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Abstract

Syn-rift clastic sedimentary systems preserve a complicated stratigraphic architecture that

records the interplay of tectonics, eustatic sea level and storage and routing of sediments.

Previous conceptual models describe and explain changes in depositional stacking patterns

along a fault segment. However, stacking patterns, and the nature of key stratigraphic

surfaces, is challenging to predict accurately with conventional sequence stratigraphic models

that do not consider the three-dimensional interplay of subsidence, sedimentation, and

eustasy. We present a novel, geometric, 3D sequence stratigraphic model (‘Syn-Strat’),

which applies temporally- and spatially-variable, fault-scale tectonic constraints to

stratigraphic forward modelling, as well as allowing flexibility in the other controls in time

and space.
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Syn-Strat generates a 3D graphical surface that represents accommodation. Although the

model has the capacity to model footwall variation, here we present model results from the

hangingwall of a normal fault, with temporal and spatial (dip and strike) predictions made of

stacking patterns and systems tracts for a given set of controls. Sensitivity tests are tied to the

depositional architecture of field-based examples from the Loreto Basin, Gulf of California

and Alkyonides Basin, Gulf of Corinth. Here, the relative influence of major sedimentary

controls, different subsidence histories, varying sedimentation distribution, including along-

strike variation in stacking patterns, are assessed and demonstrate the potential of Syn-Strat

for reducing subsurface uncertainties by resolving multiple scenarios. In addition, the model

demonstrates the nature of diachroneity of key stratigraphic surfaces that can arise in syn-rift

settings, which could be represented by a bypass surface (sequence boundary) or reservoir

seal (maximum flooding surface) in the rock record. Enabling a quantitative assessment of

these surfaces is critical for prospect analysis in hangingwall half-graben-fills, where these

surfaces are heavily relied upon for well correlations that are used for hydrocarbon volume

and production rate predictions.

Keywords

Sequence stratigraphy, stratigraphic forward modelling, syn-rift basins, tectonics and

sedimentation
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1. Introduction

Syn-rift depositional sequences preserve a complicated architecture, due to the spatially- and

temporally-variable interplay of major sedimentary controls (eustatic sea level, subsidence

and sedimentation). Conventional sequence stratigraphic models (Wheeler, 1958, 1959, 1964;

Sloss, 1962, 1991; Mitchum et al., 1977; Vail et al., 1977; Leeder & Gawthorpe, 1987;

Jervey, 1988; Posamentier, 1988; Posamentier & Vail, 1988; Van Wagoner et al., 1988;

Posamentier & Weimer, 1993; Ravnås & Steel, 1998) struggle to predict the depositional

architecture of syn-rift successions and the 3D distribution of reservoirs and seals. Various

studies have attempted to address this issue by integrating sub-seismic, structural and

sedimentological data in order to build tectono-stratigraphic frameworks in various rift

settings, including: the Gulf of Suez (e.g. Gawthorpe et al., 1997; Gupta et al., 1999; Young

et al., 2002; Jackson et al., 2005), the Gulf of Corinth (e.g. Poulimenos et al., 1993;

Gawthorpe et al., 1994; Collier & Gawthorpe, 1995; Leeder et al., 2002), the Gulf of

California (e.g. Dorsey et al., 1995; Dorsey & Umhoefer, 2000; Mortimer et al., 2005), and

the Crati Basin (Italy) (e.g. Colella et al. 1987; Colella, 1988a,b,c). Burgess (2016) highlights

four key uncertainties in general sequence stratigraphic theory: i) rare quantitative analysis,

ii) limited consideration for along-strike variability in sequence architecture (also pointed out

by Martinsen & Helland-Hansen, 1995), iii) limited constraint for sediment supply rates, and

iv) few studies that demonstrate the interplay of accommodation and supply in three

dimensions. These uncertainties are exacerbated in active rift basins, constraining the

interaction of allogenic controls in three dimensions remains challenging.

Sequence stratigraphic forward modelling can support interpretation and prediction of

depositional sequences and key stratigraphic surfaces. Early numerical sequence stratigraphic

models, which incorporated sinusoidal sea level change and hinged subsidence to simulate

accommodation generation and assumed a constant sediment supply, predicted key surfaces
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in seismic (Jervey, 1988). Burgess and Allen (1996) extended this approach to include

temporal variability in sediment supply rate. Subsequently, various stratigraphic forward

models have been developed in order to better understand and predict dynamic depositional

systems. DIONISOS (Granjeon & Joseph, 1999) and STRATA (Flemings & Grotzinger,

1996) represent significant advances in the power of three-dimensional stratigraphic forward

models, and various other geometric, diffusion, fuzzy logic and hydraulic models have

emerged, reviewed by Huang et al. (2015). Diffusion-based models are regularly utilised for

sediment supply, and have successfully applied hypothesis-testing approaches to some

systems (e.g. Burgess & Prince, 2015). However, they are unable to accurately predict mixed

process regime systems, gravity-flow dominated systems, and tectonically active systems.

Various studies have demonstrated diachronous stratigraphic surfaces due to variable

sediment supply and basin margin physiography (Burgess & Prince, 2015; Madof et al.,

2016). Hardy et al. (1994), Hardy & Gawthorpe (1998; 2002) and Gawthorpe et al. (2003)

(following the methods of Ritchie et al., 1999) introduced simplified tectonic constraints into

2D numerical modelling to assess stratal geometries and suggested that major stratigraphic

surfaces may be limited in spatial extent (Gawthorpe et al., 2003). However, there has been

little assessment of the full impact of along-strike variations in fault-related subsidence, and

especially, differential tectonic constraints in both time and space and the combined influence

of all three variable allogenic controls.

Here, we present a novel, flexible and more comprehensive sequence stratigraphic forward

model that applies fault-scale tectonic constraints to 3D sequence stratigraphy. The model

demonstrates the sensitivity of sequence architecture (stacking patterns and key stratigraphic

surfaces) to the three-dimensional interplay of major sedimentary controls in a hangingwall

half-graben by use of experiments, validated by field-based examples from the literature.

