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Abstract This paper presents the results of airborne pollen and spore trapping in Nanjing city, eastern
China, using a Burkard pollen trap during two consecutive years (2013-2014). A total of 103 pollen and
spore taxa were identified. Two concentration peaks are observed in the annual cycle, a spring peak
dominated by arboreal pollen types (Morus, Cupressaceae, Pinus, Pterocarya, and Quercus) and a fall peak
dominated by upland herbs (Compositae, Poaceae, Humulus, and Cruciferae). Wetland herbs and ferns
dominate summer assemblages and winter assemblages are characterized by sporadic records of Artemisia,
Chenopodiaceae, and Pinus. Strong year-to-year differences in measured pollen concentration are seen,
probably in response to interyear differences in weather. Compared to long-term means, 2013 was
comparatively hot and dry and 2014 had a higher than average number of rain days during the flowering
periods. Rising temperatures in early spring are connected with the timing of flowering and therefore pollen
release, while rainfall during the flowering period appeared to remove pollen from the air, leading to lower
recorded pollen concentration values. Four taxa, Cupressaceae, Quercus, Pinus, and Humulus, were
considered in more detail. Each has a different pattern of variation in pollen concentration between the
studied years. Cross correlation between pollen concentration and daily temperature, relative humidity, and
precipitation at lags from 0 to —30 days also showed different responses for each taxon, suggesting that
pollen signal responses to weather conditions have to be considered at a taxon level rather than at the
assemblage level.

1. Introduction

Aeropalynology trapping programs provide a large amount of data on patterns of airborne pollen both
within and between years and have enabled the development of models for short-term forecasting of pollen
counts and allergy risk. Daily pollen counts have been recorded for many years in some locations, especially
in Europe (e.g., Garcia-Mozo et al., 2006; Haberle et al., 2014; Jager et al., 1991; Latorre et al., 2008). These data
sets have enabled aerobiologists to develop statistical models for predicting plant flowering phenology
(Garcia-Mozo et al, 2000) and the time course of specific pollen types in the atmosphere (Chuine &
Belmonte, 2004). In other parts of the world these basic data are missing. For example, Nanjing is a large city
in eastern China (Figure 1), but the only available pollen trapping data cover subannual time periods and
report the main airborne pollen types during peak seasons (e.g., Wei et al., 2008; Zhang et al., 2009). In these
situations, even 1- to 2-year monitoring sequences can provide useful new insights into the annual pattern of
airborne pollen and relationships between meteorological conditions and the abundance of the main
pollen types.

Modern pollen dispersal and deposition models are also valuable as a means of improving the reconstruc-
tion of past land cover and environmental change from Quaternary pollen records preserved in sedimen-
tary systems. Relationships between land cover pattern, diversity and abundance of airborne pollen
grains, and meteorological variables combine to determine the pollen assemblages deposited into the
sedimentary record. While aeropalynological data are recorded at a much finer time scale than is possible
from sedimentary archives, where samples typically represent a decade or more of pollen deposition, stu-
dies of airborne pollen have still played an important role in improving scientific understanding of the
relationships between pollen assemblages and source vegetation. Aeropalynology shows that meteorolo-
gical factors affect both the production of pollen by plants (Carifianos et al., 2004) and the transport of
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Figure 1. Location and context of pollen trap and meteorological station. (a)The location of Nanjing city in China, (b) the location of SORPES in Nanjing in relation to
topograph, (c) the location of SORPES in Nanjing in relation to land cover (after Editorial Board of Vegetation Map of China, 2007; An and Zhao, 1990; Zhao et al.,
2009). The “wheel” superimposed on SORPES delimits a 10-km radius circle centered on the station, divided into wind octants, used for more detailed investigation of
pollen-land cover relationships (see Table 1 and Figure 7).
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pollen through the air (Latorre, 1999), and in at least some cases that these relationships are generalizable
between sites (Ranzi et al, 2003). Meteorological conditions were almost certainly different in the past,
but understanding the general patterns of long distance pollen transport today can still inform recon-
structions (Rousseau et al., 2006) by linking climate models with sedimentary pollen records. For example,
Dupont and Wyputta (2003) used paleo-wind-field models to translate the changing pollen assemblages
in marine sediment cores from the southeast Atlantic into reconstructions of paleovegetation in different
parts of southern Africa during the last glacial period.

