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14 Abstract

15 In many drylands worldwide, rivers are subjected to episodic, extreme flood events and associated 

16 sediment stripping.  These events may trigger transformations from mixed bedrock-alluvial 

17 channels characterised by high geomorphic and ecological diversity towards more dominantly 

18 bedrock channels with lower diversity.  To date, hydrological and hydraulic data has tended to be 

19 limited for these bedrock-influenced dryland rivers, but recent advances in high-resolution data 

20 capture are enabling greater integration of different investigative approaches, which is helping to 

21 inform assessment of river response to changing hydroclimatic extremes.  Here, we use field and 

22 remotely sensed data along with a novel 2D hydrodynamic modelling approach to estimate, for the 

23 first time, peak discharges that occurred during cyclone-driven floods in the Kruger National Park, 

24 eastern South Africa, in January 2012.  We estimate peak discharges in the range of 4470 to 5630 

25 m3s-1 for the Sabie River (upstream catchment area 5715 km2) and 14 407 to 16 772 m3s-1 for the 

26 Olifants River (upstream catchment area 53 820 km2).  These estimates place both floods in the 

27 extreme category for each river, with the Olifants peak discharge ranking among the largest 

28 recorded or estimated for any southern African river in the last couple of hundred years.  On both 

29 rivers, the floods resulted in significant changes to dryland river morphology, sediment flux and 

30 vegetation communities.  Our modelling approach may be transferable to other sparsely gauged or 

31 ungauged rivers, and to sites where palaeoflood evidence is preserved.  Against a backdrop of 

32 mounting evidence for global increases in hydroclimatic extremes, additional studies will help to 

33 refine our understanding of the relative and synergistic impacts of high-magnitude flood events on 

34 dryland river development.

35

36 Key words: dryland river, 2D hydraulic modelling, extreme flood, flood estimation, palaeoflood, 

37 Sabie River, Olifants River
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38 INTRODUCTION

39 Drylands (hyperarid, arid, semiarid and dry-subhumid regions) cover 40-50% of the Earth’s surface 

40 and sustain 30-40% of the world’s population (e.g. United Nations, 2016).  Many drylands are 

41 characterised by strong climatic variations, with extended dry periods interspersed with short, intense 

42 rainfall events, and are widely considered to be among the regions most vulnerable to future climate 

43 change (Obasi 2005; IPCC 2007; Wang et al., 2012).  Many dryland river flow regimes are similarly 

44 variable (McMahon et al., 1992), with long periods of very low or no flow being followed by 

45 infrequent, short-lived, large or extreme flood events (see Tooth, 2013).  This variable flow regime 

46 is one of the primary controls on dryland river process and form, commonly resulting in channel-

47 floodplain morphologies and dynamics that differ markedly from many humid temperate rivers 

48 (Tooth, 2000, 2013; Jaeger et al., 2017).  In particular, the role of extreme events in the episodic 

49 ‘stripping’ of unconsolidated alluvium from an underlying bedrock template has been reported as a 

50 key control on the long-term development of many southern African, Australian, Indian and North 

51 American dryland rivers (e.g. Womack and Schumm 1977; Baker 1977; Kale et al. 1996; Bourke and 

52 Pickup 1999; Rountree et al. 2000; Tooth and McCarthy 2004; Milan et al., 2018a, b).  These stripping 

53 events limit long-term sediment build-up and contribute to incremental channel incision, which over 

54 many millennia leads to progressive valley deepening.

55

56 Over the last few decades, research into bedrock-influenced, dryland rivers has increased (e.g. 

57 Heritage et al., 1999, 2001; Tooth et al., 2002, 2013; Meshkova and Carling, 2012; Keen-Zebert et 

58 al., 2013), but hydrological and hydraulic data remain limited owing to the difficulty in collecting 

59 information in these typically harsh environments with their relatively infrequent channel-shaping 

60 flows.  In particular, gauging stations commonly fail to accurately record flow data during large or 

61 extreme flood events, as the structures are commonly drowned out and/or suffer physical damage.  

62 This paucity of data hampers efforts to develop and apply conceptual and quantitative models of the 

63 response of these types of dryland rivers to past, present and future climatic changes, including the 
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64 relative and synergistic impacts of different floods on river morphology, sediment flux, and ecology 

65 (e.g. Milan et al., 2018b).  Against a backdrop of heightening concern and mounting evidence for 

66 increases in hydroclimatic extremes in a warming world (e.g. Hansen et al., 2016: Steffen et al., 2018), 

67 these are critical gaps that limit our ability to manage such dryland rivers.

68

69 Woodward et al.’s (2010) overview of advances in flood and palaeoflood studies drew attention to 

70 alternative approaches to extracting hydrological and hydraulic information from fluvial 

71 environments where direct measurements are difficult or impossible.  Among these approaches, 

72 computational modelling has led to significant insights into the flow hydraulics, sediment dynamics 

73 and morphological and ecological responses of fully alluvial rivers (e.g. Nicholas, 2005, 2010; Milan 

74 and Heritage, 2012) but to date there have not been similar advances in our understanding of bedrock-

75 influenced, dryland river dynamics.  For instance, owing to the paucity of channel roughness 

76 information available for these morphologically-diverse river types, past experience has shown that 

77 modelling and indirect estimation of extreme discharges commonly is problematic and may generate 

78 unreliable data (Broadhurst et al., 1997).