Within the framework of the model a limitless parameter combinations for testing in any rift
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setting is permitted. Here, the objectives are: i) to assess the stratigraphic response to various

temporal and spatial interactions of eustasy, tectonics and sedimentation patterns, ii) to

explore the diachroneity of key stratigraphic surfaces, and the conditions under which the

nature of those might vary, and iii) to apply temporally- and spatially-variable tectonic

constraints to stratigraphic forward modelling for the first time. Syn-Strat demonstrates and

illustrates important stratigraphic concepts in a unique manner, which allows syn-rift systems

to be explored in 3D and allows scope for testing of all possible outcomes, and assessing the

stratigraphic response.

2. Model architecture and assumptions

2.1. Model framework

‘Syn-Strat’ is a geometric model that allows investigation of the interplay of eustasy,

sediment supply, and tectonic subsidence in rift basins. The model sums changing i) eustatic

sea level, ii) fault-related subsidence, and iii) sedimentation curves, to generate a 3D

‘accommodation’ curve, which is used to predict the stratigraphic infill of a half-graben basin

adjacent to an individual normal fault segment. Syn-Strat also allows the opportunity to

explore of a number of other variables that contribute towards these major controls, such as

accounting for crustal strength, isostasy and erosion in subsidence. This is because each

major control curve can be constructed from composite curves that contribute towards

defining that variable and can be varied in time and space. For example, the eustatic sea level

variable can be composed of a glacio-eustatic curve and a thermal expansion curve. However,

for simplicity, here we use the resultant control curves to show the responses to the sensitivity

tests.
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We specifically define accommodation as the measurable space (thickness or volume)

available at any given time for subsequent deposition that results from the combined

influence of the preceding eustatic sea level, tectonic displacement and sedimentation.

Eustatic sea level rise, tectonic subsidence and large-scale erosion from mass wasting are

mechanisms that increase accommodation at any specific location, and eustatic sea level fall,

uplift and sedimentation are mechanisms that reduce (or fill) accommodation. Our definition

of accommodation follows original work by Jervey (1988) as the ‘space available for

deposition’, which was also used by Catuneanu et al. (2009), and closely corresponds to

definitions by Cross (1988), whereby ‘potential accommodation’ is the cumulative space

created or removed by relative sea level changes and ‘realised accommodation’ is the volume

of sediment that is actually accumulated. In this terminology, our model plots the sum of

‘potential’ and ‘realised’ accommodation, which in a shallow marine setting can be equated

to water depth, but need not in other settings. It is ‘real-time’ accommodation, as opposed to

interpreted accommodation from the stratigraphic record that other studies focus upon (Muto

and Steel, 2000). To this avail, an assessment can be made of dynamic changes in

accommodation as a result of variable controls.

The 3D accommodation function that is visualised as a graphical surface has dynamic along-

strike, ‘x’, down-dip, ‘y’, and temporal, ‘t’, controls, to which stacking patterns

(progradation, aggradation and retrogradation) or systems tracts, following any convention,

can be ascribed. This forms a valuable, large-scale stratigraphic framework for a given set of

controls, to which a process model could then be applied to predict the nature of a deposit.

The accommodation surface is defined on a three-dimensional mesh and stored in matrix

form. At any point of ‘x’, ‘y’ and ‘t’, the accommodation surface, AS(x,y,t), is equal to the

sum of eustatic sea level, E(x,y,t), and the total amount of tectonic subsidence until time t,
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T(x,y,t), minus the total amount of sediment accumulated until time t, S(x,y,t) (after Jervey,

1988; Posamentier & Allen, 1999; Catuneanu, 2002),

1) AS(x,y,t) = -S(x,y,t)+E(x,y,t)+T(x,y,t).

A heuristic model is employed to specify the variables that sum to yield AS. Variables (V) are

separated into three normalised functions describing relative spatial and temporal variation,

Vx, Vy and Vt that represent the given control i) along the fault length, ii) away from the fault

and iii) in time, respectively. For example, Sedimentation, S is defined in x (Vx), in y (Vy)

and in time (Vt). The product of the three functions and the maximum scalar value of the

variable, VSC, yields the variable in each case

2) V=VSCVx(x)Vy(y)Vt(t).

The dimensionless 3D accommodation surface that ‘Syn-Strat’ outputs, AS’, is provided to

enable comparison between different fault settings. For example, if two fault settings are

compared with different subsidence, eustasy and sedimentation histories, the accommodation

surface from each is normalised using the maximum amount of cumulative tectonic

subsidence for each, to allow comparison between the two, max(T).

3) AS’ = AS / max(T).

The accommodation surface is plotted in terms of two of the three variables in dimensionless

form: distance along fault divided by total fault length, x’, which is any line parallel to the

fault segment; distance away from fault divided by distance from fault to the hinge line, y’,

which is any line orthogonal to the fault segment; and time divided by the fault evolution

timescale, t’. Therefore, three different visualisations are possible from the model (Fig. 2):

A. Plot of accommodation (A’) on any line parallel to the fault in the hangingwall in time,

for any given distance away from the fault (x’, t’)
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B. Plot of accommodation (A’) on any line orthogonal to the fault in the hangingwall in

time, for any given position along the fault (y’, t’)

C. Plot of accommodation (A’) in space (parallel to and orthogonal to the fault), for any

given time (x’, y’)

2.2. Eustatic sea level

Eustatic sea level is a major control on accommodation, whereby a rising eustatic sea level

increases accommodation and a falling eustatic sea level decreases accommodation (Wheeler

& Murray, 1957; Wheeler, 1964; Mitchum et al., 1977; Vail et al., 1977; Jervey 1988). In

Syn-Strat, eustatic sea level is defined in time, and is constant along the length of the fault

and away from the fault. Figure 3 uses a simple sine wave for variation in time, although

complex, real curves can be applied. Once defined, the time curve is multiplied by the two

constant spatial curves to produce a 3D graphical surface. Figure 3 illustrates this information

by plotting eustatic sea level along the fault and in time, for a position in the immediate

hangingwall of the fault.