The aims of this paper are to present a data set of daily airborne pollen assemblages and meteorological fac-
tors collected over a 2-year period in Nanjing and to investigate the relationships between the observed
abundance of four common pollen taxa (Cupressaceae, Quercus, Pinus, and Humulus) and
meteorological factors.

2. Location

Nanjing is a large city in the lower Yangtze River drainage basin of eastern China (Figure 1a) located close to
the coastal region of the Northwest Pacific Ocean. The climate is dominated by the East Asian monsoon.
Prevailing winds in this region are from the southeast in summer and northeast in winter (Ding et al.,
2013). The long-term average precipitation is 10917 mm per annum, and the mean annual temperature is
15.9 °C (China Meteorological Administration Data Service Center, 1981-2010).

In order to record the airborne pollen, a Burkard pollen trap was placed on the roof of the Station for
Observing Regional Processes of the Earth System (SORPES), a meteorological station situated in a sub-
urb of Nanjing (Figures 1b and 1c: 118°57'10"E, 32°07'14"N). This allowed direct comparison of trap
data and daily meteorological data from the same location. The station is located on a flat roof with
an elevation of 43 m above sea level. More details about SORPES are presented in Ding et al.
(2013, 2016).

A land cover map for the landscape around the trapping station is shown in Figure 1c. Outside the central
Nanjing urban area, forest patches remain, especially in the eastern suburbs. These forest patches include
both deciduous and evergreen broadleaved communities (Yan et al, 1995). Field surveys show that the
major arboreal species in the forests are Pinus massoniana, Liquidambar formosana, Quercus fabri,
Quercus variabilis, Quercus acutissima, Platycarya strobilacea, Dalbergia hupeana, Castanea henryi,
Cyclobalanopsis glauca, Pistacia chinensis, Loropetalum chinense, Aphananthe aspera, Albizzia kalkora, llex
chinensis, Celtis sinensis, Sapium sebiferum, Acer mono, Robinia pseudoacacia, Lindera glauca, Rhus chinensis,
Koelreuteria paniculata, Photinia serratifolia, Symplocos paniculata, and Rhamnus globosa, and the main
herbaceous species are Sanguisorba officinalis, Trachelospermum jasminoides, Parthenocissus tricuspidata,
Deyeuxia sylvatica, Arthraxon hispidus, Aster panduratus, and Carex lanceolata (An & Zhao, 1990; Zhao
et al, 2009). In the urban area (mapped as “artificial landscape” in Figure 1c), planted species include
Sabina chinensis (L) Ant., Platycladus orientalis (Linn.) Franco, Ginkgo biloba, Pterocarya spp., Acer palma-
tum Thunb., Sorbus alnifolia (Sieb. et Zucc.) K. Koch, Malus halliana Koehne, Typha orientalis Presl, and
Spiraea salicifolia L.

3. Materials and Methods

A Burkard trap was chosen for pollen monitoring. Multiple sampling methods for aerial pollen trapping are
available, which can be classified into two basic types, gravimetric and volumetric traps (Latorre et al.,
2008). Gagnon and Comtois (1989) demonstrated that the results from volumetric traps (Burkard or
Rotrod) are more representative of the regional vegetation than those from gravimetric traps, and pollen
assemblages from Burkard traps (SporeWatch electronic spore and pollen sampler, Burkard Scientific Ltd,
Uxbridge, Middlesex, UK) are considered to be more responsive to maximum floral phenophase and tem-
perature changes than records from Rotrod traps (Latorre et al., 2008).