79

80 Despite these limitations, improved remote survey technologies (see Entwistle et al., 2018) and more 

81 sophisticated hydraulic modelling software now enhance the possibility of capturing and processing 

82 high-resolution topographic data to generate improved estimates of flood hydraulics and magnitudes 

83 in bedrock-influenced, dryland systems.  In this paper, we demonstrate how a combination of field 

84 and remotely sensed data (e.g. aerial photography, Light Detection and Ranging (LiDAR)) has been 

85 used to apply a 2D hydraulic model for extensive (50 km long) reaches of the bedrock-influenced 

86 Sabie and Olifants rivers in the Kruger National Park (KNP), South Africa (Fig. 1), where Cyclone 

87 Dando generated high-magnitude floods in January 2012.  As with high-magnitude, cyclone-

88 generated floods in earlier decades (e.g. Cyclone Eline floods in January/February 2000), these 2012 
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89 floods had significant impacts on river geomorphology and ecology (Heritage et al., 2014; Milan et 

90 al., 2018b), and also on domestic and tourism infrastructure within and outside the KNP (Fitchett et 

91 al., 2016).  Until now, however, reliable estimates of the peak flood magnitudes have been limited, 

92 particularly for the Olifants River along which extensive vegetation removal, alluvial stripping and 

93 infrastructural damage occurred.  Our 2D modelling approach represents a step forward from previous 

94 flood magnitude estimation work in the KNP that employed 1D modelling and tended to focus mainly 

95 on the Sabie River alone or shorter reaches of other KNP rivers (e.g. Heritage et al., 2004).  Our 

96 modelling approach may be transferable to other sparsely gauged or ungauged bedrock-influenced, 

97 dryland rivers that are subject to high-magnitude flood events, and to sites where palaeoflood 

98 evidence is preserved, and so may help to refine our understanding of the magnitude, frequency and 

99 impacts of such events on dryland river development.  Hence, the aims of this paper are to: 1) use this 

100 2D hydraulic model to estimate, for the first time, the peak discharges for the 2012 floods on the 

101 Sabie and Olifants rivers; 2) compare these estimates with those generated by other commonly-used 

102 flood estimation approaches; 3) compare the estimates with the peak discharges of large or extreme 

103 floods recorded or estimated previously on the KNP and other southern African rivers; and 4) outline 

104 the implications of changes to extreme flood magnitude and frequency for the development of the 

105 KNP rivers and other bedrock-influenced, dryland rivers globally.

106

107 STUDY SITES

108 The Sabie and Olifants rivers are located in the southern and central part of the KNP in the 

109 Mpumalanga and Limpopo provinces of northeastern South Africa (Fig. 1).  The 54 570 km2 Olifants 

110 catchment incorporates parts of the Highveld Plateau (2000-1500 m.a.s.l.), the Drakensberg 

111 Escarpment, and the Lowveld (400-250 m.a.s.l.).  The 6320 km2 Sabie River catchment covers part 

112 of the Drakensberg Mountains (~1600 m.a.s.l.), the low-relief Lowveld (~400 m.a.s.l.), and the 

113 Lebombo zone (~200 m.a.s.l.).  Rainfall in both catchments is greater in the headwaters (2000 mm 

114 yr-1) and declines rapidly eastwards towards the South Africa–Mozambique border (450 mm yr-1).  
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115 Within the middle reaches, sediment is dominantly sand and fine gravel (median grain size 1-2 mm) 

116 (Broadhurst et al. 1997).  Although water abstractions have altered the low flows (generally below 

117 50 m3s-1) along both rivers, the intermittent, cyclone-driven flood flows are unaffected, and the 

118 channels remain unimpacted by engineering structures or other human activities over considerable 

119 lengths within the KNP.  Thus, both rivers represent excellent, near-pristine sites for investigating 

120 bedrock-influenced, dryland river dynamics.

121

122 Fig. 1

123

124 In the KNP, both rivers are characterised by a bedrock ‘macrochannel’, which extends across the 

125 floor of a 10-20 m deep, incised valley.  The macrochannel hosts one or more narrower channels, 

126 bars, islands and floodplains (Fig. 2A-C).  Outside of the macrochannel, floods have a very infrequent 

127 and limited influence.  These rivers are characterised by a high degree of bedrock influence, and the 

128 diverse underlying geology results in frequent, abrupt changes in macrochannel slope and associated 

129 sediment deposition patterns.  Locally, bedrock may be buried by alluvial sediments of varying 

130 thickness, resulting in diverse channel types that range from fully alluvial (Fig. 2A) to more bedrock-

131 influenced (Fig. 2B-C) (van Niekerk et al. 1995).