2.3. Subsidence

2.3.1. Subsidence along the fault length

Tectonic displacement is defined in three dimensions: in time, and along and away from the

fault. In the model, we are interested in tectonic displacement on the hangingwall of a single

fault segment, which is subsidence. Cumulatively, hangingwall subsidence is zero at the two

fault tips and maximum at the fault centre. When these three data points for subsidence are

available, a parabola is calculated that describes the displacement change along the fault

length. This distribution of subsidence along-strike of a fault has been extensively
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documented in the literature (e.g. Stein & Barrientos, 1985; Cowie & Scholz, 1992; Cowie et

al., 2000) and is primarily used in our modelling. An observed temporally-variable

subsidence distribution along the fault length could be applied instead.

Gawthorpe et al. (1994) and Collier & Gawthorpe (1995) highlight that the curve derived

from the sum of the eustatic sea-level and tectonic subsidence curves will be steeper at the

centre of a fault in a phase of relative sea level rise, where subsidence is greatest (position 1

in Fig. 4), than on either side (position 2 in Fig. 4). At the fault tips subsidence is zero, so

accommodation is varying due to eustasy alone (position 3 in Fig. 4).

For the parabolic displacement distribution along the length of the fault, the model utilises a

normal distribution curve. This permits alteration of the distribution curve shape depending

on the system by varying the standard deviation, skewness and kurtosis. Assigning these

variables with a value of one produces a parabola (Fig. 5). The model assumes that during

growth, the fault is fixed in length, i.e. it is pinned at the fault tips. This growth model is

supported by other studies that document examples of faults demonstrating constant-length

growth (Walsh et al., 2002, 2003; Childs et al., 2003; Schlagenhauf et al., 2008; Jackson &

Rotevatn, 2013; Nicol et al., 2016; Jackson et al., 2017). In cases when fault tips propagate,

stacking will vary from that anticipated by the model, or it can be used to represent the

central growth phase of the fault, when it is no longer undergoing linkage (in the terminology

of Cowie et al., 2000).

2.3.2. Subsidence away from the fault

In a half graben, rotation is focussed at the hinge line, and beyond this point the net

movement is uplift. The model considers subsidence from the immediate hangingwall where

it is maximum, up to the hinge line of the block where it is zero. As subsidence is zero at the
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fault tips and maximum at the fault centre, the displacement from a slip event is distributed

radially away from the fault. The structure contours resemble the parabolic shape of the

displacement curve along the fault length and a ‘zero contour line’, the line of zero

subsidence, is defined. The model generates the parabolic subsidence curve along the length

of the fault, the equivalent zero contour line away from the fault, and the user defines the

style of interpolation between them, which can be either linear or parabolic (Fig. 5). The

interpolation (decay curve) style is determined by the manner in which the hangingwall

deforms. If the hangingwall subsides without changing geometry, i.e. the hangingwall does

not deform in dip-section as it rotates, a linear decay curve should be assigned. If the surface

of the hangingwall adopts a convex geometry in dip-section during subsidence, a parabolic

decay curve can be assigned.

2.3.3. Subsidence in time

During the syn-rift phase of fault growth, cumulative subsidence increases incrementally over

time as a result of a series of earthquakes, and the hangingwall will subside in each event. As

a result, the hangingwall deepens through time and accommodation is created. The

subsidence rate is considered as the subsidence per earthquake over a given recurrence

period. For example, the subsidence rate for earthquakes with a subsidence of 5m per event

and a recurrence period of 500 years would be 10 mm/yr.

Syn-Strat allows a choice of in-built conceptual subsidence curves with time or the input of

an observed subsidence curve. Figure 5 illustrates three examples of conceptual subsidence

curves: a constant, an increasing, and a decreasing subsidence rate. A linear increase in

subsidence through time represents a constant subsidence rate. In this scenario, the

hangingwall cut-off deepens by the same increment with each earthquake. For the central

growth phase of a fault, it is perhaps most appropriate to choose a linear increase, as the fault

is no longer linking with other faults and growth is no longer accelerating (as in Gupta et al.,
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1998; Cowie et al., 2000). An exponential increase of subsidence in time would represent an

increasing strain rate and subsidence rate. In this scenario, each subsequent earthquake must

produce a greater amount of subsidence, or there must be an increasing frequency of

earthquakes. This could represent the early syn-rift phase of fault evolution, during fault

linkage and strain localisation. Conversely, for a decreasing subsidence rate, there must be a

reducing amount of subsidence for each subsequent earthquake, or a reduced frequency of

earthquakes, which could represent the late syn-rift phase of fault evolution. Composite

subsidence curves can be constructed. For example, a curve that represents the evolution of

the fault from early- to late-syn rift phases, or a curve that defines the transition from active

fault subsidence to either fault inactivity, as strain is partitioned to an adjacent fault, or to a

post-rift basinal phase. Similarly, the subsidence rate can be varied through time to show a

higher resolution of fault activity, e.g. earthquake clustering on one of a number of faults.

The subsidence curve in each dimension are multiplied to produce a 3D graphical surface.

Figure 5 represents subsidence along the length of the fault, through time in the immediate

hangingwall of the fault (configuration 1 of Fig. 2A). It is composed of a parabolic

displacement curve along the length of the fault, a linear increase in subsidence over time,

and a linear decrease in subsidence away from the fault. Without consideration of eustatic sea

level and sediment supply, this represents fault-related, temporal and spatial variations in

accommodation.