Daily airborne pollen was recorded over 2 years, using a constant air intake speed of 10 | min™' and drum
rotation of 2 mm hr™". Collection of pollen samples began on 1 January 2013 and ended on 31 December
2014. Due to technical problems, pollen data from two periods, 25 January to 2 February and 9 March to
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Table 1

Summary of Land Cover (km?) of 8 Land Cover Classes in a 10-km Radius Around SORPES, Divided into Wind Direction Octants (see Figures Tc and 7)

Wind direction Nkm? NEkm?) E(m? SEGm?) Skm?) SWkm?) Wkm? NWkm?)  Total (km ?) %
Water 10.02 7.79 0.00 0.00 0.00 0.00 0.00 6.70 24.51 7.80
Crop 1 8.62 0.79 0.00 0.00 0.00 0.00 0.00 4.25 13.67 4.35
Crop 2 3.30 25.15 24.38 18.21 18.69 25.25 24.03 12.39 151.40 48.19
Crop 3 0.00 0.00 0.00 0.00 0.00 133 0.00 0.00 133 0.42
Forest 1 1.30 0.99 0.00 0.00 0.00 0.00 0.00 0.00 2.29 0.73
Forest 2 0.00 0.00 0.00 0.26 7.01 0.00 0.00 0.00 7.27 231
Forest 3 6.50 0.40 11.33 9.42 041 3.66 0.09 227 34.09 10.85
Artificial landscape 8.98 6.25 557 10.68 12.82 8.22 13.50 13.58 79.60 2534

Note. Crop 1: rice, winter wheat. Crop 2: upland and irrigated land bearing two crops per year, evergreen and deciduous orchards, and economic forest. Crop 3:
areas bearing three crops in 2 years or two crops annually without irrigation, deciduous orchards. Forest 1: Quercus variabilis/acutissima forest. Forest 2:
Pinus massoniana forest with Quercus fabri, Q. serrata var. bravipetiolata and Themeda triandra var. japonica. Forest 3: Pinus massoniana forest with Quercus fabri
and Q. serrata var. bravipetiolata.

11 April in 2013, were lost. Pollen grains were identified under X400 magpnification using standard texts (Qiao,
2005; Wang et al., 1995) as references.

The first step in analysis was the identification of the annual pollen season for each taxon. The pollen season
is the period during which most of the pollen of a specified type is recorded, but the means of delimiting it
vary between studies (Jato et al., 2006). In this study, the pollen season for individual taxa was defined follow-
ing Andersen (1991) as the period of time during which 95% of the annual total of that pollen type is
recorded, beginning when the sum of the daily mean pollen concentrations reaches 2.5% of the annual total
and ending when the sum reaches 97.5% of the annual total. The Seasonal Pollen Index (SPI) was then calcu-
lated as the sum of daily pollen concentrations during the pollen season (Clot, 2003; Comtois, 1998; Mandrioli
et al,, 1998).

A small number of taxa were selected for more detailed investigation of patterns of daily pollen concentra-
tion and relationships between environmental factors and pollen concentration levels. Taxa were selected,
which made a comparatively large contribution to the overall pollen assemblage, had broadly comparable
concentration trends in both years, and peaked at different points in the overall pollen season. The presence
and abundance of pollen grains in an air sample depends on many factors, including the environmental con-
ditions and the availability of source plants in the surrounding vegetation (Galan et al., 1989; Mesa et al., 2003;
Tormo-Molina et al.,, 2015). Although 2 years of data are not sufficient to identify long-term relationships con-
fidently, we consider that our findings form useful hypotheses to be tested in future as the data set increases
in length.

In order to identify possible influences of meteorological conditions that might affect plant growth and floral
development (temperature, precipitation, and relative humidity) on daily pollen concentration of selected
pollen types, simple cross correlations were carried out. Daily mean pollen concentration during the pollen
season was correlated with daily measurements of each of the meteorological parameters from the weather
station at lags from 0 days to —30 days using steps of 1 day.

Local vegetation makes an important contributor to the airborne pollen assemblage. However, differences
in overall transport distances have been observed for different pollen types; Pinus, Picea, and Betula can
travel thousands of kilometers into the Arctic (Campbell et al., 1999; Hjelmroos, 1991), while other pollen
loads (e.g., Plantago, Fraxinus-Phillyrea, and Alnus) are sourced within the immediate surrounding land-
scape (Maya-Manzano et al., 2017). In this study, we chose to explore a circular area around the pollen
trap location with a radius of 10 km. Maps of land cover for each taxon were taken from existing sources
(Editorial Board of Vegetation Map of China, 2007; An and Zhao, 1990; Zhao et al.,, 2009) and simplified
into eight wedges (Figure 1c) created using ArcGIS 10.5.1. The area of land cover of each taxon inside
eight wedges centered on the pollen trap location and defined by the eight compass octants (Table 1).