132

133 Fig. 2

134

135 In mid January 2012, Cyclone Dando impacted on eastern southern Africa.  Widespread heavy 

136 rainfall (450-500 mm in 48 hours) led to high magnitude floods along many of the rivers that drain 

137 into and through the KNP.  Preliminary 2D hydraulic modelling of the Sabie River floods (Heritage 

138 et al. 2014; Milan et al. 2018b) shows that local velocities peaked at 4 m s-1, resulting in extensive 

139 vegetation removal, erosion and sedimentation along many reaches (Figs 2D-E).  Here, we extend 
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140 our analyses of the 2012 floods, focusing on the use of a novel 2D hydrodynamic modelling approach 

141 to estimate the peak discharges along both the Sabie and Olifants rivers.

142

143 METHODS

144 Application of a 2D hydrodynamic model requires baseline data on channel topography in the form 

145 of a Digital Elevation Model (DEM).  Following the Cyclone Dando floods in January 2012, aerial 

146 LiDAR and photography (Milan et al., 2018c) were obtained on 30th May 2012 for 50 km long 

147 reaches of both the Sabie and Olifants rivers in the KNP (Fig. 1).  Southern Mapping Geospatial 

148 surveyed the rivers using an Opetch Orion 206 LiDAR, flown from a Cessna 206 at 1100 m altitude.  

149 Average point density was 409 318 points/km2.  The root mean squared error for z was 0.04 m, and 

150 for x and y was 0.06 m.  Standard deviation for x and y were 0.05 and 0.06 m respectively, based on 

151 5 ground survey points.  These data effectively represent the post-flood condition of the rivers, both 

152 of which had suffered extensive vegetation and alluvial stripping, in many instances down to bedrock 

153 (e.g. Fig. 2D).  Stripping likely would have occurred up to the peak flood flow and as such these 

154 stripped surfaces would be representative of the surfaces that experienced the maximum discharges 

155 being estimated in this study.

156

157 Strandline elevations

158 At selected sites along the Sabie and Olifants rivers, the flow levels associated with the Cyclone 

159 Dando floods were surveyed using a Leica 500 RTK GPS in May 2012 (Figs 1B-C).  Despite the four 

160 months that had elapsed between the January floods and the surveys (a time gap imposed by the 

161 availability of funding), strandlines of organic debris (e.g. branches, twigs, reeds) were very well 

162 preserved along significant lengths of each survey reach (Figs 2E-G).  The fresh condition of the 

163 debris and occasional ‘best before’ dates on embedded plastic bottles showed clearly that these 

164 strandlines were from the January 2012 floods (Fig. 2H).
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166 Previous work (Heritage et al., 2004; Fisher, 2005) has shown that receding floods can leave several 

167 strandlines depending on local conditions.  Furthermore, elevation differences of 3 m were often 

168 evident between the base and top of individual strandlines, and some strandlines were measured in 

169 locations where debris was less abundant than the locations illustrated in Figures 2F-G.  Nevertheless, 

170 surveys focused on finer organic material (e.g. see Fig. 2G), taking the highest elevation debris line 

171 as the datum within a given reach, and therefore provide an indication of the highest stage reached by 

172 the 2012 floods.  Survey of larger woody debris (e.g. Fig. 2E) was avoided owing to uncertainties in 

173 determining actual water level arising from likely super-elevation of water surfaces and the flexibility 

174 of some woody elements (e.g. stems) in high flows.

175

176 Hydrodynamic modelling

177 The post-flood LiDAR data (Milan et al., 2018c) for the Sabie and Olifants rivers were used to provide 

178 the physical boundary conditions for hydraulic modelling of the 2012 floods.  Our analyses represent 

179 the longest and most detailed flow simulations conducted on the rivers in the region, and generate 

180 hydraulic parameter estimates for the floods at 2 m scale along 50 km reaches in a single integrated 

181 model for each river.  Flow resistance parameters are required to represent many sources of energy 

182 loss (Lane and Hardy, 2002).  A Mannings ‘n’ or Darcy Weisbach f flow resistance value is most 

183 often used to represent grain roughness.  Previous research protocols have used both a uniform 

184 parameter and spatially distributed parameterisation (Legleiter et al. 2011, Logan et al. 2011).  Werner 

185 et al. (2005) demonstrated that spatially-distributed floodplain roughness failed to improve flood 

186 model performance when compared to use of a single roughness class.  Horritt and Bates (2002) and 

187 Bates et al. (2006) also found that use of a constant channel and floodplain roughness value provided 

188 a pragmatic approach to flood modelling.  They also noted that many of the roughness factors 

189 represented by the roughness coefficient in 1D models are integrated into the modelling process in 

190 2D models, most notably form roughness.  Form roughness includes the effects of projected 
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191 morphological units such as bars and bedrock islands into the flow, which is represented by 

192 topographic variation in the DEM and implicitly includes changes in channel type (e.g. Figs 2A-C) 

193 along each 50 km modelled reach.  As such, no attempt was made to incorporate sophisticated 

194 representations of spatial roughness patterns based on factors such as sediment size variation or 

195 vegetation community patterns for the study reaches, with a nominal Manning’s ‘n’ roughness value 

196 of 0.04 used in the simulations to represent model skin resistance (see Broadhurst  et al., 1997).