2.4. Sedimentation

Sedimentation reduces the available space for subsequent deposition. Therefore,

sedimentation is subtracted from combined eustatic sea level and subsidence to give the

resultant graphical accommodation surface.
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Spatial and temporal variations in sediment supply and the number and location of drainage

input points arise as a result of climate variability (wind, temperature, rainfall, vegetation and

their seasonal fluctuations), size and physiography of each drainage basin (gradient, relief and

orientation) and hinterland geology (e.g. Hack, 1957, Leeder & Gawthorpe, 1987, Ravnås &

Steel, 1998). Spatial and temporal changes in sediment supply is a complicated variable that

is difficult to constrain even in recent systems (Mullenbach & Nittrouer, 2006; Romans et al.,

2009; Allen et al., 2013; Warrick, 2014; Romans et al., 2016). Syn-Strat utilises sediment

accumulation (or sedimentation), rather than sediment flux. Sedimentation is defined

geometrically, in contrast to some other models that utilise a process-based, commonly

diffusion-type, approach (e.g. Rivænes, 1992; Flemings & Grotzinger, 1996; Granjeon &

Joseph, 1999; Burgess& Prince, 2015). Although the geometric approach has its own inherent

assumptions (discussed in Section 3.2), it avoids some of the limitations of process-based

models in relation to the interaction of different process-regimes and dispersal mechanisms.

The initial and final sedimentation accumulations are assigned, as well as the shape of the

input curve in time and in space. A sedimentation rate is not assigned unless a linear curve in

time is utilised, as in all other cases, it varies.

2.4.1. Sedimentation along the fault length

Here we model examples of shoreline-attached systems. In some scenarios, these prograde

from the relay zones of a fault with, if accommodation allows, maximum deposition

occurring at the fault tips and reducing towards the centre of the fault. In a scenario with

equal sedimentation from both fault tips, an inverse parabola is used to model the sediment

distribution along the length of the fault (Fig. 6). For this distribution, the percentage of total

sedimentation that reaches the centre of the fault is defined. Any geometric curve that

describes the distribution of sedimentation along the length of the fault can be utilised. For

this study, we utilise curves with maximum deposition at a given location along the fault (the
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source point), which decreases away from that point radially to represent a prograding,

shallow marine system, such as a delta. In a scenario of multiple footwall point sources (Fig.

6), Syn-Strat allows the user to alter the number, location, magnitude, shape and range of

sediment input points. For the sediments (and predicted stacking) to be preserved,

accommodation values must exceed zero; any ‘negative’ accommodation values generated

from the model represent sediments that would be bypassed to deeper water and/or

redistributed along strike. However, an exception is with the presence of pre-existing

accommodation, such as antecedent bathymetry, or regional tectonic subsidence that are not

included in the model results presented here, and would allow preservation in modelled areas

of ‘negative’ accommodation.

2.4.2. Sedimentation away from the fault

Sedimentation with distance away from the fault is not limited to a zero contour line (as with

subsidence), and is defined as a linear, parabolic or exponential decrease towards zero at a

chosen distance away from the fault. Figure 6 provides two examples of such options: a linear

decrease and a parabolic decrease to zero at the hinge line.

2.4.3. Sedimentation in time

There are a number of controls that cause temporal variations in sedimentation, including

changes in climate, source geology and drainage basin physiography on a range of

timescales. In Syn-Strat, the user can define sedimentation over time from observed data or

from a number of in-built options in the model, e.g. a linear or exponential increase, or

decrease, a constant rate or a sinusoidal variation (Fig. 6). The product of sedimentation in

each dimension is a 3D graphical surface. For example, Figure 6 uses an inverse parabola to

describe sedimentation along the length of the fault, a linear increase in sedimentation over

time and a linear decrease in sedimentation away from the fault to the hinge line. The 3D
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graphical plot presents sediment accumulation, along the length of the fault, through time in

the immediate hangingwall of the fault (configuration 1 of Fig. 2A).

3. Model output results

3.1. 3D accommodation surface

A 3D graphical surface that represents accommodation is produced by summing eustasy and

tectonics and subtracting sedimentation. This is presented in Figure 7, with accommodation

along the length of the fault, through time in the immediate hangingwall of the fault

(configuration 1 of Fig. 2A). In the example shown, subsidence is maximum and

sedimentation is minimum at the centre of the fault. In this case, accommodation generally

rises over time and is modified by a lower amplitude sinusoidal sea level. At the fault tip,

subsidence is zero and sedimentation is maximum, and accommodation decreases over time

into negative values as the basin fills to an overfilled state. This plot describes the interaction

of the major controls, from which systems tracts can be identified and stacking patterns can

be predicted.

3.2. Stacking patterns

For descriptions of stratal stacking patterns, Neal & Abreu (2009) and Neal et al. (2016)

propose mainly observation-based, physical stratigraphy that describes the coastal response to

accommodation creation and sedimentary fill. The terms progradation, aggradation,

retrogradation and degradation are used to describe the way in which a depositional

environment moves in space and thus, and how sediments are stacked through time. During

progradation, the depositional system advances basinward as deposition exceeds available

accommodation. In this case, marginal facies overlie basinal facies, characterised by a

coarsening-upwards siliciclastic succession in core and outcrop and a decreasing gamma ray

©2018, Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/



15

response in well-logs. During retrogradation, the system retreats (landwards) as

accommodation exceeds deposition. Here, basinal facies overlie marginal facies and there is a

fining-upwards succession in core and outcrop and an increasing gamma ray response in

well-logs. During aggradation, deposition is equal to accommodation and the system neither

advances nor retreats.

Syn-Strat colours the 3D surface according to these terms and utilises 5 classifications: strong

retrogradation, weak retrogradation, aggradation, weak progradation and strong progradation

(Fig. 8). The plot shows an overlay of Figure 7, with progradation (in warm colours) during

relative sea level fall and retrogradation (in cold colours) during relative sea level rise. The

model output also illustrates enhanced periods of retrogradation near the fault centre, where

space is greater than deposition, and enhanced periods of progradation near the fault tips,

where deposition is greater than available space. The plot provides the user with visualisation

of how the sediments stack in time and space. Such information is useful to improve

prediction of stacking patterns in areas with poor data constraint.

