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ABSTRACT 

Self-locomotion of liquid marbles, coated with lycopodium or fumed fluorosilica 

powder, filled with a saturated aqueous solution of camphor and placed on a 

water/vapor interface is reported. Self-propelled marbles demonstrated a complicated 

motion, representing a superposition of translational and rotational motions. 

Oscillations of the velocity of the center of mass and the angular velocity of marbles, 

occurring in anti-phase, were registered and explained qualitatively. Self-propulsion 

occurs due to the Marangoni soluto-capillary flow inspired by the adsorption of 

camphor (evaporated from the liquid marble) by a water surface. Scaling laws 

describing translational and rotational motions are proposed and checked. The 

rotational motion of marbles arises from the asymmetry of the field of the Marangoni 

stresses due to the adsorption of camphor evaporated from a marble.   

 

Keywords: liquid marbles; hydrophobic fluorosilica powder; lycopodium; camphor; 

gradient of surface tension; soluto-capillary driven locomotion. 
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1. INTRODUCTION  

The self-generated hydrodynamic and chemical fields may induce motion of 

particles or droplets placed at the liquid/vapor
1-6

 or solid/vapor
7-11

 interfaces.  We 

consider the case when a non-stick water droplet, coated with hydrophobic particles, 

containing a volatile compound (which is camphor in our case) creates its own motion 

by using the gradient of the specific surface energy of the liquid (water) support. Self-

propulsion occurs under breaking of spherical symmetry of a non-stick droplet, taking 

place when evaporation of the volatile compound (camphor) in a certain direction is 

spontaneously increased.
12

 A volatile compound evaporated from a marble and 

consequently adsorbed by a water/vapor interface produces Marangoni soluto-

capillary flows, resulting in the self-propulsion of a droplet.
13-16 

In our study we used the so-called liquid marbles
17-33

, in other words, non-

stick droplets coated with hydrophobic nano- or micro-sized particles filled with 

saturated aqueous solutions of camphor. It should be emphasized that the solid 

particles do not cover the surface of a droplet hermetically, thus, enabling evaporation 

of water and camphor from a marble.
22,28,34

 Also hydrophobic particles separate a 

droplet from a liquid (water) support, creating a pseudo-Leidenfrost contact situation, 

within which the drop is disconnected from the liquid support by its own vapor.
35-41

  

The possibility to involve the pseudo-Leidenfrost contact of liquid marbles containing 

volatile compounds for their self-locomotion was reported recently.
42,43

 The 

connection of aqueous ethanol solutions filling a marble to the atmosphere gave rise 

to the self-propulsion of the marbles across a liquid surface.
42,43

 Light-induced 

Marangoni flows enabled transport of liquid marbles, as reported in ref. 44.  

In the present work, the effect of self-propulsion is demonstrated for liquid 

marbles containing aqueous solutions of camphor. Dissolution of camphor, resulting 
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 4 

in the self-locomotion of so called “camphor boats”, is a well-known effect and the 

subject of intense research recently
45-49

. By contrast, in our investigation camphor is 

separated from a liquid support, and the effect of self-propulsion arises from its 

asymmetric evaporation from a liquid marble followed by adsorption at the water/ 

vapor interface. Floating of non-stick droplets was studied in detail recently in ref. 50. 

It was demonstrated that the floating state for relatively undeformable drops (such as 

liquid marbles) is sensitive to the relative tensions of the drop–vapor and drop–liquid 

interfaces.
50

 Self-propelled droplets give rise to numerous applications, including 

smart lab-on-chip systems
51

, optical probing
52

 and cell cultivation.
53 

 

2. EXPERIMENTAL 

2.1. Materials 

Liquid marbles containing aqueous solutions of camphor were manufactured 

with two kinds of powders, namely lycopodium and the extremely hydrophobic 

fumed fluorosilica powder.
54 

The primary diameter of fumed fluorosilica particles is 

20-30 nm and they originate from hydrophilic silica (Wacker Chemie) after reaction 

with tridecafluoro-1,1,1,2-tetrahydrooctyltrimethoxysilane.
54

 The residual silanol 

content on their surfaces is 50% and the fluorine content is 10.9%. Camphor 

(C10H16O, 96%) and lycopodium were supplied by Sigma–Aldrich. Lycopodium is the 

yellow pollen collected from the spores of a perennial evergreen plant (Lycopodium 

clavatum). This pollen possesses hierarchical structure and is strongly hydrophobic. 