197

198 Our analyses used JFlow, a 2-D depth-averaged flow model.  JFlow is a commercial 2-D flow 

199 modeling tool noted for its ability to handle large data sets through the use of a graphics processing 

200 unit-based computation.  JFlow was developed as a solution to harness the full detail of available 

201 topographic data sets such as those available from LiDAR, and to investigate overland flow paths 

202 (Bradbrook, 2006).  Simplified forms of the full 2-D hydrodynamic equations are used in the model, 

203 but the main controls on flood routing for shallow, topographically driven flow are captured 

204 (Bradbrook, 2006).  As such, JFlow simulations must be regarded as only a first approximation of 

205 2-D flow but its ability to handle topographically induced form roughness (a major resistance 

206 component on the systems being studied) and its relatively rapid run time and robustness on long 

207 complex reaches makes it suitable for the proposed modelling.  The model also performed well 

208 compared to other shallow water simulations in a benchmarking exercise by the Environment Agency 

209 in the UK (Néelz and Pender, 2013).  Bates et al. (2010) and Neal et al. (2010) demonstrated that the 

210 model was capable of simulating flow depths and velocities within 10% of a range of industry full 

211 shallow water codes such as TuFlow and InfoWorks.  The gradually varied flow simulations by Bates 

212 et al. (2010) revealed that velocity predictions were ‘surprisingly similar’ between the models and 

213 they suggest that JFlow model may be appropriate for velocity simulation across a range of gradually 

214 varied, subcritical flow conditions.
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216 The DEMs of each study reach were degraded to uniform 1 m data grids and input into the JFlow 

217 software to generate 2 m resolution surface meshes using a uniform triangulation algorithm.  

218 Morphologic-scale form roughness variation (and by definition channel type) was defined using the 

219 local bed level variation derived from the original survey data (see Entwistle et al., 2014).  We assume 

220 that at flow peak the majority of the alluvium and vegetation in the two rivers had been eroded, and 

221 as such their impacts on flow resistance were not considered.  Inflow and outflow discharges and flow 

222 stage boundaries were set during hydraulic model runs, based on low flow survey data and high flow 

223 approximations (these were refined within the program during model runs to satisfy the conservation 

224 of mass and momentum equations).  Flow simulations were conducted up to 5000 m3s-1 on the Sabie 

225 River and up to 15 000 m3s-1 on the Olifants River.  These upper values were chosen based on a 

226 continuity equation estimate of peak flows, using field surveyed channel widths, depths, and assumed 

227 reach-average velocities.  These data were used to develop simulated rating curves for each of the 

228 survey sites.

229

230 Flood estimation

231 Simulated water surface elevation versus simulated discharge rating curves were derived for the 

232 upstream and downstream parts of each of the sites shown in Figs 1B-C.  These values were used to 

233 estimate peak flows using the surveyed RTK GPS strandline elevations.

234

235 RESULTS 

236 Model validation

237 Comparisons were made between the simulated water surface elevations and the RTK GPS surveyed 

238 strandlines (Fig. 3).  For the Sabie River (Fig. 3A), very close matches were found at sites 1, 2, 4 and 

239 6, with RTK elevations mostly within 0.3 m of the simulated water elevations.  Simulated water 

240 elevations are over-predicted by 0.5-1.5 m for sites 3 and 5, whereas simulated water elevations were 
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241 under-predicted by 1.0-1.5 m at sites 7 and 8 farther downstream.  For the Olifants River (Fig. 3B), 

242 simulated water surfaces show much more variability but surveyed strandline elevations are generally 

243 within 1 m of the simulated elevations.  The water surface simulation data suggest that the 

244 assumptions of gradually varied flow and subcritical flow are not always satisfied along the model 

245 reaches (Coulthard et al., 2013) and this will introduce a degree of error in the calculated discharges.  

246 For both rivers, the deviation between simulated and surveyed elevations was in the same order as 

247 the vertical variation (± 3 m) evident for the strandlines (Figs 3A-B).  Some parts of the surveyed 

248 elevations along the strandlines matched simulated water elevations better than others, suggesting the 

249 possibility of multiple strandlines having been surveyed.  Multiple strandlines may have resulted from 

250 pulsing on the rising or falling limb of the flood hydrographs but this cannot be verified owing to a 

251 lack of gauge data.  Modelled and surveyed flood inundation extents are plotted in Figure 4.  For the 

252 Sabie River, there is a very close match between modelled and surveyed inundation extents (Fig. 4A), 

253 whereas for the Olifants River, simulated inundation extent appears to be slightly under-predicted 

254 relative to the surveyed extent (Fig. 4B).

255

256 Fig. 3

257

258 Fig. 4

259

260 Extreme flood estimation

261 The flood stages for the 5000 m3s-1 flow simulation for the sites along the Sabie River are lower in 

262 elevation than the majority of surveyed strandline elevations, especially along the lowermost sites 

263 (Fig. 3A), and do not exceed the limits of the surveyed inundation extents (Fig. 4A).  This suggests 

264 that during the 2012 floods, peak discharges were slightly in excess of this simulated flow.  