Pollen grain fall speed for selected taxa was approximated as sedimentation velocity and calculated using
Stoke’s law, which takes particle size and density into consideration (Gregory, 1973; Sugita et al., 1999; see
the Appendix for details).
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Table 2
Airborne Pollen Types Recorded at SORPES, Nanjing, in the Period 2013-2014

Arboreal and shrubs Acanthaceae, Acer, Alnus, Aquifoliaceae, Aralia, Araliaceae, Berberidaceae, Betula, Broussonetia,
Caprifoliaceae, Carpinus, Carya, Castanea, Castanopsis, Cyclobalanopsis, Celtis, Corylus, Cotinus,
Cupressaceae, Engelhardtia, Ephedraceae, Euphorbiaceae, Fagus, Flacourtiaceae, Ginkgo,
Hamamelidaceae, Hypericum, llex, Juglans, Koelreuteria, Larix, Lauraceae, Leguminosae,
Liquidambar, Lonicera, Magnoliaceae, Malvaceae, Moraceae, Morus, Myrica, Oleaceae, Palmae,
Pinus, Platanus, Platycarya, Polygonaceae, Pterocarya, Pteroceltis, Quercus (D), Quercus (E),
Rhamnaceae, Rhus, Rosaceae, Rutaceae, Tilia, Salix, Sapindaceae, Scrophulariaceae, Solanaceae,
Sterculiaceae, Symplocos, Theaceae, Thymelaeaceae, Tsuga, Ulmaceae, Ulmus

Herbs Aster, Ambrosia, Artemisia, Boraginaceae, Caryophyllaceae, Caryopteris, Chenopodiaceae,
Compositae, Cruciferae, Gentianaceae, Poaceae, Humulus, Labiatae, Ranunculaceae,
Loganiaceae, Onagraceae, Rostellularia, Rubiaceae, Spiraea, Taraxacum, Thalictrum, Umbelliferae

Ferns undetermined monolete and trilete types Hicriopteris, Lycopodium, Osmundaceae,
Polypodiaceae, Pteris, Selaginella sinensis
Aquatics Liliaceae, Typha, Potamogetonaceae, Nymphoides, Cyperaceae
4. Results

A total of 103 pollen and spore taxa were identified during the 2-year recording period. Of these, 66 origi-
nated from arboreal plants or shrubs, 28 from herbs and 8 from ferns (Table 2). Morus is the dominant arbor-
eal pollen taxon in both years, with Platycarya, Cupressaceae, and Pinus each contributing around 2% to the
total, and Quercus and Platanus around 0.5-1%. Herb pollen types make up around 10% of the total in 2013
and around 18% in 2014. The main herb pollen types are Humulus and Poaceae in both years, each account-
ing for 5-6% on average.

4.1. Pollen Concentration

Figure 2 shows the daily variations in airborne pollen concentration over the two years. The SPI in 2013 is
36,344 pollen/m*, which is around 3 times higher than in 2014 (10,881 pollen/m>), but the seasonal distribu-
tion of concentration and the dominant pollen types were comparable (Figures 2c and 2d), with around 80%
of the recorded pollen types originating from trees and shrubs. There are two peaks in total concentration in
both years, with a stronger peak in spring and a weaker peak in autumn (Figures 2a and 2b). The airborne
pollen assemblages showed distinct differences in both abundance and composition during the four seasons
(Figure 2d). Arboreal pollen types dominate the spring (March to May) peak in concentration, while herbac-
eous types dominate in the autumn (September to November) peak. In summer (June to August), the annual
pollen concentration is characterized mainly by wetland herbs and ferns. Winter (December to February) con-
centration is lowest and made up of regionally sourced pollen types such as Artemisia, Chenopodiaceae,
and Pinus.