The outer diameter of lycopodium particles is ca. 50 µm (for SEM images of 

lycopodium particles see ref. 55). 

2.2. Manufacture of liquid marbles 

Page 4 of 35

ACS Paragon Plus Environment

Langmuir

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 5 

Droplets containing saturated aqueous solutions of camphor (concentration

)2.1
3dm

g
c =  were coated with lycopodium or fumed fluorosilica powder according to 

the protocol described in ref. 42. De-ionized water was prepared from a synergy UV 

water purification system from Millipore SAS (France). The specific resistivity of 

water was cmM ×Ω= 2.18ρ̂ at 25 ºC.  

Saturated aqueous solutions of camphor were filtered with 45 µm 

polyvinylidene fluoride meshes, enabling removal of small non-dissolved camphor 

particles. Droplets containing saturated aqueous solutions of camphor of volume 

between 10 and 50 µL were spread on a layer of lycopodium or fumed fluorosilica 

powder situated on a glass slide. The slide was vibrated slightly giving rise to the 

formation of liquid marbles. The marbles are not hermetically coated by powder; they 

evaporate as discussed in detail in refs. 25-28 and 34 and 35. The lifetime of marbles 

enabling observing of self-propulsion was established as ca. 2 min.  

2.3. Registration of self-propulsion of liquid marbles 

The marbles were placed on the surface of de-ionized water and floated, as 

shown in Figure 1. The motion of liquid marbles was registered from above with a 

rapid camera (Casio EX-FH20). The linear and angular velocities and accelerations of 

self-propelled marbles were established by the frame-by frame analysis of their 

motion registered with the camera. For the registration of the rotational angle of 

marbles, denoted Ψ , particles of carbon black were placed on the surface of a marble 

which served as the marker. All the experiments were performed at ambient 

temperature of 23-25 ºC. 

2.4. Study of the influence of the camphor evaporated from marbles on 

the surface tension of the water support  
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 6 

For the study of the impact exerted by camphor evaporated from the droplet 

and condensed on the surface tension of the water support the following experiments 

were carried out. The change in the surface tension of a pendant de-ionized water 

droplet was measured within the protocols described in detail in ref. 56. According to 

the first protocol, a water droplet was suspended over the aqueous camphor 

solution/vapor interface, and the surface tension was measured as a function of the 

distance h between the water surface and the bottom of the droplet (see Figure 2). 

Under the second protocol, a water droplet was placed at some constant height h 

above the surface of the saturated aqueous solution of camphor, and the kinetics of the 

surface tension change was measured. Surface tension was measured with the pendant 

droplet method using the Ramé-Hart Advanced Goniometer Model 500-F1 at ambient 

conditions. The initial volume of pendant water droplets was 5-6 µL. 

Figure 3 presents the dependence of the surface tension on the separation of a 

pendant droplet from the surface of the saturated aqueous solution of camphor. The 

surface tension was measured for the same water droplet when it moved down from 

10 to 1 mm distance h above the puddle of the aqueous camphor solution. The value 

of the surface tension decreased from 72 
2m

mJ
to 68 

2m

mJ
. Thus, the maximal jump of 

the surface tension (denoted γ∆ ) due to the evaporation of camphor followed by its 

adsorption at the pendant droplet/vapor interface was established as ca. 4.0
2m

mJ
. The 

same value of the maximal change in the surface tension of a pendant water droplet 

was also established for water droplets placed at the fixed height h above the surface 

of the saturated aqueous solution of camphor when the kinetics of the change in the 

surface tension of pendant droplet was measured. 

2.5. Thermal imaging of self-propulsion 
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 7 

Thermal imaging of the self-propulsion was monitored with a Therm-App 

TAS19AQ-1000-HZ thermal camera (Opgal Optronic Industries, Karmiel, Israel) 

equipped with a LWIR (long wavelength infrared) 6.8 mm f/1.4 lens (see the 

Supplementary Material). 