265 Regression analysis-derived rating equations for each study site along the Sabie study reach (Fig. 1B) 

266 allowed estimation of the peak flood discharge, which ranges from 4470 m3s-1 to 5630 m3s-1 (Table 
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267 1, Fig. 5A).  For the Sabie River, these results suggest that 2012 floods did not exceed the peak stage 

268 or extent of the 2000 Cyclone Eline floods, which ranged between 6000 and 7000 m3s-1 towards the 

269 lower end of the Sabie study reach (Heritage et al., 2003).  This conclusion is supported by field 

270 observations from the Sabie River.  At the Low Level Bridge crossing near Skukuza (Fig. 1A), a 

271 roadside marker indicates the limit of the 2000 floods.  This marker stands at a higher elevation than 

272 the strandlines from the 2012 floods, indicating that at this location, the 2012 floods were not as large 

273 as the 2000 floods.  The anecdotal accounts of park rangers suggest that this finding also applies more 

274 widely along the Sabie study reach, and is supported by the absence of any damage during the 2012 

275 floods to the tarred road that runs adjacent to the macrochannel margins along the right bank, whereas 

276 this road had been extensively damaged during the 2000 event.

277

278 Table 1

279

280 Fig. 5

281

282 The flood stages for the 15 000 m3s-1 flood simulation for the sites along the Olifants River exceed 

283 some of the surveyed strandline elevations (Fig. 3B) but remains within the limits of the surveyed 

284 inundation extents (Fig. 4B).  This suggests that during the 2012 floods, peak discharges approached 

285 or slightly exceeded this simulated flow.  Regression analysis derived rating equations for each study 

286 site allowed estimation of the peak flood magnitude, which ranges from 14 407 m3s-1 to 16 772 m3s-

287 1 depending on location (Table 1, Fig. 5B).

288

289 DISCUSSION

290 Comparisons between flood estimation methods

291 The method used in this paper to estimate flood magnitudes along the Sabie and Olifants rivers can 
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292 be compared to other published methods for estimating (palaeo)flood velocities and discharges.  

293 These methods range from the use of regime type equations (e.g. Wohl and David, 2008), maximum 

294 transported grain size and/or bedform dimensions (e.g. Costa, 1983; Williams, 1983; Wohl and 

295 Merritt, 2008), and friction based approaches (e.g. Kochel and Baker, 1982; Heritage et al., 1997; 

296 Broadhurst  et al., 1997; Birkhead et al., 2000).

297

298 Wohl and David’s (2008) width–discharge relationship for bedrock-influenced channels is 

299 statistically significant, but the r2 value for the regime equation was low at 0.59, principally due to 

300 variation in rock strength.  This relationship was applied to the study sites on the Sabie and Olifants 

301 rivers and generated peak flows of between 25 000 to 50 000 m3s-1 for the Sabie (macrochannel width  

302 250-500 m), and 75 000 m3s-1 in wider reaches on the Olifants (macrochannel width  700 m).  All but 

303 the lower values are outside the range of data used by Wohl and David (2008) to generate the original 

304 width–discharge relationship.  As such, little confidence can be placed in the application of this 

305 regime type approach to estimating flood magnitude on the KNP rivers.

306

307 Application of the maximum transported grain size to derive an average flood velocity estimate 

308 (Costa, 1983; Williams, 1983) is also difficult to apply in the case of the Sabie and Olifants rivers.  

309 In both catchments, the metamorphic and igneous bedrock weathers to supply mainly sand and fine 

310 gravel (granules, minor pebbles) to the rivers.  Consequently, cobble- or boulder-sized sediment is 

311 supply limited and any use of the empirical relationships would lead to a gross underestimation of 

312 peak velocities and associated discharges.

313

314 Application of the slope-area method to the downstream parts of the study reaches of both rivers using 

315 an estimated Darcy-Weisbach friction factor of 0.125 and a strandline-derived macrochannel water 

316 surface slope generated peak discharge estimates of between 3112 m3s-1 and 3558 m3s-1 for the Sabie 

317 River and between 12 923 m3s-1 and 13 417 m3s-1 for the Olifants River.  These estimates are lower 
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318 than the peak discharge predicted using the 2D modelling approach and are likely to be less accurate 

319 as the slope-area method uses an average reach slope and estimated roughness coefficients derived 

320 from the strandline data and previously published research (Broadhurst et al., 1997; Birkhead et al., 

321 2000).  This contrasts with the 2D approach adopted here where the form roughness and water surface 

322 slope are intrinsically linked to the detailed local topographic variation captured in the baseline 

323 LiDAR DEM.

324

325 In summary, these alternative approaches to flood discharge estimation along the Sabie and Olifants 

326 rivers yield a wide variety of values, with some approaches clearly inapplicable or inappropriate given 

327 the context of the study sites.  Even the more sophisticated approaches that utilise slope, area and 

328 friction data require many of these parameters to be estimated or are limited by difficulty in accurately 

329 measuring strandlines in the field.

