, 

excepting the risk free rate, which is now set at 5% rather than 7%, the strike price 

interval is gradually increased from $0.1 to $5 in increments of $0.1, over a strike 

price range of $30-$70.  Skewness diverged from the correct value of zero, in an 

oscillatory fashion, as the strike price interval increased. This effect was not found by 

Dennis and Mayhew (2002), who suggest only a smooth downward bias occurs as the 

strike price interval is increased. Moreover, Dennis and Mayhew (2002) states that the 

error in skewness is –0.07 for a strike price interval of $5, whereas Dennis and 

Mayhew (2009) suggests the error in skewness is around ±0.4 for a strike price 

interval in the range of $5. A similar oscillatory divergence was found for kurtosis, 

which was 3.0 for strike price intervals close to zero, but ±2.0 for strike price intervals 

between $4.5 and $5. 

 

                                                 

8 One VIX index point is equivalent to a 1% change in implied volatility. 

©2019, Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/



 
 

14 

In summary, the Dennis and Mayhew (2002, 2009) simulation test results suggest that 

economically significant errors are introduced by truncation and discretization effects 

when empirically implementing model free moments for the RND, even without 

considering the effects of noise and observation errors on option prices. By contrast, 

the simulation test results of Jiang and Tian (2005, 2007), suggest that these errors can 

be effectively corrected by employing data smoothing methods. Jiang and Tian (2007) 

also presents evidence that the implementation of model free variance (volatility) used 

by the CBOE to compute the widely followed VIX volatility index is seriously 

flawed. 

 

The results discussed in this section relate to applications of “model free” moment 

formulae to discrete strike prices, and the biases caused by discretization and 

truncation errors in such cases. Our methodology, described in the next section, 

eliminates discretisation and truncation errors by solving the model free moment 

formulae directly in a continuous strike price framework.  

 

3. Methodology 

We cannot directly observe the empirical pricing functions (or volatility of the 

underlying assets) at play in options markets. Thus, in order to test the “model free” 

formulae for the moments of the implied probability distribution, we investigated 

whether they can accurately recover the moments of the distribution implied by a 

well-understood closed-form pricing formula namely, the Black-Scholes formula. 

Implicit in this formula is the assumption that returns on the underlying asset are 

normally distributed, and that the volatility of these returns is constant. Moreover, the 
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formula is twice differentiable with respect to the exercise price. Unlike more 

complicated stochastic volatility models, the BS implied volatility is widely used by 

market practitioners as a benchmark reference. If the “model free” formulae are 

unable to recover the moments of the implied (normal) distribution in this simple 

case, they are unlikely to do so in the more complicated case of stochastic volatility 

models. Moreover, stochastic volatility models seek to explain the underlying 

volatility process generating realised (historical) volatilities which are time varying9. 

However, implied volatilities are a constant reflecting the expected volatility of the 

underlying asset at expiration of the option. Thus, we limited the scope of the enquiry 

to the BS formula.  

 

As shown by Breeden and Litzenberger (1978) the implied probability distribution for 

the value of the underlying asset at expiration is simply the second differential (where 

it exists) of the pricing function with respect to the exercise price of the option, (in the 

case of discrete prices, the second difference of the option prices). It does not depend 

on any closed-form pricing model or its assumptions. This distribution and its 

moments, including the standard deviation (volatility) are expectations over the 

residual life of the option. Because in this case, we have tested the “model free” 

formulae for the implied distribution using the BS formula as our pricing function, our 

results assume the volatilities input to the BS model will be recovered (e.g. the BS 

implied volatilities).  

                                                 

9 Ole E. Barndorff-Nielsen & Shephard, (2002) have analysed the relationship between realised 
volatility and stochastic volatility models. 
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The objective of this paper is to test the accuracy of the proposed model free formulae 

for the moments of the risk neutral density, as opposed to implementations of them on 

discrete data, as discussed in the previous section. We used the Rompolis and Tzavalis 

(2004) derivations for our tests, as these are the most general versions. As discussed 

above, the Demeterfi et al (1999), Britten-Jones and Neuberger (2000), and Bakshi 

Kapadia and Madan (2003) derivations are all implied by the Rompolis and Tzavalis 

(2004) derivations. 