2.6. Spectral analysis of the time dependencies of the kinematic parameters of 

the motion  

The Fourier analysis of the time dependencies of linear and angular velocities of 

liquid marbles was performed with the software Excel.  

3. RESULTS AND DISCUSSION  

3.1. Superposition of translational and rotational motion of self-propelled 

marbles 

Liquid marbles containing aqueous camphor solutions were placed on the 

surface of de-ionized water contained in a Petri dish (diameter 78 mm) as described in 

the Experimental section. The marbles demonstrated a kind of self-propulsion similar 

but somewhat different from that described in refs. 42 and 43, in which marbles filled 

by aqueous solutions of alcohols were studied. The marbles filled by aqueous 

solutions of alcohols started their self-propelled motion immediately after being 

placed on a water support.
42,43

 In contrast, liquid marbles filled with saturated aqueous 

solutions of camphor were first slowed down (the initial velocity supplied to a marble 

after being placed on the water support decayed to zero) and often even stayed at rest 

during ca. 1-10 s and started their self-propulsion after the aforementioned waiting 

interval. The entire time span of the self-propulsion was ca. 2 min. Such a character of 

motion was convenient for investigation, due to the elimination of artifacts arising 

from the initial velocity and acceleration of marbles put at the water/vapor interface. 
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 8 

The superposition of translational and rotational motions of marbles described 

schematically in Figure 4 was observed (see also the Supplementary Material). In 

parallel with the translational displacement, marbles rotated about the vertical axis 

passing through the center of mass. The overall time span of the translational motion 

accompanied by rotation was ca. 1 min.  

We first inspect the mechanism of self-propulsion qualitatively. Obviously, 

self-propulsion demands breaking of the initial spherical symmetry of marbles. 

Consider the spontaneous increase in evaporation of volatile camphor from the marble 

in the direction of –x, as depicted in Figure 5 (it should be emphasized that liquid 

marbles are not coated hermetically by a powder coating
27,28

). This increase will give 

rise to the Marangoni soluto-capillary flow, resulting in the force (shown by the 

green arrow in Figure 5) driving the marble in the direction of x. In parallel it 

develops a fascinating instability transporting marbles.
42,43

 The displacement of 

marbles in turn enhances the evaporation, withdrawing the camphor vapor from the 

layer separating the marble from the supporting liquid.
43

 

Assume that the rotational motion of a marble is planar, namely all of the 

particles constituting a marble move parallel to a liquid/vapor interface (this 

assumption coincides with the experimental observations, see the Supplementary 

Material). Thus, the general model describing the self-propulsion is represented by 

Eq. 1. The Marangoni soluto-capillary induced motion
12-14, 41, 42, 53-60

 can be described 

by the system of Newtonian equations as follows: 

 γαηχγα ∇+−=∇+= 22 avaaF
dt

vd
m cmfr

cm rr
r

,                            (1a) 

    ∑ =+= ∇

i

fri ITTT εγ

rrrr
                                                      (1b), 

F
r
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 9 

where m and cmv
r

are the mass and velocity of the center of mass of the marble, 

respectively (the change in the mass of marble due to evaporation is neglected).
43

 The 

second term on the right-hand side in Eq. 1a (namely γα ∇2a ) is the Marangoni 

force.
43

 The characteristic length a is of the order of magnitude the radius of the 

marble contact area, shown in Figure 5 (see also ref. 17). The friction force frF
r

mainly 

comes from the viscous drag
42,43

 which is proportional to the dynamic viscosity of the 

supporting liquid η; α  and χ are dimensionless coefficients; πχ 3= in the case of 

Stokes drag of a solid sphere in an unbounded liquid; however it is not well 

established for floating bodies. The complicated geometry of the vapor layer, depicted 

schematically in Figure 5, was treated in detail in ref. 62. Now consider Eq. 1b, 

describing the planar rotation motion of a self-propelled marble: γ∇T
r

and frT
r

are the 

moments of forces (torques) arising from the gradient of the surface tension (to be 

treated in detail below) and friction forces, respectively, I is the moment of inertia of 

the marble about its center of mass andε
r

is the angular acceleration. The marbles kept 

their shape practically unchanged in a course of self-propulsion; this observation 

justifies their treatment as rigid bodies in Eq. 1b.  