330

331 The simplified 2D JFlow method applied in this study does not require such data and can estimate 

332 flood discharge from a detailed topographic model alone (e.g. a LiDAR-derived DEM).  This model 

333 contains ‘effective’ parameters that are related to aggregated hydraulic processes, which cannot, in 

334 general, be determined from the physical characteristics of the reach under consideration (Hunter et 

335 al., 2007).  Channel form roughness, capturing protrusion into the flow at the morphological unit 

336 scale (including sand bars and bedrock islands, which, when aggregated, also represent channel type 

337 differences – Fig. 2A-C), is explicitly integrated into the modelling approach through the detailed 

338 LiDAR-derived DEM.  As outlined above, in our study a single representative grain and hydraulic 

339 flow resistance value was input to the model as this represents only a minor component of flow 

340 resistance.  Stripping of vegetation and alluvium was also likely to have occurred up to the peak 

341 discharge, and as such the stripped DEM (i.e. that based on post-flood survey) was assumed to 

342 adequately represent the overall form resistance operating at the flood peak.
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343

344 Previous research (e.g. Werner et al., 2005) supports this approach, demonstrating that spatially-

345 distributed floodplain roughness based on land-use mapping failed to improve flood model 

346 performance when compared to use of a single floodplain roughness class.  Horritt and Bates (2002) 

347 and Bates et al. (2006) also found that utilisation of a constant channel and floodplain roughness value 

348 provided a pragmatic approach to flood modelling.  Such an approach is also justified on the grounds 

349 that the approach is primarily for use in estimating palaeofloods.  As such, in these previous studies, 

350 no attempt was made to incorporate more sophisticated representations of spatial roughness pattern 

351 based on factors such as sediment size variation and vegetation community patterns, as these data are 

352 typically not available in palaeocontexts.

353

354 Comparisons with extreme floods on other southern African rivers

355 Based on the historic flow record (Fig. 6A), the 2012 Cyclone Dando floods on the Sabie River can 

356 be classed as ‘extreme’ but as noted above, these were of lower magnitude than the 2000 floods 

357 (Heritage et al., 2004).  Based on the historic record (Fig. 6B), the 14 407 m3s-1 to 16 772 m3s-1 peak 

358 discharge estimate for the Olifants River 2012 floods appears to be more extreme.  Indeed, in 

359 comparison with the catalogue of maximum peak discharges compiled by Kovacs (1988) and other 

360 related studies, these 2012 floods rank among some of the most extreme floods recorded for any 

361 southern African river in the last couple of hundred years (Fig. 7).  For instance, the 2012 Olifants 

362 River peak discharge far exceeds the well-documented 1981 Buffels River flood of up to  8000 m3s-

363 1 (Stear, 1985; Zawada, 1994), the 1987 lower uMgeni River flood of  5000-10 000 m3s-1 (Cooper et 

364 al., 1990; Smith, 1992) and the 1974 and 1988 discharges of  8000-9000 m3s-1 that occurred along 

365 the much larger middle Orange River (du Plessis et al., 1989; Bremner et al., 1990; Zawada and 

366 Smith, 1991; Zawada, 2000).  The 2012 Olifants River peak discharge is even comparable in 

367 magnitude to the extreme floods that occurred along rivers draining to the KwaZulu-Natal coast 

368 during Cyclone Domoina in January 1984 (Kovacs et al., 1985; Kovacs, 1988).  Higher discharges 
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369 have almost undoubtedly occurred along much larger rivers such as the Orange earlier in the 

370 Holocene; for example, 13 palaeofloods with discharges in the range of 10 000-15 000 m3s-1 occurred 

371 along the lower Orange River during the last  5500 years and were exceeded by one catastrophic 

372 discharge of  around 28 000 m3s-1 sometime between  AD 1453 and AD 1785 (Zawada 1996; 2000; 

373 Zawada et al., 1996).  Nevertheless, the 2012 Olifants River floods remain notable on an historic 

374 timescale, particularly given the associated geomorphological impacts, which involved widespread 

375 loss of vegetation and stripping of alluvium down to the underlying bedrock template along extensive 

376 reaches of the river in the KNP (Fig. 2D).

377

378 Fig. 6

379

380 Fig. 7

381

382 Implications of changes to extreme floods for bedrock-influenced, dryland river development

383 Although the Sabie and Olifants river 2012 floods can be classed as extreme, the peak discharges 

384 have been equalled or exceeded by floods on many other rivers globally (see compilation by Baker, 

385 2006).  When considered against catchment area, however, the 2012 floods fall within the cluster of 

386 extreme floods recorded in other global regions, including drylands such as the Colorado Plateau and 

387 Negev Desert, so still rank as significant.  Indeed, the Sabie and Olifants 2012 floods resulted in 

388 significant changes to river morphology, ecology and infrastructure within and outside the KNP 

389 (Heritage et al., 2014; Fitchett et al., 2016; Milan et al., 2018b), especially as they occurred only 12 

390 years after the Cyclone Eline floods.  For the Sabie River specifically, Milan et al. (2018b) examined 

391 the relative and synergistic impacts of the 2000 and 2012 floods, and demonstrated that although the 

392 2012 floods were of lower magnitude and overall had a more subdued morphological impact, 

393 significant erosion and deposition nonetheless occurred.  In particular, in some subreaches, remnant 
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394 islands and large trees that survived the 2000 floods were removed during the subsequent 2012 floods 

395 owing to their wider exposure to flow (Milan et al., 2018b).

