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Abstract 

Colloidal particles are being extensively studied in various antimicrobial 

applications due to their small size to volume ratio and ability to exhibit a wide 

spectrum of antibacterial, antifungal, antialgal and antiviral action. The present 

review focuses on various nanoparticles (NPs) of inorganic, organic and hybrid 

materials, and discusses some of the methods for their preparation as well as 

mechanisms of their antimicrobial action. We consider the antimicrobial 

applications of metal oxide nanoparticles (ZnO, MgO, CuO, Cu2O, Al2O3, TiO2, 

CeO2 and Y2O3), metal nanoparticles (NPs), such as copper, silver and gold, 

metal hydroxide NPs such as Mg(OH)2 as well as hybrid NPs made from 

biodegradable materials, such as chitosan, lignin and dextran, loaded with other 

antimicrobial agents. Recent developments for targeted delivery of 

antimicrobials by using colloid antibodies for microbial cell shape and surface 

recognition are also discussed. We also consider recent advances in the 

functionalization of nanoparticles and their potential antimicrobial applications 

as a viable alternative of conventional antibiotics and antiseptic agents which 

can help to tackle antimicrobial resistance. The review also covers the recently 

developed environmentally benign NPs (EbNPs) as a “safer-by-design” green 

chemistry solution of the post use fate of antimicrobial nanomaterials. 

 

Keywords: antimicrobials; nanoparticles; antimicrobial resistance; metal oxide 

nanoparticles; environmentally benign nanoparticles; colloid antibodies;  
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Introduction 

Conventional antimicrobial agents are usually low molecular weight species that attack and 

selectively kill microbial cells or suppress their growth. Due to their excessive use, many 

microbial strains develop resistance and their effective treatment often requires a continuous 

pipeline of novel antiseptic and antibiotic agents to be developed [1]. This calls for new 

alternative approaches to antimicrobials or unconventional protection strategies that can 

potentially bypass antimicrobial resistance [1]. Nanotechnology provides us with alternative 

approaches for development of novel antimicrobials that do not rely on the existing pathways 

of antibiotic action. Over the last few years there is an increasing interest in developing 

colloid particles of antimicrobial functionality which exhibit strong and universal 

antibacterial, antifungal or antiviral action towards which pathogens have not yet been able to 

develop resistance. Synthetic colloids with engineered antimicrobial action designed to target 

specific microorganisms could be deployed to address this challenge as they can potentially 

have high antimicrobial activity at very low particle concentrations [2]. Nanoparticles have a 

widely used for biological and medical applications as contrast agents for medical imaging, 

labelling of cells, targeting of tumours and in therapeutic drug delivery [3]. Nanoparticles 

have attracted significant interest for applications as antimicrobials due to their unique 

photoactive, electronic, optical, catalytic and thermal properties, suitable particle size and 

morphologies [4-6] that can be prepared with high degree of control [7-16]. Recently, 

inorganic nanoparticles have been broadly researched for their nanotoxicity and potential 

antimicrobial action [17-19] which is enhanced by their highly developed surface area. There 

are several metal oxides and hydroxides in the form of nanoparticles that act as antimicrobial 

agents which have very different mechanisms of action against microbial cells [17-19]. In this 

review, we will summarise the antimicrobial properties of various metal oxides and their NPs, 

and discuss the possible mechanisms by which they can eliminate and inhibit the growth of 

potentially harmful microorganisms [17]. We will also consider several application of 

complex colloids and hybrid organic/inorganic nanoparticles with selective antimicrobial 

action. 

 

Colloid Particles as Antimicrobials 

The present understanding of the possible mechanisms by which specific colloid particles kill 

microbial cells is still patchy and incomplete. Although a range of mechanisms of their 

antimicrobial activity have been explored, most of the research in this area is still ongoing. 
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Recent studies have been concentrated on antimicrobial inorganic nanoparticles, for example, 

metal oxide nanoparticles, like ZnO, MgO, CuO, Cu2O, Al2O3, TiO2,CeO2 and Y2O3; metals, 

e.g. copper, silver, gold etc., metal hydroxides such as Mg(OH)2 as well as colloids made 

from biodegradable materials, such as chitosan, lignin and dextran, loaded with antimicrobial 

agents. The metal oxides nanoparticles are divided into two different groups based on the 

mechanisms involved in the growth inhibition of microorganisms (Fig. 1). Metal oxide 

nanoparticles are among the most utilised NPs having applications in the different fields, for 

example, cosmetics, textile and medicine. Zinc oxide nanoparticles (ZnONPs) have already 

been utilised in antimicrobial agents, sunscreens, and electronics [17, 20, 21].
  