 Consider first the translation (rectilinear) motion of marbles. As demonstrated 

in refs. 37, 39 and 42 the modulus of the velocity of the center of mass cmv scales as: 

                                                                
w

cmv
η

γ∆
≅    ,                                          (2) 

where 
camphorγ∆  is the change in the surface tension of water due to the adsorption of 

camphor and wη is the water viscosity. The typical velocity of the center mass was 
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 10 

established experimentally as 
s

m
vcamphor

cm

210−≈ (see Figure 6). It is noteworthy that 

much larger velocities were registered for marbles driven by alcohol solutions, which 

were as high as 
s

m
valcohol

cm

110−≈ .
42, 43

. This difference in the velocities of the center 

mass may be easily explained qualitatively. Indeed, Eq. 2 yields: 

                                 10

4

40

2

2

=≅
∆

∆
=

m

mJ
m

mJ

v

v
camphor

alcohol

camphor

cm

alcohol

cm

γ

γ
,                                        (3) 

where 
2

4
m

mJcamphor ≅∆γ (see Section 2.4) and 
2

40
m

mJalcohol ≅∆γ (see ref. 56) are the 

maximal changes in the surface tension of water support due to adsorption of camphor 

and alcohol respectively, as established experimentally. Thus, we recognize from Eq. 

3, that the scaling law supplied by Eq. 2 describes adequately the translation motion 

of self-propelled liquid marbles driven by soluto-capillary Marangoni flows. 

  3.2. Rotational motion of marbles 

 The analysis of the rotational motion of marbles is more challenging,
39

 

although important from the point of view of microfluidic applications.
63, 64

 

Experimental data related to the rotational motion (spinning of marbles) are displayed 

in Figures 6b, 7, 8b and 8c. Very similar results from both a qualitative and a 

quantitative point of view were registered for liquid marbles coated by lycopodium or 

fumed fluorosilica powder. Oscillations of the modulus of the velocity of the center 

mass cmv and angular velocityω  of spinning were registered for both types of marble 

(see Figures 6, 8). Oscillation of the speed of the self-propelled Belousov–

Zhabotinsky droplets was reported recently in ref. 65. However in the experimental 

situation reported in ref. 65, the oscillations of velocity reflected an oscillating nature 
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 11 

of the Belousov–Zhabotinsky chemical reaction occurring within the droplet. In our 

case, it is reasonable to relate the oscillations of the linear and angular velocities to the 

oscillations of the surface tension of a liquid support similar to those registered and 

reported in ref. 66, in which self-propelled motion of an alcohol droplet placed on the 

water surface and driven by Marangoni soluto-capillary flows was investigated. 

Moreover, the jump in the surface tension driving the droplets was established in ref. 

66 as ca. 
2

1
m

mJ
≅∆γ , which is close to that reported in Section 2.4.  

First of all, notice that the modulus of the velocity of the center mass of 

marbles cmv changes in antiphase with the angular velocityω  (i.e. one increases whilst 

the other decreases over time), as it is follows from experimental data presented in 

Figure 6. This is clear from the “momentary” energy conversation (i.e. within the 

“small” time span when the friction forces have no chance to change the total energy 

of a marble; the characteristic time of viscous friction will be discussed below). 

Indeed, the total energy E of a translationally displaced spinning rigid body is given 

by:
22

22 ωcmcm Imv
E += , where m and cmI are the mass and moment inertia of a body 

about the axis running along the center of mass. Negative values ofω  seen in Figure 

8c evidence the change of the rotation direction, observed experimentally. 