396

397 Indeed, along other KNP rivers and many other bedrock-influenced, dryland rivers across southern 

398 Africa and farther afield, flood sequencing is undoubtedly a key driver of river development, both 

399 geomorphologically and ecologically.  Based on the Sabie River example, Milan et al. (2018b) 

400 proposed a conceptual model that incorporates flood sequencing, channel type, and sediment supply 

401 influences.  They argue that following partial or complete stripping events, recovery to pre-flood, 

402 more alluvial, more vegetated conditions requires relatively long gaps (e.g. 20-30 years) between 

403 large or extreme floods, within which intervening smaller floods occur and conditions for vegetation 

404 re-establishment are favourable.  Given evidence for increased rainfall quantities during wet seasons 

405 (MacFadyen et al., 2018) and climate change projections that indicate the potential for future 

406 increases in the frequency of cyclone-generated extreme floods in eastern southern Africa (Fitchett 

407 and Grab, 2014), however, it is possible that extreme flood magnitudes and frequencies on the KNP 

408 rivers will become increasingly common and the rivers may no longer experience prolonged periods 

409 of lower magnitude floods.  Potentially, this could trigger state changes from the current dominance 

410 of mixed bedrock-alluvial channel types characterised by high geomorphic and ecological diversity 

411 (Figs 2A-B) towards more dominantly bedrock channels with limited volumes of transient alluvium 

412 and lower ecological diversity (Figs 2C-D).  Such changes would have significant implications for 

413 ecosystem service delivery and associated river management strategies.  In a world where 

414 hydroclimatic extremes such as floods and droughts may be increasing (Hansen et al., 2016; Steffen 

415 et al., 2018), similar changes may well occur along other bedrock-influenced rivers across the 

416 southern African drylands (e.g. Tooth and McCarthy, 2004) and also farther afield, including rivers 

417 in arid to semiarid central Texas, USA (e.g. Baker, 1977) and in subtropical wet-dry settings such as 

418 southeast Queensland, Australia (Croke et al., 2013; Baggs Sargood et al., 2015).  Given the paucity 

419 of flood hydrological and hydraulic data along such rivers, however, these types of conceptual models 
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420 have yet to be fully quantified or tested but nonetheless provide a guide for anticipating possible 

421 future pathways of river development.

422

423 CONCLUSION

424 Recent decades have seen a growth in scientific studies of past and present floods (e.g. Saint-Laurent, 

425 2004; Baker, 2006, 2008; Woodward et al., 2010) and the need for accurate estimation of flood 

426 magnitudes, frequencies and hydraulics is becoming of greater importance as climate change impacts 

427 on flow regimes across the globe.  In particular, as Baker (2006) has noted, additional (palaeo)flood 

428 data are needed to test hypotheses of increases in extreme flooding and to enable incorporation into 

429 flood risk assessment.  In this paper, we have used a simplified but novel 2D modelling approach to 

430 estimate the magnitudes of the cyclone-driven flood events on the Sabie and Olifants rivers in January 

431 2012.  The approach relies on an accurate LiDAR-derived DEM of a river to account for form 

432 roughness, assuming that vegetation and alluvial stripping had occurred prior to the flood peak, and 

433 applies a uniform additional roughness factor to account for grain and hydraulic flow resistance 

434 components.  The use of a simplified 2D code allows for more rapid simulations, enables modelling 

435 of very long reaches in detail, and provides a robust modelling framework that can generate hydraulic 

436 estimates for a range of flows.  Comparison of field surveyed and simulated water surface slope and 

437 inundation patterns for the peak flows suggests that the model performs well overall.

438

439 Our approach should be transferable to many other bedrock-influenced, flood-impacted, dryland 

440 rivers globally, and so potentially can make a contribution to improved documentation and analysis 

441 of one of the most pervasive global environmental hazards.  On both the Sabie and Olifants rivers, 

442 the flood flows can be described as ‘extreme’, with the peak discharge on the Olifants being among 

443 one of the largest ever recorded or estimated for any southern African river in the late Holocene.  

444 Over the 50 km long study reach, the floods resulted in widespread loss of vegetation and extensive 

1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080



19

445 stripping of alluvium down to the underlying bedrock template, demonstrating the importance of such 

446 system ‘resetting’ events in long-term river development.  Under future scenarios where there is an 

447 increase in the magnitude and frequency of flood extremes along bedrock-influenced, dryland rivers, 

448 this may trigger a state change from more mixed bedrock-alluvial systems with relatively high 

449 geomorphological and ecological diversity towards more bedrock-dominated systems with lower 

450 diversity.  If correct, such changes will have significant implications for ecosystem service delivery 

451 and associated river management strategies.
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650 Table 1. Rating equations and discharge range estimates for the Cyclone Dando floods in January 
651 2012.