 

Equation (9) was used directly to obtain the “model free” implied mean. Equation 

(10) was simplified to give the following formulae for ,2ρµ (variance), ,3ρµ (skew), 

and ,4ρµ  (kurtosis) respectively; 

 ( )( ) ( )( )2 2
( ) 1 1

,2
0

2 1 ln ( , ) 1 ln ( , )
t t

S
r t K K

t tS SK K
S

e C K dK P K dKρµ τ τ
∞ 

= − + − 
 
∫ ∫  (11) 

 

 
( ) ( )( )

( ) ( )( )

2

2

1

( )
,3

1

0

ln 2 ln ( , )

3

ln 2 ln ( , )

t t

St

t

t t

K K
tS SK

r t

S
K K

tS SK

C K dK

e

P K dK
ρ

τ

µ

τ

∞ 
− 

 =  
 
+ − 
 

∫

∫
 (12) 

 

 
( )( ) ( )( )

( )( ) ( )( )

2

2

2
1

( )
,4

2
1

0

ln 3 ln ( , )

4

ln 3 ln ( , )

t t

t

t

t t

K K
tS SK

Sr t
S

K K
tS SK

C K dK

e

P K dK
ρ

τ

µ

τ

∞ 
− 

 =  
 + − 
 

∫

∫
 (13) 

 
The methodology used was straightforward. The Black-Scholes formula was used to 

represent the option pricing function. Equations (9), (11), (12), and (13), were solved 

as exactly as possible at multiple node points on a grid of representative input values. 
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The nodes were sufficiently densely spaced to allow plotting of error curves across the 

input domain. Sets of input values of maturity, volatility, and risk-free rate, spanning 

the ranges found in actual options markets were used. The strike price input domain 

was continuous between zero and infinity. Table 1 shows the known input values 

used. Table 2 shows the number of nodes in each grid. 

 

 

Table 1. Domain of Input Values 
 Min. Value  Max. Value Interval Number Constant 

Asset Price 50 5050 500 10 2500 
Strike price 0 ∝  0 ∝  n/a 
Maturity 1 month 24 months 1 month 24 12months 
Risk-free Rate 0.01 0.16 0.02 16 0.05 
Volatility 0.1 1 0.1 10 0.4 
Skewness 0 0 0 1 0 
Kurtosis 3 3 0 1 3 

Table 1: Shows the known input values used. Volatility (the square root of variance) was used in the 
tests rather than variance itself. Skewness and kurtosis only have constant single values of 0 and 3 
respectively. This is because the BS formula assumes a normal distribution of asset returns. Note that 
the mean is equal to the forward price of the underlying asset. The column Constant shows the values 
used for each input, when set as a constant. BS Call and Put pricing functions were integrated over the 
continuum of strike prices from 0 to infinity to compute the required moment at each node of the grid 
of input values. 
 

Three plots of errors were produced for each moment considered: Volatility v. Risk-

free rate; Volatility v. Time to expiration; Risk free rate v. time to expiration.  

Table 2. Numbers of Node Points in Each Grid 
 Mean Volatility Skewness Kurtosis 

Risk-free Rate 160 160 16 16 
Maturity 240 240 24 24 
Asset Price 100 100 10 10 
Volatility 100 100 10 10 

Table 2. Shows the number of node points in each grid of input variables used. The model-free 
moment formulae were solved exactly at each node of every grid. There are fewer node points in the 
grids for Skewness and Kurtosis, which always takes the same value of 0 and 3 respectively. 
 

Asset prices ranging from 50 to 5050 at intervals of 500 were used. However, 

performance was found to be unaffected by asset price level.  The recovered values of 

skewness and kurtosis, were easily compared with the underlying values of zero and 
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three, implicit in the BS model assumption of normality. The recovered volatility was 

compared with the volatility input to the BS model, which assumes constant volatility. 