We first address qualitatively the mechanism of rotation (spinning), illustrated 

with Figure 9. When evaporation of camphor is spontaneously increased in the 

direction – x, coinciding with the horizontal axis of symmetry of the floating marble 

passing over its center of mass, the field of Marangoni soluto-capillary stresses (which 

is symmetrical with respect to the x axis)  is created (as shown with black arrows in 

Figure 9). In this case, the pure translational motion of a marble is expected. In the 

situation when the direction of dominating evaporation of camphor from a marble 
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 12 

(shown by the red arrow in Figure 9) does not coincide with the horizontal axis 

symmetry of a marble, the asymmetric field of Marangoni stresses is expected (as 

depicted in Figure 9B), giving rise to the torque rotating a marble. The accurate 

solution of the equations describing the rotation of marbles presents severe 

mathematical difficulties; thus, we consider simplified scaling laws describing the 

rotational motion. If the friction is neglected, the maximal angular acceleration of 

marbles maxε  may be roughly estimated from the Newtonian law related to the 

rotation of marbles (see Eq. 1b): 

                 max

2

max

2

5

2
εεγγ mRIaT cmy =≅∆≅∇

r
   ,                                  (4) 

where yγ∆ is the change of the modulus of the surface tension across the contact area 

of a marble created in the y-direction due to the asymmetric evaporation of camphor, 

shown in Figure 9B; m and R are the mass and radius of a marble respectively. 

Considering 
3

3

4
Rm πρ≅ (with ρ as the density of the aqueous camphor solution, 

which is close to that of water) yields: 

            max

52 εργ Ray ≅∆                                          (5) 

The numerical factors in Eq. 5 are omitted for the sake of simplicity. For 

establishing the scaling law governing the rotation of marbles we also need the 

equation governing the inter-relation between the geometrical parameters of a marble, 

namely its radius R and the radius of the contact area a (see Figure 5). For floating 

marbles this inter-relation turns out to be complicated and non-trivial as demonstrated 

in ref. 40. For the purpose of a very rough estimation we adopt scaling laws, derived 

for liquid marbles placed on a solid support in ref. 17, namely:                                                                     

              a~
12 −

calR   for calR >                                         (6a) 
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 13 

            a~ 2
1

2
3 −

xalR  for calR <    ,                                   (6b) 

where cal is the so-called capillary length.
67, 68

 Substituting Eqs. 6 into Eq. 5 supplies 

the following scaling laws: 

    maxε ~
2

ca

y

Rlρ

γ∆
 ~  3

1−
V  for calR >                                     (7a)                                                               

maxε ~
ca

y

lR 2ρ

γ∆
 ~  3

2−
V   for calR <                                       (7b) 

 Actually, the radii of marbles used in our investigation were close to the 

capillary length; thus, the choice of a proper scaling law describing the rotation 

became problematic. However, assuming 

mlmR
m

kg

m

mJ
cay 003.0;001.0;100.1;0.1

3

3

2
≅≅×≅≅∆ ργ  yields for a crude 

estimation  of the maximal angular acceleration of a rotating marble maxε ~

2

2100.3
s

rad
×  (as calculated with Eq. 7b), which coincides within an order of 

magnitude with the experimental findings established for the rotational motion of 

marbles (the experimental data extracted from the analysis of the rotational motion  of 

the marbles supplied for maxε  the value of ca. 
2

2100.1
s

rad
× ; consider that the 

numerical factors are omitted in Eq. 7b). The presented estimation completely 

neglects friction. Thus, it supplies the maximal value of the angular acceleration.  

Eqs. 7 predict that the maximal angular acceleration of marbles is expected to 

decrease weakly with the radius (volume) of marbles. Indeed, the values of the 

angular acceleration of marbles averaged over their trajectory decreased with their 

volume, as shown in Figure 10. It is as also noteworthy that the superposition of the 

rectilinear and rotational motion (i.e. spinning) was also observed in specific 
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experiments performed with liquid marbles filled with aqueous solutions of 

alcohols
42

, and it is reasonable to relate the origin of spinning to the asymmetry of the 

field of Marangoni stresses, depicted schematically in Figure  9B, and described 

qualitatively by Eqs. 4-7. Recall that the breaking of symmetry of liquid marbles due 

to evaporation of volatile compounds is a spontaneous process and both pure 

translational (as shown in Figure 9a) and superposition of the translational and 

rotational motions (as depicted in Figure 9b) are possible.   