As shown, the model can generate the system response to major sedimentary controls in the

form of stacking patterns, but does not predict the nature of the deposit. For this, various

autogenic controls and the process regimes (transport mechanisms and directions) responsible

for transport and deposition, and remobilisation, need to be considered, which challenge all

existing numerical models of stratigraphic architecture. For example, where Syn-Strat

anticipates areas of system retrogradation, the deposit may exhibit a fining-upwards profile or

there may be a condensed section in the rock record. Similarly, where Syn-Strat shows areas

of system progradation, the deposit may exhibit a coarsening-upwards profile or there may be

a regressive surface indicating basinward sediment bypass (sensu Stevenson et al., 2015). In

regard to preservation, areas of the plot with accommodation values less than zero will have

low preservation potential. For a more accurate restoration of preservation, the antecedent
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topography and the broader scale effect of thermal subsidence at the scale of the basin would

need to be considered. Therefore, the model is best utilised to provide the stratigraphic

framework to which a process-regime(s) can be applied to predict sediment dispersal

patterns.

3.3. Systems tracts

Systems tracts are used to subdivide a depositional sequence based upon its position on a

relative sea level curve (or accommodation curve). As sequence stratigraphy theory has

evolved, so complicated and non-universal systems tract schemes have developed (see

Catuneanu, 2006, 2009 for summary). For plotting systems tracts, Syn-Strat allows any one

of these sequence stratigraphic approaches to be assigned and colours the accommodation

surface accordingly (Fig. 9). The example 3D curve presented is an overlay of Figure 7 and

adopts the ‘genetic sequence’ approach (e.g. Frazier, 1974 and Galloway, 1989), whereby the

Highstand Systems Tracts (HST), the Early Lowstand Systems Tracts (ELST), the Late

Lowstand Systems Tracts (LLST) and the Transgressive Systems Tracts (TST) are

represented by the yellow, purple, blue and green segments, respectively (Fig. 8). Application

of the systems tracts to the 3D surface helps visualisation of the temporal variation in the

development of key sequence stratigraphic boundaries along the fault, e.g. maximum

flooding surfaces (MFS) and sequence boundaries (SB). The sequence boundary (or

‘correlative conformity’) between the HST in yellow and the ELST in purple is diachronous,

and occurs at a later time at the centre of the fault than at the fault tips. In the ‘genetic

sequence’ scheme, the MFS is taken to be the position between TST and HST and it also

occurs at a later time towards the centre of the fault than at the fault tips (Fig. 8). We later

discuss the implications of selecting an alternative MFS position on a relative sea level curve,

because this choice will determine the nature of the diachroneity of the MFS along the fault.
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4. Discussion

The sensitivity of sequence architecture to major sedimentary controls and the utility of this

model is discussed using a number of conceptual tests. In these tests, the major controls in

terms of relative magnitude, rates through time and spatial distribution have been varied, with

reference to documented examples from exhumed and modern systems.

4.1. Eustatic sea level- vs. subsidence-dominated successions

Two conceptual scenarios that demonstrate the differences between subsidence-dominated

and eustatic sea level-dominated systems have been modelled (Fig. 10). In both cases, the

rate of change of the dominant control is an order of magnitude higher than the subordinate

control. Sedimentation from both fault tips is high and of the same magnitude as the

dominant control, resulting in a balanced state in both scenarios. A sinusoidal eustatic sea

level and exponential increase in subsidence from zero, through time are applied. Figure 10

shows the 3D graphical accommodation surface along the length of the fault, in time, in the

immediate hangingwall of the fault and is coloured by systems tracts. The sequence

boundaries between the HST and ELST are identified in a flattened version. In the

subsidence-dominated scenario, the sequence boundaries are diachronous and the expression

is lost in the model output at the fault centre towards the end of the time-frame. Here, the rate

of subsidence outpaces the maximum rate of eustatic sea level fall with a resultant relative

sea level rise. In the rock record, an unconformity that represents the sequence boundary

would be expressed in this area as a correlative conformity. In the eustatic sea level-

dominated scenario, the sequence boundaries are expressed and are isochronous along the

length of the fault.

4.1.1. Field-based example: Loreto Basin
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These scenarios strongly resemble the partially-constrained, sediment-rich depositional

system of the Piedras Rodadas Formation, Loreto Basin, Gulf of California, which is sub-

divided into two sub-basins: the Central sub-basin and the SE sub-basin. Subsidence rates of

the Loreto Fault in both sub-basins from 2.6 to 2.4 Ma were derived by Umhoefer et al.

(1994) and refined by Dorsey & Umhoefer (2000). The Central sub-basin experienced

subsidence rates of 8 mm/yr and the SE sub-basin experienced lower subsidence rates of 1.5

mm/yr over the 200 kyr period. With an estimated eustatic sea level change rate of 4-5 mm/yr

(supported by Raymo et al., 1992; Blanchon & Shaw, 1995), Dorsey & Umhoefer (2000)

present the contrast between the subsidence-dominated Central sub-basin to the eustatic sea

level-dominated SE sub-basin. The authors observe the presence of sequence boundaries in

the SE sub-basin and a distinct lack of sequence boundary expression in the central sub-basin,

which is consistent with our model results.

A second test (Fig. 11) shows two contrasting model outputs using the same input parameters

and configuration (1 of Fig. 2A) as in Figure 10, except with a low sediment input from the

fault tips. Hence, the basin is in a sediment-starved state, as opposed to a balanced state.

Here, stacking patterns are presented, rather than systems tracts. In this test, the stacking

patterns show more along-strike variation in the subsidence-dominated scenario than the

eustatic sea level-dominated scenario due to the influence of subsidence distribution on the

accommodation curve. Strong progradation only occurs from the fault tips over short periods

during the maximum rate of relative sea level fall. The period of each progradational phase

shortens towards the centre of the fault, and the period of each retrogradational phase

shortens towards the fault tips. Weak retrogradation/aggradation occurs at the fault tips

during relative sea level rise. In contrast, the eustatic sea level-dominated plot reveals

laterally continuous patterns of alternating strong retrogradation and progradation as eustatic

sea level varies through time. In comparison to the previous example (Fig. 10), the
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accommodation curve shows less along-strike variation due to the lesser influence of

sedimentation in this underfilled scenario.