The BS Call and Put pricing functions were integrated over the continuum of strike 

prices from zero to infinity, to recover computed values of the moments at each node 

point. This required the evaluation of more than 5,280 integrals in total. For each of 

the first four moments, the computed values from the “model-free” formulae, were 

subtracted from the known input values, at each node point. Since both of these 

should be identical, any resulting errors are expressed as deviations from zero. To 

visualize the error curves across the input domain 2D and 3D plots were then 

constructed. The plots, presented in the following section, show the percentage error 

curves for the recovered moments of the RND, e.g [(actual value – computed 

value)/actual value]. 

 

 

4.  Error Curves: Risk Neutral Mean  

If the (T-t) period return ρt(ST) is defined as the log price difference , then 

from the lognormal property of stock prices assumed in the Black-Scholes formula it 

follows that the distribution of returns is normal10;  

 ( )
2

( ),
2 ( )t TS T t

T t
σ σρ φ µ
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  (14) 

                                                 

10 For a discussion see e.g. Hull (2015). 
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In a risk neutral world the expected return μ is the risk free rate thus ,1ρµ  in equation 

(9) should equal 
2

( )
2

r T tσ 
− − 

 
and we should expect to find that; 
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r T t ρ
σ µ

 
− − − = 

 
 (15) 

for all r, σ, and (T-t). To test if this is so, the percentage error in the expected mean 

recovered using equation (9) was computed as follows; 
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Fig. 1 is a 3D plot of the resulting errors across the Maturity / Volatility input space. 

In Fig. 1 the mean is affected by different combinations of both maturity and 

volatility. 

 
 
 
 
 
 

  

©2019, Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/



 
 

20 

 
Fig. 1 Model-free risk Neutral Mean: % error v. Maturity & Volatility 

 
 

Fig. 2 shows the error curve for volatilities ranging from 0.1 to 1, for three months 

maturity options with underlying asset price of 2500, and risk-free rate ranging from 

1% to 16% per annum. In Fig. 2 the mean is unaffected by the level of the risk-free 

rate but is sensitive to the level of volatility.  
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Fig. 2 Model-free risk Neutral Mean: % error v. risk-free rate & Volatility 

 
Fig. 3 plots the error curves for the risk free rate and maturity space. Here the mean is 

again unaffected by the level of the risk free rate but is sensitive to maturity. 

 

Fig. 3 Model-free risk Neutral Mean: % error v. Maturity & Risk-free Rate 
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4.1  Error Curves: Risk Neutral Variance  

The model-free second moment ,2ρµ is given by equation (11). This is the variance of 

the risk neutral distribution of returns. However, the standard deviation, which is the 

square root of this quantity, is used instead. This is because the standard deviation or 

volatility of returns is an input to the BS formula, so a direct comparison of the 

computed values and the volatilities used is easily made. The error in volatility from 

the model-free formula was calculated as 

 
,2

,2
rE
ρ

ρσ µ
σ

−
=  (17) 

Figures 4, 5, and 6 plot the errors across the risk-free rate and maturity, risk-free rate 

and volatility, and maturity and volatility input spaces respectively.  

Fig. 4 Model-free risk Neutral Variance: % error v. Risk-free Rate % Maturity 

 
 
Fig. 4 suggests the error in the risk neutral variance is insensitive to the level of the 

risk-free rate but sensitive to time to maturity. Fig. 5 indicates some sensitivity to risk-

free rate at low levels of volatility of the underlying asset. Fig. 6 shows sensitivity to 

maturity and volatility together. 
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Fig. 5 Model-free risk Neutral Variance: % error v. Risk-free Rate & Volatility 

 
 

Fig. 6 Model-free risk Neutral Variance: % error v. Maturity & Volatility 

 

 

4.2  Error Curves: Risk Neutral Skewness  

The model-free second and third moment formula, given by equations (11) and (12) 

were used to compute the skewness of the RND. Skewness, is the third moment about 

the mean, standardised by the cube of the standard deviation; 
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Since the BS formula assumes a normal distribution of returns, the skewness should 

equal zero, and any deviation from zero is a direct error measure for the formula. 