The seasonal variations of pollen are influenced by the reproductive cycles of plants (Latorre, 1999), with
airborne pollen occurring mainly during the flowering periods for most taxa. This is especially clear in the
Nanjing data set for Platycarya, Typha, Cupressaceae, Morus, and Humulus.

4.2. Meteorological Data

Observed hourly meteorological data from 2013 to 2014 were provided by SORPES (Station for Observing
Regional Processes of the Earth System), Nanjing University, and processed to provide values of daily and
monthly total precipitation and mean temperature, wind speed, and relative humidity. Monthly variations
over the two study years are summarized in Figure 3. The annual mean temperature in both years is warmer
than the long-term average, and July and August were clearly hotter in 2013 than 2014 (Figure 3a), giving a
greater annual range (28.1 °Ciin 2013 as opposed to 22.7 °Cin 2014). The average relative humidity (Figure 3b)
shows less inter- and intraannual variation, averaging around 70% in both years. The total annual rainfall is
below the long-term average in both years, with marked differences in the monthly totals between years
seen in February, April, July, and November (Figure 3c). The annual and monthly average wind speeds
(Figure 3d) are all greater in 2014 than 2013. The winter season of 2013-2014 was unusually mild, with a
mean temperature of 5.4 °C compared to a 56-year mean (1951-2007) of 3.7 °C (China Meteorological
Administration Data Service Center, 1981-2010).
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division of the years into seasons.

5. Analysis and Discussion

5.1. Comparison of Trends in Total Pollen Concentration and Meteorological Parameters

Figure 4 shows the daily total pollen concentration plotted against key meteorological parameters for the
whole study period. The lower overall pollen concentration observed in 2014 compared with 2013, especially
for tree species, might be a lag effect from the comparatively hot and dry conditions in 2013, which may have
caused particular physiological stress for tree species and thereby had a negative effect on floral production
for the following year. The greater proportion of rainy days during the flowering periods in 2014 may also
have reduced recorded pollen concentration by removing airborne pollen from the atmosphere more rapidly
than expected on dry days. The peak periods of airborne pollen appear to occur during favorable weather
conditions with higher temperature, lower relative humidity, and low precipitation.
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Figure 5. Daily pollen concentration of four selected taxa during their respective pollen seasons, plotted with temperature and precipitation. The left-hand column
shows the 2013 pollen season, and the right-hand column shows the 2014 season.

5.2. Relationships Between Selected Pollen Types and Meteorological Factors

We selected four taxa for further exploration of the relationships between meteorological factors and daily
pollen concentration (Figure 5). These are 3 arboreal taxa (Cupressaceae, Quercus, and Pinus) and a major her-
baceous genus (Humulus) and have clear differences in the size of their pollen grains and the timing of their
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Table 3
Characteristics of the Four Selected Pollen Types in the Atmosphere of Nanjing in 2013 and 2014 (SPI: Seasonal Pollen Index)

Cupressaceae Quercus Pinus Humulus

Concentrations
SPIin 2013 (pollen d/m~3) 664 291 609 1902
SPI'in 2014 (pollen d/m73) 482 122 286 486
Ratio of SPI 2013:2014 0.73 042 0.47 0.26
Temporal patterns
Start of pollen season in 2013 22 February 1 April 4 April 27 August
Start of pollen season in 2014 1 February 28 March 28 March 27August
Pollen peak in 2013 26 February 18 April 10 May 20 September
Pollen peak in 2014 22 March 3 April 5 April 15 September
End of pollen season in 2013 7 March 17 June 12 May 25 September
End of pollen season in 2014 30 March 19 April 31 May 1 October
Length of pollen season 2013 (days) 14 47 39 30
Length of pollen season 2014 (days) 58 22 65 36
Estimated fall speed (m/s) 0.035 0.016 0.046 0.013

pollen season. Cupressaceae is the main type detected in early spring, Quercus and Pinus are most common at
the height of the spring overall pollen season, and Humulus is most abundant in the autumn pollen peak.
Table 3 summarizes the temporal characteristics of the four types over the study period.