4.1.2. Field-based example: Alkyonides Basin

A modern analogue for this example is the partially-constrained, Holocene-active system

surrounding the Psatha-Skinos-Alepochori fault system in the Alkyonides Gulf, Greece.

Here, sediment inputs have arisen from the relay zones of the fault system. An average

sedimentation rate of 1.1 mm/yr (Collier et al., 2000; Bell et al., 2009), an average eustatic

sea level rise rate of 5.8 mm/yr (70 m rise in 12 kyr; Collier et al., 2000), and an average

hangingwall subsidence rate of 0.5-0.6 mm/yr established near the fault tips (Leeder et al.,

2002) over the last 12 kyr have been constrained. This suggests that over the last 12 kyr the

system has been eustatic sea level-dominated, and relatively sediment starved, with low

subsidence approaching zero towards the fault tips, and as a result, the beach barriers

extending from both fault tips are retrograding (Collier & Gawthorpe, 1995). This pattern is

anticipated in the model results during the relative sea level rises of the eustatic sea level-

dominated model (Fig. 11). With the exception of the possibility of fault tip propagation

during this time, it is only this interplay of controls that allow significant retrogradation at the

fault tips, in such a eustatically-dominated period such as the Late Quaternary. The

sedimentary successions may exhibit greater retrogradation in areas with higher subsidence,

such as the centre of the fault. This has been observed in a shallow piston core study from the

hangingwall of the West Channel fault, at the western end of the Gulf of Corinth (Bell et al.,

2009).

4.2. Sensitivity to varying subsidence rates

Depositional sequences are defined by the relative influence of the major sedimentary

controls, and are influenced by the nature of that control through time. Three modelled
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examples with different subsidence histories demonstrate this (Fig. 12): an increasing

subsidence rate (A), an episodic subsidence rate (B), and a decreasing subsidence rate (C). In

each example, the same eustatic sea level and sedimentation models are used, hence any

variations in the stacking patterns may be attributed solely to variations in subsidence. There

is no pre-inherited accommodation. The plot in Figure 12 is presented in configuration 1 of

Figure

2A.

The scenario with an increasing subsidence rate (Fig. 12A) reveals progressively longer

periods of retrogradation and shorter progradational periods, particularly towards the centre

of the fault where subsidence is maximal. Because subsidence rate increases through time,

the system reveals more along-strike variation in stacking patterns. A scenario with six

phases of subsidence (Fig. 12B) reveals a cyclic pattern with periods of progradation

separated by periods of strong retrogradation, particularly near the fault centre. Each

subsidence event is the same magnitude and duration. The effects of each subsidence event

would be more strongly expressed in a scenario with a lower amplitude eustatic sea level

signal, as here they are superimposed onto higher amplitude eustatic sea level variations

through time. Dorsey & Umhoefer (2000) and Mortimer et al. (2005) attribute episodic, fault-

controlled subsidence along the Loreto Fault as the principal control on the accumulation and

timing of several fluvio-deltaic progradational units in the Central sub-basin of Loreto, Gulf

of California. Each progradational unit is capped by a MFS, expressed as a shell bed. A MFS

is predicted during the strong retrogradational periods in the model (Fig. 12B). In the third

scenario (Fig. 12C), subsidence rate decreases to zero after 80% of the time has lapsed. This

pattern of subsidence may represent a syn- to post-faulting transition, whereby a fault

switches off as strain is taken up on an adjacent fault. The output largely shows the inverse of

the first scenario, whereby longer periods of strong retrogradation near the fault centre are

©2018, Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/



21

expressed initially when subsidence rates are highest, and these are suppressed through time

with decreasing subsidence rate. Initially, there are marked along-strike variations in stacking

patterns, but as subsidence decreases through time, eustatic sea level becomes increasingly

dominant and the stacking patterns become more laterally continuous.

4.3. Sensitivity to varying sedimentation distribution

Spatial and temporal variations in sediment flux from drainage basins to sedimentary basins

are hard to quantify, and have been less emphasised in sequence stratigraphic interpretations

than accommodation-driven changes (Burgess, 2016). To assess the sensitivity of stacking to

sedimentation patterns, three different sedimentation models are superimposed upon the same

subsidence and eustatic sea level models in each case (Fig. 13 – in configuration 1 of Fig.

2A), in which subsidence is high and the amplitude of eustatic sea level change is an order of

magnitude lower. The distribution of sedimentation along the fault is varied but the

magnitude of maximum sedimentation (and rate) is the same in each scenario. With all other

controls uniform between the tests, any changes observed in the nature of the SBs and MFSs

may only be attributed to the sedimentation model. The three scenarios tested are: a system

with equal sediment input from the fault tips (A), a system with sediment input from one fault

tip (B) and a system with sediment input from point sources that could represent fan deltas

(C).

Figure 13A utilises the sedimentation model with equal input from both fault tips. The

sequence boundaries are highlighted and it can be seen that they are diachronous due to the

combined influence of laterally variable subsidence and sedimentation. As a result of

sedimentation being equal from both fault tips, the diachroneity of the sequence boundaries is

symmetrical over the centre of the fault. Conversely, where sedimentation occurs from one

fault tip (Fig. 13B), the nature of the sequence boundaries is not symmetrical over the centre

of the fault. The side that experiences the most sedimentation expresses more prominent

©2018, Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/



22

diachroneity of sequence boundaries than the sediment-starved side, where they are

isochronous. At the fault tip with sediment input, the sediment supply counteracts the effects

of relative sea level rise because the space that is being created is being filled. It promotes the

relative sea level fall and progradation. This effect decreases towards the centre of the fault,

away from the sediment source, enhancing the along-strike diachroneity. On the side of the

fault where there is no sediment source, the sequence boundaries are influenced only by

eustasy and decreasing subsidence towards the fault tip. The 3D accommodation surface

illustrates the decreasing accommodation on the sediment-rich side through time, whereas

accommodation on the sediment-starved side varies only with eustatic sea level.