Figures 7 to 9 plot the error curves over the input spaces for the risk neutral skewness.  

Fig. 7 Model-free Risk Neutral Skewness: % error v. Risk-free Rate & Volatility 

 
 

Fig 7 Suggests the risk neutral skewness is relatively insensitive to changes in the risk 

free rate, when combined with volatility as an input. However, in Fig. 8 the risk 

neutral skewness is observed to be sensitive to the risk free rate when combined with 

time to maturity. Fig. 9 reveals the sensitivity of skewness to the combination of 

Maturity and volatility. 
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Fig. 8 Model-free Risk Neutral Skewness: % error v. Risk-free Rate & Maturity 

 

Fig. 9 Model-free Risk Neutral Skewness: % error v. Maturity & Volatility 

 

 

4.3  Error Curves: Risk Neutral Kurtosis  

For a normal distribution Kurtosis is 3. Excess kurtosis is used here, since it is zero 

for a normal distribution and errors produced by the model free formula are thus 
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easily observed as deviations from zero. The following formula is used to obtain the 

excess kurtosis; 
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 = −
 
 

 (19) 

Figures 10, 11, and 12 plot the error curves for the excess kurtosis for each pair of 
inputs  

Fig. 10 Model-free Risk Neutral (excess) Kurtosis: % error v. Risk-free Rate & 
Volatility 

 
 

Fig. 11 Model-free Risk Neutral (excess) Kurtosis: % error v. Risk-free Rate & 
Maturity 
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Fig. 12 Model-free Risk Neutral (excess) Kurtosis: % error v. Maturity & 
Volatility 

 
 
Fig 10 and 11 indicate that kurtosis is relatively insensitive to the risk free rate when 

combined with volatility and maturity respectively. Fig 12 indicates sensitivity to the 

combined inputs of maturity and volatility. 

 

5.       Summary and Conclusions 

Several authors have derived exact formulae for computing the moments of the RND 

directly from option prices without first estimating the full density, based on recent 

theoretical developments reviewed in this paper. These formulae have the advantage 

of being ‘model free’, in the sense of not being subject to the assumptions of any 

option pricing model, and offer the possibility of significantly simplifying option 

pricing and the extraction of market expectations from option market data. Dennis and 

Mayhew (2002, 2009) applied these formulae to discrete data and found that 

economically significant errors are introduced by truncation and discretization effects, 

even without considering the effects of noise and observation errors on option prices. 

Jiang and Tian (2005, 2007) however, suggest that these errors can be corrected by 

employing data smoothing methods. Jiang and Tian (2007) presents additional 
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evidence that the implementation of model free variance (volatility) used by the 

CBOE to compute the widely followed VIX volatility index is seriously flawed. 

 

The above authors tested discrete data versions of the ‘model free’ formulae for the 

moments of the RND, where integrals are replaced by summation. In this paper by 

contrast, we tested the most general versions of the exact formulae; Namely the 

Rompolis and Tzavalis (2004) derivations. To perform our tests we used the Black 

Scholes formula to generate option prices, and solved the formulae as exactly as 

possible for realistic ranges of known inputs, assuming a continuum of values from 

zero to infinity for the strike price. We then plotted error curves for the results over 

the input domains.    

 
Our results demonstrate that that the “exact” model-free formulae for the first four 

moments of the RND, like their discrete counterparts, produce major and 

economically significant errors. This is due to the presence of definite integrals in the 

formulae that can only be solved numerically. To realise the benefits of significant 

simplifications in option pricing, recover risk neutral distributions from option prices, 

and effectively operationalise the promised advances, we thus conclude that either 

mathematically equivalent expressions with analytical solutions are required or 

extensive work on the biases and errors introduced by the relevant numerical methods.    
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APPENDIX A 

Cox and Ross (1976)11 show that the prices of European exercise options can be 

expressed as the expected value of their payoffs, discounted at the risk-free interest 

rate. 