Now we address the characteristic period of oscillations of the linear and 

angular velocities, which is seen from Figures 6 and 8 to be of the order of magnitude 

around 10 s for both kinds of marbles (it is noteworthy this time scale is close to that 

of the period of oscillations of the surface tension reported in ref. 66). The 

characteristic period of oscillations of the linear and angular velocities was performed 

with the Fourier analysis of the data represented in Figures 6 and 8. The Fourier 

analysis indicated the pronounced dominating frequencies appearing in the spectra 

(see Supplementary Material), which allowed the calculation of the period of 

oscillation of the linear and angular velocities. The characteristic period of oscillations 

was established as: st 2010 −≅ . What is the physical reason responsible for this 

value? 

Until now, we completely neglected the friction forces; however, this time 

scale is easily identified with the characteristic time of friction frτ , arising from Eq. 1 

and discussed in detail in ref. 43. Considering the results reported in ref. 43 and Eq. 7a 

yields: 

                                   
w

ca

w

fr

Rl

a

R

η

ρπ

ηχ

π
τ

3

4

3

4 3

≅≅  .                               (8) 
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Assuming: mlmR
m

kg
sPa caw 003.0;001.010;10;1

3

33 ≅≅≅×≅≅ − ρηχ , supplies for 

the characteristic friction time the estimation sfr 10≅τ , which coincides qualitatively 

with the period of oscillation of the linear and angular velocities as established by 

Fourier analysis of the experimental data, represented in Figures 6 and 8 (see also the 

Supplementary Material).  

Collisions of rotating marbles with the skirting of the Petri dish also deserve 

consideration. It turned out that these collisions take place in a random way: 

sometimes liquid marbles changed the direction of their rotation after the collision and 

sometimes continued to rotate in the same direction. We plan to study these 

fascinating collisions in our future research. 

 

3.3. Role of thermal Marangoni flows in the self-propulsion of marbles 

 Co-occurrence of soluto- and thermo-capillary Marangoni flows is often 

observed under self-propulsion.
14, 69

 Thermal imaging of the self-propulsion of liquid 

marbles containing saturated aqueous solutions of camphor (see Section 2.5) showed 

that the temperature field formed at the liquid support surface under self-propulsion 

was not uniform, and the maximal change in temperature across the liquid/vapor 

interface was established as KT 25.0max ≅∆ .  

 The corresponding change in the surface tension is estimated as:  

2

2

2
10425.017.0

)(

m

mJ
K

Km

mJ
T

T

T
T

−×≅×≅∆
∂

∂
≅∆

γ
γ , which is two orders of 

magnitude smaller than that due to the adsorption of camphor (see Section 2.4). Hence 

it is reasonable to suggest that the soluto-capillary Marangoni flows in the self-

propulsion were decisive. It should be emphasized that the registered thermal 

Marangoni flows supported self-propulsion.
14, 69
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CONCLUSIONS 

Marangoni soluto-capillary flows give rise to the self-propulsion of a variety 

of physical objects
2-7, 58-60

, thus demonstrating a potential for microfluidic 

applications.
51

 The effect of self-propulsion may be strengthened by the Leidenfrost 

effect, suppressing the friction forces.
35-40,

 
49

 We report the self-propulsion of liquid 

marbles
17-24

 filled by saturated aqueous solutions of camphor and coated by 

hydrophobic lycopodium or fumed fluorosilica particles. The self-propulsion is due to 

the Marangoni soluto-capillary flow inspired by the spontaneous evaporation of 

camphor from marbles (breaking the symmetry of the experimental situation) 

followed by its adsorption by the water support. The maximal change of the surface 

tension of water owing to the adsorption of camphor was established experimentally 

as approximately 4.0
2m

mJ
. The observed self-propulsion exhibited the superposition of 

translational and rotational motions. The velocities of the center of mass and the 

angular velocity of marbles’ spinning demonstrated oscillations occurring in anti-

phase. It is plausible to relate these oscillations to the oscillations of the surface 

tension of the liquid support.  The characteristic period of these oscillations coincides 

with the time scale of viscous friction, damping the self-propulsion. 