In the scenario with sedimentation from five point sources (Fig. 13C), the amount of

sedimentation and degree of dispersal is equal from each source. The plot shows a reduction

in accommodation where the point sources are located, hence the irregular shape of the

surface. The sequence boundaries are highlighted in the flattened plot and their degree of

diachroneity varies along the fault length. For example, the sequence boundary occurs earlier

where the point sources (T1 in Fig. 13) are located than it does in the areas between them (T2

in Fig. 13). These scenarios support the inference that temporal and spatial changes in

sediment supply need to be considered when making sequence stratigraphic interpretations,

as well as accommodation changes from eustasy and tectonics that are usually emphasised.

4.4. Implications and applications for subsurface appraisal

During hydrocarbon prospect appraisal and static model generation, key stratigraphic

surfaces, such as the MFS and SB, are used to correlate between wells, with the assumption

that they are isochronous surfaces. However, recent studies have shown that such surfaces are

time transgressive in a range of environments (e.g. Holbrook & Bhattacharya, 2012; Burgess

& Prince, 2015; Hodgson et al., 2016; Madof et al., 2016). Here, we not only demonstrate

that such surfaces are diachronous along the length of syn-rift faults due to along-strike
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variation in both sedimentation and subsidence, but also demonstrate the nature of that

diachroneity. In the case of the MFS, which likely forms part of the seal to a hydrocarbon

reservoir, understanding the temporal relationships along-strike of a fault are of critical

importance for hydrocarbon volume calculations and production rate predictions. When the

MFS is used for correlation, care should be taken when choosing the representative position

on the relative sea level curve, or which sequence stratigraphic scheme to adopt because the

nature of diachroneity varies between the different positions. Consider a comparison between

two options for MFS position choice: 1) the position between TST and HST, following the

‘genetic sequence’ scheme, 2) the position between LLST and TST (the initial transgressive

surface). Both surfaces are diachronous along the fault, but the nature of that diachroneity is

different between them, with the former occurring later at the centre of the fault than at the

fault tips (Fig. 8), and the latter occurring earlier towards the centre of the fault than at the

fault tips. This difference could be important for trap-seal analysis, where understanding the

variability of the shale intervals caused by the MFS in time and space is fundamental. Syn-

Strat allows the user to visualise such variations qualitatively and to quantify the variations

for a given magnitude of each control. The model also permits flexibility on timing and

duration of dominance of one control to the other and thus allows an iterative approach to

sequence stratigraphic tests when constraining controlling parameters. Producing a solid

foundation to which process-based models can be applied is crucial for prediction of large-

scale stacking in complex settings. The Syn-Strat model approach is particularly useful for

low-resolution datasets, such as seismic, where small-scale deposition characteristics are not

readily apparent. It allows insight into the way a system responds to particular controls and

shows the differences by making spatial and temporal adjustments to those controls. An

assessment of all the possible outcomes from a particular setting allows the stratigrapher to

obtain the best understanding of the controls in play. If a good correspondence is made
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between the data and the model in one area, the model may then be used to anticipate the

potential stacking further along-strike or down-dip, in the absence of good quality data.

5. Conclusion

Syn-Strat, a novel 3D sequence stratigraphic forward model is presented, which introduces

both temporally- and spatially-variable tectonic components to sequence stratigraphic

modelling. The model provides a framework to which process-based models could be applied

and provides the scope to test multiple scenarios where the controlling parameters are poorly

constrained, and outcomes with a unique, useful and universal presentation style. Syn-Strat

considers along-strike, down-dip and time variability in sequence architecture on a fault

segment-scale and can be used to improve interpretation and prediction of syn-rift

depositional architectures, which are the focus of exploration in a number of hydrocarbon

basins, by constraining system response to any combination of autogenic controls

By calculating accommodation in three dimensions, Syn-Strat is able to demonstrate the

sensitivity of sequence architecture to laterally variable tectonic constraints and different

relative magnitudes of allogenic controls. A basin largely modified by faulting will exhibit

different depositional architecture to one dominated by eustasy, and the model outputs

demonstrate how this difference is expressed in terms of stacking patterns and stratigraphic

surfaces. The model has demonstrated the potential for analysis of along-strike variations in

stacking patterns due to different subsidence rate characteristics, and the nature of

diachroneity of key stratigraphic surfaces as a result of different sedimentation distribution

models. Stratigraphic surfaces are known to be diachronous in these settings. However,

understanding how the diachroneity of these surfaces changes spatially represents a

significant step forward for petroleum system interpretations, where such surfaces may

represent bypass zones or stratigraphic traps seals and are heavily relied upon for well
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correlations, and hence reservoir connectivity and production rate predictions. Additionally,

the ability to understand how stacking patterns vary spatially and temporally is highly

valuable in areas with little data constraint. Such variation is visualised in the sensitivity tests

presented in this paper that are tied to field analogues, but in the future may be constrained

with quantitative data from real input parameters.
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Figure captions

Figure 1

Process of forward stratigraphic modelling of syn-rift basin-fills. Stratigraphy at a position

within the hangingwall of a normal fault is the result of the interplay of the three major

sedimentary controls: eustatic sea level, fault-related subsidence and sedimentation. These

controls can be modelled to provide insight for interpretation and prediction of syn-rift strata.

Figure 2

Model plot axes options, associated geological setting and example model outputs. 1) Plot of

accommodation on any line parallel to the fault in the hangingwall in time, for any given

distance away from the fault (x’,t’). 2) Plot of accommodation on any line orthogonal to the

fault in the hangingwall in time, for any given position along the fault (y’,t’). 3) Plot of

accommodation in space (parallel to and orthogonal to the fault), for any given time (x’,y’).

Structural contours shown by blue dashed lines. All figures hereafter utilise the axes shown in

‘1’.

Figure 3
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Derivation of the 3D eustatic sea level curve. Eustasy defined geometrically in time (top),

along the fault length (upper middle) and away from the fault (lower middle). The three

curves are convolved to give the 3D plot (bottom) in a given configuration (1 of Figure 2A).