All four taxa had lower SPI in 2014 than 2013 (Table 3). Humulus was most strongly affected, with a fourfold
decrease in recorded concentration from 2013 to 2014, Quercus and Pinus concentrations halved, and
Cupressaceae showed only a moderate reduction in concentration. Figure 5 shows the data from the 2013
and 2014 pollen seasons for each taxon, with daily mean temperature and daily total precipitation plotted
over pollen concentration, and Figure 6 shows the results of simple cross-correlation analysis comparing daily
pollen concentrations with daily meteorological records (temperature, relative humidity, and precipitation)
lagged from 0 to —30 days during the pollen seasons.

5.2.1. Cupressaceae

Cupressaceae is an important component of the pollen assemblage in early spring and is a pollen taxon with
intermediate size and high to intermediate dispersal abilities (Galédn et al., 1998). Peak concentration is
observed earlier in 2014 than 2013, and the 2014 pollen season was longer. However, the SPI is higher in
2013 than in 2014. In European studies, minimum temperature and rainfall in the months prior to flowering
season are identified as the two parameters that have the greatest effect on the presence of Cupressaceae
pollen in the atmosphere (Galan et al.,, 1998). In a 6-year study from an Iberian site, Cariianos et al. (2004)
show that a decrease in temperature during the flowering period results in greater pollen presence of
Cupressus in the atmosphere. In our data set, the temperature in early 2013 is lower than that in 2014
(Figure 3a), which suggests that the same relationship between cooler early flowering period temperatures
and higher SPI may be seen in Chinese Cupressaceae (Figure 5).

Figure 6 shows the results of simple cross correlation between aerial pollen concentration and meteorologi-
cal conditions on preceding days, which allow us to establish hypotheses about the effects of meteorological
conditions on the development of flowering structures in the weeks before pollen release. Relatively few indi-
vidual correlations are significant at the 95% level, but overall patterns emerge. Positive correlations with
warmer temperatures at the start of the month before flowering (days —28 to —20 in 2013 and days —30
to —21 in 2014) are followed by negative correlations with mean temperature for a period of 2-3 weeks
before flowering (=19 to 0 in 2013, —20 to —4 in 2014), which accord with the European findings
(Carifianos et al., 2004; Galan et al., 1998). There is no clear relationship with precipitation, contrary to the find-
ings of Galan et al. (1998), nor with relative humidity.

5.2.2. Quercus

The Quercus pollen season began at almost the same time in both years, and the season was longer in 2013
than in 2014 (Table 3). Studies in the UK (Norris-Hill, 1998) and Spain (Garcia-Mozo et al., 2006; Recio et al.,
1997) indicate that temperature is the key factor influencing the start of Quercus pollen seasons. A study from
southern Denmark suggests that Quercus pollen concentration is most strongly correlated with the average
maximum temperature over the months from June to September of the previous year (Andersen, 1980).
Figure 5 shows that comparatively warm mean daily temperatures did precede the main peak of Quercus
pollen within the pollen season in both years in this study.
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Figure 6. Cross correlation between mean daily pollen concentrations during the pollen season and daily meteorological
parameters (temperature, relative humidity, and precipitation) at lags of 0-30 days. The x axis is number of days of lag; the y
axis is correlation coefficient (r). The solid black lines show the critical values of r (p = 0.05).

However, simple cross correlation (Figure 6) suggests a different relationship with temperature, with negative
relationships for most of the month before flowering, although few individual correlations are statistically sig-
nificant. Only in the few days before flowering are cross correlations positive. Cross correlation with other factors
show no clear pattern, and longer term relationships cannot be usefully investigated with this short data set.
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5.2.3. Pinus

Like Quercus, the Pinus pollen season started on almost the same day in both years, but the Pinus season dura-
tion was longer in 2014 than 2013, with an earlier pollen peak (Table 3). Pinus has a much longer pollen sea-
son than Cupresseaceae or Quercus, and pollen grains of this type are recorded throughout the year, even in
winter. Pinus is considered to be an overrepresented pollen type often transported over long distances (e.g.,
Campbell et al.,, 1999). Figure 5 shows two peaks in the 2013 pollen season and only one in the 2014 pollen
season, with no clear meteorological connections.