 

(Place Fig. 1 here).  

 

 

Antimicrobial activity of zinc oxide nanoparticles (ZnONPs) and titania 

nanoparticles (TiO2NPs) 
 

Although bulk ZnO is not considered a biologically hazardous material, recent studies focus 

on highlighting potential biological toxicities of ZnO in a nanoparticulate form (ZnONPs) 

[22]. ZnO is found to have a high photocatalytic effectiveness and is reported as more 

biocompatible than TiO2 [23,24]. ZnONPs and TiO2NPs can both strongly absorb UV light 

[25] which activates them to interact with the cells in their vicinity. Their photocatalytic 

effect continues long after illumination with UV light, and it has been ascribed to surface 

electron depletion region strongly related to adsorbed negative oxygen species (O2
∙-
 , O2

2-
) on 

the particle surface [26].
 
 

Aqueous suspensions of ZnONPs and TiO2NPs under illumination with UV light and oxygen 

have the phototoxic impact due to generating reactive oxygen species (ROS), for example, 

superoxide ions (O2
∙-
) and hydrogen peroxide (H2O2) which is fundamental for their 

applications as antimicrobial agents [27].
 
The produced reactive species can enter into the 

microbial cells by diffusion and consequently, kill them or damage their cell membranes and 

interior which inhibits microbial growth. This mechanism utilises the photocatalytic activity 

of ZnONPs for their antibacterial applications in bionanomedicine and bionanotechnology. 

Accordingly, improvement of ZnONPs bioactivity was considered as a consequence of the 

created free radicals, as ZnONPs is activated by UV illumination [28]. Seven et al. [29] and 

Padmavathy and Vijayaraghavan [30] have proposed a detailed reaction mechanism of this 

phenomenon. Both ZnO and TiO2 as semiconductor materials contain a valence band (VB) 
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and a conduction band (CB). Incident illumination with photons of energy more than 3.3 eV 

is directly absorbed and consequently causes an electron transfer from the VB to the CB. The 

transfer of electron starts a series of conceivable photoreactions with positive holes (h+) 

created in the VB while at the same time free electrons (e
-
) are produced within the CB 

[29,31,32]. The positive holes (h
+
), an immediate oxidant fundamental for the production 

reactive hydroxyl radicals (OH
•
), serve as important oxidants in the photocatalytic process 

[31, 33]. While the free electrons in the CB reduce oxygen molecules, which are adsorbed on 

the surface of the photocatalyst [33]. Padmavathy and Vijayaraghavan proposed a 

relationship between photon reaction of the photocatalytic particles and their antibacterial 

activity in a progression of interactions resulting in the generation of hydrogen peroxide 

(H2O2) molecules which can easily penetrate the membrane of cells, creating deadly harm 

[30]. Sawai et al. have ascribed the damage of the cell membrane to peroxidation of the 

unsaturated phospholipids as a consequence of photo-catalytically produced free radicals and 

H2O2 [34] The researchers expressed the created ROS by chemical equations which are as 

follows: 

 

 

                                   

                                      

 

 

 

 

(Place Fig. 2 here)
 

 

Al-Awady et al. studied the antimicrobial effect of titania nanoparticles (TiO2NPs) of various 

hydrodynamic diameters and crystallite sizes towards C. reinhardtii and S. cerevisiae upon 

illumination with UV and visible light for a range of nanoparticle concentrations and 

incubation times [35]. They also confirmed that bare TiO2NPs affect the C. reinhardtii cells 

viability at much lower particle concentrations than for S. cerevisiae. The TiO2NPs 

antimicrobial action increased upon illumination with UV light compared with that in dark 

conditions due to the oxidative stress of the produced ROS. However, they found that 

TiO2NPs have also affected C. reinhardtii upon illumination with visible light which 
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indicates that they may also interfere with the microalgae's photosynthetic system leading to 

decreased chlorophyll content upon exposure to TiO2NPs. Their results indicate that the 

larger the hydrodynamic diameter of the TiO2NPs the lower is their antimicrobial effect, with 

anatase TiO2NPs generally being more effective than rutile TiO2NPs [35]. Some of the 

mechanisms of particle attachment to the microbial cells and pathways of cell damage are 

illustrated in Fig. 2. Due to their negative charge the generated 
∙
O2

-
 and 

∙
OH

-
 species cannot 

easily penetrate through the negatively charged cell membrane [36]. Consequently, these 

species have been found to accumulate on the external surface of the microorganisms cell 

wall, while H2O2 molecules can also enter much easier through the cell membrane, leading to 

oxidation and damage of the cell interior [35,37,38] (see Fig. 2).Thus, photo-oxidations may 

illustrate the photocatalytic action of ZnO on cells and its possible impact on their DNA [39]. 