Axes are dimensionless. ‘Time’ varies between 0 and 1. ‘Distance along fault’ varies between

-1 and 1, where these are the fault tips and 0 represents the fault centre. ‘Distance away from

fault’ varies between 0 and 1, where 0 is closest to the fault and 1 is the hinge-line.

Figure 4

Diagram to illustrate the various relative sea level/accommodation curves that can be derived

from the convolution of eustatic sea level and subsidence at three positions along a

hangingwall fault block. The eustatic sea level curve that is used for all three positions is

displayed on the left hand side. Modified from Collier & Gawthorpe (1995).

Figure 5

Derivation of the 3D subsidence curve. Subsidence is defined geometrically in time (lower

box), with in-built options of either an increasing, constant, or decreasing subsidence rate.

Subsidence is defined along the fault length (upper box), where a parabola describes the

distribution of subsidence, and away from the fault (middle-right box), where two

configurations are presented as options: either a linear or parabolic regression away from the

fault. The highlighted blue boxes denote the chosen input in each case for the example 3D

convolution. The resultant 3D subsidence plot, in a given configuration (1 of Figure 2A), is

shown to the middle-left. It shows the variation of subsidence with the chosen parameters

along the length of the fault, in time, in the immediate hangingwall of the fault.
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Figure 6

Derivation of the 3D sedimentation curve. Sedimentation is defined geometrically in time

(lower box), where three examples of sedimentation curves that could be chosen are

presented: a constant, decreasing, or fluctuating sedimentation rate. Sedimentation is defined

along the fault length (upper box), where two examples of sediment distribution curves that

could be chosen are presented: relay zone entry points and footwall point sources.

Sedimentation is defined away from the fault (middle-right box), where two configurations

are presented as options: either a linear or parabolic regression away from the fault up to the

hinge line. The highlighted blue boxes denote the chosen input in each case for the 3D

convolution. The resultant 3D sedimentation plot, in a given configuration (1 of Figure 2A),

is shown to the middle-left. It shows the variation of sedimentation with the chosen

parameters along the length of the fault, in time, in the immediate hangingwall of the fault.

Figure 7

3D accommodation plot (configuration 1 of Figure 2A), generated from the convolution of all

three major controls: eustatic sea level, subsidence and sedimentation. The input curves for

each control along the fault length and in time are presented above and below the plot,

respectively. A block diagram to show the setting of the plot is provided to the left, where the

red line shows the position of the plot, in the immediate hangingwall of the fault.

Figure 8

3D accommodation plot from Figure 7 with stacking patterns presented. Plot shows the

along-strike variation in stacking patterns as a result of laterally variable allogenic controls.

Surface is coloured by 5 classifications: strong retrogradation (dark blue) and weak
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retrogradation (light blue), occurring during the relative sea level rises; aggradation (yellow);

weak progradation (orange) and strong progradation (red), occurring during the relative sea

level falls. A block diagram to show the setting of the plot is provided in Figure 7.

Figure 9

3D accommodation plot from Figure 7 with systems tracts presented. Colours represent

systems tracts as per the scheme named ‘Genetic sequence’ in Catuneanu et al. (2009),

where: TST = Transgressive Systems Tract, LLST = Late Lowstand Systems Tract, ELST =

Early Lowstand Systems Tract and HST = Highstand Systems Tract. Sequence boundaries

are indicated by the blue arrows between the HST and ELST and can be seen to be

diachronous along the fault, i.e. occurring at a later time towards the centre of the fault than

towards the fault tips. The sections of the relative sea level curve that each stage refers to is

illustrated on the relative sea level curve at the top-left. A block diagram to show the setting

of the plot is provided in Figure 7.

Figure 10

Diagrams with systems tracts presented to show the difference between two contrasting

conceptual scenarios with a high sediment supply: a subsidence-dominated (top) and eustatic

sea level-dominated (bottom) system; analogous to the two sub-basins of the Piedras Rodadas

Formation, Loreto Basin, Gulf of California. A 3D accommodation surface is shown for both

cases with a flattened version adjacent. Both scenarios incorporate high sedimentation from

the fault tips, simplified, sinusoidal eustatic sea level and an increasing subsidence rate

through time. The rate of change of the dominating control is an order of magnitude higher

than that of the subordinate control, in both cases. In the subsidence-dominated scenario, it is
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clear that each sequence boundary is diachronous and its expression is lost at the fault centre

towards the end of the time-frame. In the eustatic sea level-dominated scenario, the sequence

boundaries are expressed and are isochronous along the length of the fault.

Figure 11

Diagrams with stacking patterns presented to show the difference between two contrasting

conceptual scenarios with a low sediment supply: a subsidence-dominated (top) and eustatic

sea level-dominated (bottom) system; analogous to the Holocene-active system surrounding

the Psatha-Skinos-Alepochori fault system, Alkyonides Gulf, Greece. A 3D accommodation

surface is shown for both cases with a flattened version adjacent. Both scenarios incorporate

low sedimentation from the fault tips, simplified, sinusoidal eustatic sea level and an

increasing subsidence rate through time. The rate of change of the dominating control is an

order of magnitude higher than that of the subordinate control in both cases. There is more

along-strike variation in the subsidence-dominated scenario than the eustatic sea level-

dominated scenario.

Figure 12

Diagrams to show the variation in stacking patterns between three conceptual scenarios with

different subsidence rate patterns: an increasing (A), episodic (B) and decelerating (C)

subsidence rate. Graphs to show the subsidence input through time are presented on the left

and flattened accommodation surfaces are presented on the right. The plots exhibit increasing

along-strike variation through time, cyclic variations and decreasing along-strike variation

through time, respectively.
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Figure 13

Diagrams with systems tracts presented to show differences between three conceptual

scenarios with different sedimentation distribution patterns along the fault length: equal input

from both fault tips (A), input from left fault tip (B) and point sources (C). Graphs to show

the sedimentation input along the fault length (left), output 3D accommodation surfaces

(middle) and flattened accommodation surfaces (right) are presented. The nature of

diachroneity of sequence boundaries varies in each scenario, as labelled in white.
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