( )( , , ) ( )( )r T t
T T TX

C X t T e P S S X dS
∞− −= −∫                              (A1) 

( )( , , ) ( )( )
Xr T t

T T TP X t T e P S X S dS− −

−∞
= −∫                             (A2) 

In equations (A1) and (A2) C(X,t,T) and P(X,t,T) are the prices of calls and puts 

trading at time t for expiration at some later time T.  X is the exercise price, and r is 

the risk-free interest rate. ( )TP S is the RND for the value of the underlying asset S at 

time t.  Given a known functional form for ( )TP S , options can be priced for any value 

of exercise price X.  Conversely, given a series of synchronous market prices observed 

at some time t, for options expiring at some later time T, this calculation can be 

inverted and an estimate of ( )TP S  extracted.  Breeden and Litzenberger (1978)12 

showed that the cumulative distribution function (CDF) (negatively signed) for the 

value of the underlying asset S at time t is given by the first partial differential with 

respect to X of ( , , )f X t T , where ( , , )f X t T represents the call (put) option pricing 

function, as shown in equation (A3), 

( )( , , ) ( )r T t
T TX

f X t T e P S dS
X

∞− −∂
= −

∂ ∫                                        (A3) 

and the risk neutral distribution (RND) is obtained by differentiating ( , , )f X t T  twice 

with respect to X as shown in equation (A4). 

                                                 

11 Cox, J.C., and Ross, S.A. 1976. "The Valuation of Options for Alternative 
Stochastic Processes", Journal of Financial Economics 3, p 145-166  

12 Breeden, D. T., and Litzenberger, R. H. 1978. "Prices of State-contingent Claims 
Implicit in option Prices", Journal of Business 4, p 621-651.  
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2
( )

2

( , , ) ( ).r T tf X t T e P X
X

− −∂
=

∂
                                               (A4) 

To understand why equation (A4) gives the RND consider the portfolio known as a 

'butterfly spread'.  This is given by 

( , , ) 2 ( , , ) ( , , )C X t T C X t T C X t Tε ε+ − + −                             (A5)                                   

Where ε in (A5) is a small increment.  The portfolio is created by selling two call 

options at exercise price X, and by purchasing a single call option at exercise price                                         

(X + ε) and another at (X - ε).  The portfolio makes no payout except in the interval [X 

- ε, X + ε].  Consider 1/ε 2 shares of this portfolio; in the limit as ε tends to zero, the 

payoff function tends to a Dirac delta function with mass at X, thus the portfolio will 

pay £1/$1 if TS X= and nothing otherwise.  The price of the portfolio (A5) must be 

2

1 [ ( , , ) 2 ( , , ) ( , , )]C X t T C X t T C X t Tε ε
ε

+ − + −                         (A6) 

and 

20

1 [ ( , , ) 2 ( , , ) ( , , )]Lim C X t T C X t T C X t T
ε

ε ε
ε→

 + − + − = 
 

2

2

( , , )C X t T
X

∂
∂

           (A7) 

Thus the risk-neutral probability that TS X= is the price of a butterfly spread centered 

at X, in the limit as ε→0, and this is equal to ( ) ( )r T te p X− − .  In reality, X is not 

continuous and options are only available for a limited number of exercise prices at 

discrete intervals. However, Breeden and Litzenberger (1978) have shown that for 

discrete data, finite difference methods can be used to obtain a numerical solution to 

equation (A4.  In addition, Neuhaus (1995)13 has shown how the RND can be 

obtained via equation (A4)   using finite differences. 

                                                 

13 Neuhaus, H., 1995. "The Information Content of Derivatives for Monetary Policy", 
Discussion Paper 3/95, Economic Research Group of the Deutsche Bundesbank.  
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