Dunford et al. have examined the impact of ZnO samples as well commercial TiO2 samples 

with various proportions of anatase/rutile on DNA upon UV irradiation in vivo. The work 

uncovers that DNA in human cells is also damaged by UV irradiation in the presence of ZnO 

[40].
 
Reddy et al. have used flow cytometry and viability tests to study ZnONPs toxicity 

toward S. aureus and E. coli [41]. Other researchers have studied the antibacterial action of 

ZnONPs to determine the bacterial growth through the viable cells percentage and the culture 

turbidity by the colony counts assay [42].  

 

(Place Fig. 3 here) 

 

Yamamoto improved the antibacterial activity of ZnONPs by modifying the viability 

assessment method [44]. They believed that the antibacterial action rate was greatly enhanced 

by diminishing the start number of bacterial cells from 10
2
 to 10

6
 colony forming units. Nair 

et al. believed that the determination of the initial number of bacterial cells is essential in the 

assessment of the particles antibacterial action [45]. Aruoja et al. have studied toxicities of 

three oxide nanoparticles (ZnONPs, CuONPs and TiO2NPs) and their efficiency for 

inhibiting the growth of microalgae Pseudokirchneriella subcapitata [46]. Heinlaan et al. 

have used the same three oxide nanoparticles and found that ZnONPs and CuONPs have a 

toxic impact on Thamnocephalus platyurus, the bacteria Vibrio fischeri and crustaceans D. 

magna, while TiO2NPs were not toxic [47]. Therefore, the toxicity of NPs depends on the 

size, particle morphology, synthesis method, and test organism species, and other factors as 

described in Fig. 3 [26,47].
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(Place Fig. 4 here) 

 

Hu et al. exposed earthworms Eisenia fetida in soil samples to different concentrations of 

ZnONPs and TiO2NPs for up to seven days to assess their toxicity. They found that these NPs 

can significantly harm to the great extent and destroy the earthworms at particle 

concentrations higher than than 1.0 g kg
-1

, influencing the cellulase enzyme activity, 

mitochondria and the cell DNA [48]. Kasemet et al. examined the toxicity of ZnONPs, 

TiO2NPs and CuONPs on S. cerevisiae (baker’s yeast) – a unicellular eukaryotic organism 

for a 24 h incubation time. It was found that for S. cerevisiae both ZnONPs and bulk ZnO 

were of equivalent toxicity, while, CuONPs showed nearly 60-fold increase in toxicity 

compared to the bulk CuO material. However, it was discovered that both TiO2NPs and bulk 

TiO2 were non-toxic even at 20000 mg L
-1

 [49].
 
 

 

(Place Fig.  5 here) 

 

Al-Awady et al. produced polyelectrolyte-coated TiO2NPs with up to 4 layers of 

polyelectrolytes of alternating charge (PSS and PAH) using the layer-by-layer technique. 

They showed that the antimicrobial properties of polyelectrolyte-coated titania nanoparticles 

alternate with the surface charge for the particles with cationic outer layer (or bare titania) 

being much more effective antimicrobials than the ones with an outer layer of anionic 

polyelectrolyte. The anionic nanoparticles (TiO2NPs/PSS and TiO2NPs/PSS/PAH/PSS) 

showed much lower activity towards than the cationic ones, TiO2NPs/PSS/PAH and the bare 

TiO2NPs, respectively (see Fig. 4) [35]. These authors suggest that the decrease of 

antimicrobial action can be explained by the poor adhesion of the anionic nanoparticles 

(TiO2NPs/PSS and TiO2NPs/PSS/PAH/PSS) to the cell walls due to their electrostatic 

repulsion and the enhancement of the antimicrobial effect for cationic nanoparticles 

(TiO2NPs and TiO2NPs/PSS/PAH) is due to the amplification of the particle-cell 

electrostatically driven adhesion (Fig. 5). They illustrate that the cationic nature of the titania 

nanoparticles at the conditions of the experiment (pH 5) has much higher disrupting effect on 

the microorganisms cell wall than the photocatalytic effect and the production of ROS.  