River Site Rating equation R2 Mean
(m3 s-1)

Min
(m3 s-1)

Max
(m3 s-1)

S1 994.17 x - 252681 0.89 5423 5322 5474
S2 799.15 x - 196814 0.88 5291 5072 5426
S3 718.00 x - 162309 0.89 5129 5021 5236
S4 807.62 x - 174412 0.87 5041 4959 5199
S5 1414.60 x - 285616 0.99 5096 4649 5237
S6 860.55 x - 157470 0.92 5174 5045 5258
S7 708.16 x - 113191 0.94 4470 4364 4644

Sabie 
upstream

S8 721.61 x - 106722 0.91 4550 4262 4764
S1 1051.30 x - 265900 0.94 5366 5298 5504
S2 728.49 x -178469 0.98 5484 5378 5519
S3 785.25 x - 176913 0.86 5352 5295 5465
S4 1131.50 x - 244936 0.81 5237 5102 5372
S5 1414.60 x - 285616 0.99 5630 5372 5709
S6 896.86 x - 163283 0.88 5237 5156 5506
S7 706.59 x - 112199 0.96 5095 5024 5236

Sabie 
downstream

S8 686.98 x - 101047 0.86 4611 4404 4714
O1 1908.90 x - 378047 1 14423 14041 14614
O2 2453.20 x - 507757 0.94 14407 13548 15020
O3 2473.70 x - 450161 1 15637 13905 16379
O4 3526.90 x - 619833 0.97 16772 16067 17478

Olifants 
upstream

O5 1984.50 x - 297692 0.97 15859 15462 16454
O1 2118.50 x - 419168 0.99 15125 14701 15336
O2 2726.30 x - 561512 0.94 15264 14010 15809
O3 2819.00 x - 513987 0.98 14576 13166 15985
O4 2950.10 x - 511883 1 16185 15595 16480

Olifants 
downstream

O5 1766.60 x - 260630 0.98 16726 15843 17963
652
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654 List of Figures

655 Fig. 1. A) Location of the Sabie and Olifants rivers and the Kruger National Park (KNP) in 

656 northeastern South Africa.  Red boxes indicate the extent of the study reaches inside the KNP. B) 

657 and C) Flood strandline survey sites on the Sabie River and Olifants Rivers.  The coordinate system 

658 in B) and C) is WGS84 UTM36S.

659

660 Fig. 2. Photographs from sites on the Sabie and Olifants rivers showing examples of the diverse 

661 channel types found in the KNP, and the impacts and preserved evidence of the 2012 Cyclone 

662 Dando floods: A) mixed braided type (Sabie River, flow direction from top to bottom); B) cohesive 

663 mixed anastomosed type (Sabie River, flow direction from bottom to top); C) bedrock anastomosed 

664 type (Sabie River, flow direction from top to bottom); D) example of the extensive stripping that 

665 occurred along many reaches of the Olifants river (flow direction from top to bottom, photograph 

666 courtesy of S. Woodborne); E), F) and G) typical strandline evidence recorded on the Sabie and 

667 Olifants rivers in the KNP, including examples of organic debris accumulations (flow direction is 

668 from left to right in  E, and bottom to top in F and G); H) plastic drinks bottle embedded within a 

669 strandline, showing a ‘Best Before’ (BB) date of 4th July 2012.  Given the limited shelf life of such 

670 products, this BB date implies that strandline would have been formed in the months preceding the 

671 survey (i.e. during the January 2012 floods) and not in earlier (pre-2011/2012) flood events.  In G), 

672 note the considerable distance and elevation of the strandline from the low flow discharge (just 

673 visible on far middle right).  In general, we surveyed finer material such as that showed in G, taking 

674 the highest elevation debris line as the datum.

675

676 Fig. 3. Surveyed flood strandline and simulated water surface elevations for the survey sites on: A) 

677 the Sabie River, for the high flow simulation of 5000 m3 s-1; and B) the Olifants River, for the high 

678 flow simulation of 15 000 m3 s-1.
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680 Fig. 4. Surveyed flood strandline position (red dots) and simulated inundation extent on: A) the Sabie 

681 River, for the high flow simulation of 5000 m3 s-1; and B) the Olifants River, for the high flow 

682 simulation of 15 000 m3 s-1.  The greyscale indicates water elevation for the flood peak simulations.

683

684 Fig. 5. Modelled discharge variation for the Cyclone Dando floods in January 2012 along the: A) 

685 Sabie River; and B) Olifants River.  Bars indicate maximum and minimum discharge estimates (see 

686 Table 1); in some instance, the range in estimates is smaller than the plot symbol.

687

688 Fig. 6. Annual maximum flows on the: A) Sabie River at Lower Sabie Rest Camp (Station X3H015), 

689 located near the downstream end of the study reach; and B) Olifants Rivers at Mamba (Station 

690 B7H015), located near the upstream end of the study reach (Source: Department of Water Affairs and 

691 Forestry).  M = missing data, Q = data not audited, A = above rating.  It should be noted that some of 

692 the peaks are estimates rather than measurements from actual gauge records, as gauges are often 

693 damaged during the extreme flows. The 2000 flood for the Sabie River was estimated at 9400 m3 s-1, 

694 through extending weir rating relations to local flood levels, by the Department of Water Affairs and 

695 Forestry, and was larger than the Heritage et al. (2004) estimate of 6000-7000 m3 s-1. 

696

697 Fig. 7. A) Extreme flood estimates for southern African rivers (after Kovacs 1988), incorporating the 

698 estimates for the Sabie and Olifants river floods of January 2012, as derived from the results of this 

699 study. 
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703 Table 1. Rating equations and discharge range estimates for the Cyclone Dando floods in January 
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