Simple cross correlation (Figure 6) shows mainly negative correlations with precedent mean daily tempera-
ture, with statistically significant relationships around 3 weeks before flowering (e.g., days —20 and —19 in
2013). Relative humidity early in the month before pollen recording has some positive relationships with pol-
len production, with a switch to negative relationships around 10-12 days before flowering. No clear pattern
of correlations is seen between pine pollen concentration and precipitation.

5.2.4. Humulus

Humulus is the most abundant herbaceous taxon in the data set. Potential source plants are widely found in
grassland, abandoned fields and the edges of pathways in Nanjing, and a similar dominance of the airborne
pollen herbaceous concentration was seen in Shanghai (Huang et al., 2013). Humulus peak production
occurred almost 1 week earlier in 2014 than 2013 (Table 3). Figure 5 shows Humulus pollen concentration
peaking at the start of a period of declining mean daily temperature, typical of autumn conditions, and in
both years the peak is closely following a rainfall event.

Cross correlation (Figure 6) shows clear positive correlation with antecedent temperature, as expected in a
species which flowers at the end of the summer. Apparent relationships with precipitation show opposite
patterns in the two studied years, while there is a generally positive relationship with relative humidity
with some statistically significant correlations in the couple of weeks before pollen concentrations
are recorded.

5.2.5. Summary

Each of the four taxa selected shows different responses to meteorological conditions. The most obvious dif-
ference is between autumn-flowering, herbaceous Humulus, and the three spring-flowering arboreal taxa.
This is expected, since as Figure 3 shows the temperature curve in particular has strong contrary trends in
spring and autumn. Warmer temperatures during the last few weeks of flower development appear to lead
to higher pollen production in Humulus, whereas the same pollen response occurs with cooler antecedent
temperatures for the tree taxa. High relative humidity in the weeks before flowering is correlated with higher
pollen concentrations in Humulus, while the three tree taxa have no clear relationship with humidity. None of
the taxa seem to have a consistent response to precipitation in the month before flowering. The processes
underlying assumed relationships may depend on multiday patterns or interactions between different fac-
tors and therefore not show up in simple cross correlation, or may act over longer time periods (e.g., the
Quercus-precipitation relationship noted in Denmark; Andersen, 1980). Studies of multiple years of pollen
trapping (which effectively record only SPI values) have shown clear relationships between total pollen con-
centration and climatic conditions during the previous growing season for tree taxa (e.g., Andersen, 1980;
Huusko & Hicks, 2009; Nielsen et al., 2010).

5.3. Relationships Among Airborne Pollen Grains, Land Cover, and Wind Direction

Figure 7 summarizes the land cover and wind direction data, and the surface area of each land-cover com-
munity in each octant is shown in Table 1. The main communities present in the 10-km circle around the sta-
tion are crops and orchards (48.2%), artificial landscape (25.3%), and Pinus and Quercus mixed forest (10.9%).
The main pollen types in the airborne spectra (Pinus, Quercus, Morus, and some herbaceous types such as
Poaceae, Artemisia, and Humulus) all have plentiful sources in these communities, suggesting that our choice
of 10-km radius captures at least part of the pollen sources for these taxa.

The numbers of days of winds from each octant over the sampling years are shown in Figure 7b. 2013 winds
blew mainly from the NE, SW, and SE, with a slight shift in 2014 to NE, E, and SE. Figures 7c and 7d show total
pollen concentration recorded on days with wind coming from each octant in both years. Higher pollen con-
centrations generally occur in the octants with the highest number of wind days in 2014, as expected, but in
2013 pollen concentration totals are much higher for the SW octant days, reflecting wind conditions during
the spring pollen peak.
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Figure 7. (a)Land cover map for 10-km radius around the SORPES station, (b) annual distribution of wind directions (number of days from each octant), (c) total pollen
concentrations from days when the wind came from each octant in 2013, and (d) total pollen concentrations from days when the wind came from each octant in 2014.