A qualitative model and the scaling laws describing the self-propulsion are 

proposed. The model delineated adequately the translation (rectilinear) and rotational 

motions observed under the self-locomotion. The model predicted a weak decrease in 

the angular acceleration of marbles with their volume. This prediction was validated 

experimentally, i.e. the values of the angular acceleration of marbles averaged over 

their trajectory decreased with their volume. Thermal Marangoni flows
14, 69

 supported 

the self-propulsion; however, the role of soluto-capillary flows was decisive. The 
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reported self-propulsion motion of liquid marbles demonstrates a potential for 

microfluidic applications
51

 and targeted drug delivery.
70
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Three movies showing self-propulsion of 10 µL and 50 µL liquid marbles containing 

saturated aqueous camphor solutions and coated with lycopodium and the movie 

showing self-propulsion of 10 µL liquid marble coated with fumed fluorosilica 

particles are supplied. The marbles are marked with carbon black particles.  

One thermographic movie showing self-propulsion of 20 µL liquid marble containing 

saturated aqueous camphor solutions and coated with lycopodium. 
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(a)                                                         (b) 

 

  

  

 

Figure 1. Photos of liquid marbles containing aqueous camphor solutions coated with 

(a) fumed fluorosilica powder or (b) lycopodium powder floating on a water surface.  
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Figure 2. Scheme of the experiment elucidating the influence of camphor evaporated 

from a liquid marble on the surface tension of the water support. A pendant droplet of 

pure water is placed at a height h above a saturated aqueous solution of camphor. 

Evaporated camphor condenses on the surface of the water droplet, while the surface 

tension of water is measured by drop shape analysis.   

 

 

 

 

 

 

 

 

Page 26 of 35

ACS Paragon Plus Environment

Langmuir

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 27 

 

 

 

 

 

 

Figure 3. Dependence of the surface tension of a pendant water droplet on the height 

h (see Figure 2). 
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Figure 4. Superposition of the translational and rotational motions observed under 

self-propulsion of liquid marbles filled with saturated aqueous solutions of camphor. 

The vectors of the velocity of the center mass cmv
r

and angular velocityω
r

 are shown.  

 

 

 

 

 

 

 

 

���� 

��cm Petri dish 

liquid marble 

Page 28 of 35

ACS Paragon Plus Environment

Langmuir

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 29 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Scheme illustrating the origin of the soluto-capillary Marangoni flow 

driving liquid marbles containing a saturated aqueous solution of camphor deposited 

on a water surface. For an explanation of the shape of the vapor layer separating the 

marble from a liquid support see ref. 62. The blue arrow shows the spontaneous 

increase of the camphor evaporation from a marble. The red arrow indicates the 

direction of the Marangoni flow, increasing in turn the evaporation of camphor from 

the area beneath a marble (γ1 > γ2 for two points shown on the water surface).  
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(b) 

 

 

 

Figure 6. Time dependence of (a) the modulus of the velocity of the center of mass 

cmv  and (b) the angular velocity ω  for 20 µL marbles coated with lycopodium 

powder. 
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Figure 7. Time dependence of the rotational angle of marbles Ψ  (established by 

observing the rotation of the carbon black marker, see Section 2.3) for marbles of 

different volume coated with lycopodium (V = 10-50 µL).  
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(a) 

(b) 

(c) 

 

Figure 8.  Time dependence of (a) the modulus of the velocity of the center of mass 

cmv , (b) the rotational angle Ψ  and (c) the angular velocityω of 20 µL liquid marbles 

coated with fumed fluorosilica powder. 
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(a) 
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B 

 

Figure 9. The mechanisms giving rise to translational and rotational motions of liquid 

marbles are displayed. The horizontal cross-section of the area adjacent to the contact 

area is shown (a is the radius of the contact area). The red arrow indicates the 

direction of dominating evaporation of camphor from a marble. Black arrows depict 

the spatial (plain) distribution of the Marangoni stresses. (a) Distribution of stresses 

resulting in the pure translational motion of a marble, (b) distribution of stresses 

giving rise to the superposition of the translational and rotational motions.  
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Figure 10. Dependence of the angular acceleration ε of liquid marbles coated by 

lycopodium powder (averaged over the piece of trajectory where oscillations of linear 

and angular velocities were observed) on their volume V. 
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