5.4. Implications for Pollen Analysis

Airborne pollen is an important component of the pollen assemblages recovered from sediment sam-
ples and the fossil record (Royall et al, 1991), and understanding the controls on airborne pollen
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composition and abundance can contribute to reconstruction of past land cover from such pollen
records (Rogers, 1993). Constructed pollen traps have an advantage over “natural” traps such as lake
sediments or moss polsters since the time scale of pollen trapping is tightly controlled. Annual varia-
tions in pollen deposition have proved to be very large (Andersen, 1980; Hicks, 1994), and long-term
averages have been used to develop criteria for interpreting pollen records in terms of the presence
and density of species in the surrounding vegetation and thus reconstruct forest history (Hicks, 2001;
Hicks & Hyvédrinen, 1999). However, understanding possible causes of these interannual variations is also
a potentially useful tool for reconstructing past environments (e.g., Huusko & Hicks, 2009). Plant species
show individual resource allocation strategies in response to changing conditions, which affect repro-
ductive biology including pollen production. Aeropalynological studies such as the data presented here
enable scientists to consider relationships between pollen concentration and climate parameters at both
interannual and intraannual time scales and therefore explore possible causes of the variation seen in
the variations in totals between years, as well as contributing to pollen forecasting for air quality con-
trol and allergy management.

The data presented here cover 2 years in a city located within a monsoonal climate region. Two sea-
sonal pollen peaks were identified, a spring one characterized by pollen taxa sourced from trees and
shrubs (i.e, Morus, Cupressaceae, Pinus, Pterocarya, and Quercus) and an autumn one dominated by
upland herbs (i.e., Compositae, Poaceae, Humulus, and Cruciferae). The two years have similar pollen
spectra in terms of species composition, reflecting the surrounding landscape, but show clear differ-
ences in terms of both overall pollen concentration and timing of pollen release. Annual total pollen
concentration was generally lower in 2014 than 2013. One possibility is that this reflects a lagged
response of taxa to comparatively hot and dry conditions in 2013, which affected growth and reproduc-
tive success in the following year. Of the four taxa considered in detail, Humulus (an autumn flowering
herb) showed a much greater proportionate reduction in total pollen concentration from 2013 to 2014
than the three tree taxa.

Simple cross-correlation analysis allows us to suggest some relationships between meteorological condi-
tions in the month before flowering and daily pollen concentration. Negative correlations with tempera-
ture were seen in all three tree taxa, with relationships for Quercus switching to positive in the few days
before flowering. Humulus showed clear positive correlation with antecedent temperature and a generally
positive relationship with relative humidity. These differences suggest that pollen signal responses to cli-
matic influences should be considered at a taxon level rather than an assemblage level. Once longer time
series data are available, a more comprehensive analysis of both inter- and intraannual relationships
between climate parameters and airborne pollen could be carried out on all the main pollen taxa
recorded in a location, such as the analysis already carried out for the air pollution index in Nanjing
(Shen et al., 2015). From this 2-year data set, it appears that such a study will provide valuable insights
into the possible causes of variation observed in annual pollen trap data series, and thereby improved
understanding of the possible mechanisms underlying longer term fluctuations in pollen concentration
and influx seen in the sedimentary record.

Appendix A: Fall Speed of Pollen Grain

The settling velocity of a spherical particle (v;) is calculated from Stoke’s law:

_2r’g(py — p)
V= ——
9u
where
vs = spherical settling velocity (m s™")
r = pollen grain radius (m)
g = acceleration due to gravity (m s~2) taken as 9.81 m s>

po = particle (grain) density (kg m~3) taken as 10° kg m 3
p = fluid (air) density (kg m ) taken as 1.27 kg m >

p = dynamic viscosity (kg m~' s7') taken as 1.8 x 107 kgm™" s~
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And for ellipsoid particles, Falck’s correction is applied to calculate the settling velocity (v,) as follows:

Ve = Vsy/a/b

where

ve = ellipsoidal settling velocity (m s™")

vs = settling velocity of a sphere of the same volume as the ellipsoid of interest (m s~ ")
a = major axis (m)

b = minor axis (m)

Mean radius (r) or major and minor axes (a and b) were measured from 30 randomly selected pollen grains on
counting slides for each taxon type (e.g., Duffin & Bunting, 2008).
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