Adams et al. have researched the eco-toxicity impacts of ZnONPs, SiO2NPs and TiO2NPs on 

Gram-negative bacteria (E.coli) and Gram-positive bacteria (Bacillus subtilis). These authors 
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demonstrated that the all three nanomaterials were destructive to both bacteria to variable 

degrees, with their antibacterial action increasing with the nanoparticle concentration. Also, 

the antibacterial impact of those nanoparticles normally increased from SiO2NPs to TiO2NPs 

to ZnONPs [50]. Jong et al. examined the antialgal action of four oxide NPs namely ZnO, 

Al2O3, TiO2, and SiO2 to microalgae Chlorella sp. From this study, it was found that ZnONPs 

(20 mg L
−1

) and TiO2NPs (HR3, anatase, 30 mg L
−1

) mainly inhibited the growth of the algae 

at an exposure time for six days EC30, while TiO2NPs (DJ3, rutile), Al2O3NPs and SiO2NPs 

had practically no measurable toxicity to algae. In general, nanoparticles showed higher 

toxicity than that of bulk materials of the same chemical composition and polymorphic form 

[51].  

 
(Place Fig.  6 here) 

 

 

Magnesium hydroxide (Mg(OH)2NPs) and magnesium oxide nanoparticles 

(MgONPs) 

 
Mg(OH)2NPs have attracted much attention over years due to their wide applications in 

different fields like environmental processes [53-55] and pharmaceutical formulations [56-

59]. However, a limited number of studies have investigated the antimicrobial effect of 

Mg(OH)2NPs and reported that in vivo toxicity values are low, thus demonstrating that 

Mg(OH)2NPs have actually a non-toxic effect to humans in sensible amounts [60]. Recently, 

it has been reported that Mg(OH)2NPs were effective antibacterial agents towards several 

bacteria, like E. coli, S. aureus, P. aeruginosa and B. phytofirmans [61-66] and a number of 

studies have been focused on this new and effective antimicrobial agent [52].  Dong et al. 

have investigated the antibacterial action of Mg(OH)2NPs on Burkholderia phytofirmans and 

Escherichia coli [62]. Their results indicated that Mg(OH)2NPs suspensions are an effective 

antibacterial agent towards B. phytofirmans and E. coli, and the study examined the role of 

the OH
-
 and Mg

2+
 ions which are naturally present in Mg(OH)2NPs suspension on their 

antimicrobial action. They showed that an alkaline medium of pH 10.4 as well as an 

equivalent amount of Mg
2+

 ions in the aqueous solution cannot kill the bacteria [62]. Dong et 

al. have also examined the antibacterial activity of Mg(OH)2NPs against E. coli. They 

indicated that Mg(OH)2NPs can kill E. coli even in the dark conditions, indicating that no 

photocatalytic properties are involved in their antibacterial action [61]. Hence, it is exciting to 
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notice that the antibacterial mechanism of Mg(OH)2NPs seems to be very different to those of 

metal and metal-based compounds [66-69].  

 

(Place Fig.  7 here) 

 

In another study, Pan et al. synthesised Mg(OH)2NPs from three different precursors (e.g. 

MgCl2, MgSO4 and MgO) and tested their antibacterial efficiency towards E. coli as a model 

Gram-negative bacteria [52]. Bactericidal examinations indicated that the antibacterial 

activity of Mg(OH)2 NPs is conversely related to the particle size. Their results also revealed 

that the ability of Mg(OH)2NPs to adhere on the bacterial surface decreased in the order 

Mg(OH)2_MgCl₂ > Mg(OH)2_MgSO₄ > Mg(OH)2_MgO, showing that the toxicity of the produced 

Mg(OH)2NPs may be caused by the electrostatic interaction induced by adsorption of 

counter-ions (Fig.  6). This means that the type of magnesium salt used to produce the 

Mg(OH)2NPs by hydrolysis can greatly influence their antimicrobial properties by secondary 

absorption of counter-ions on the particles surface. These authors propose that the 

antibacterial mechanism of Mg(OH)2NPs on E. coli is likely to be as follows: Firstly, the 

cationic Mg(OH)2NPs adsorb on the negatively charged bacterial cell wall by electrostatic 

attraction. Secondly, the adsorbed Mg(OH)2NPs disrupts the integrity of the cell wall which 

then increases the permeability of bacterial cell membrane and finally causes the bacteria’s 

death as illustrated in Figure 7 [52].  

Magnesium oxide nanoparticles (MgONPs) are also very stable and biocompatible material 

and are strong antibacterial agents due to their alkalinity and generation of active oxygen 

species. It has been confirmed that the antibacterial mechanism of MgONPs is achieved by 

the production of superoxide on the surface of the MgONPs as well as a local increase in the 

pH by the hydration of the MgONPs surface with water [70,71]. According to published 

reports, MgONPs disrupt the cell membrane and then cause the leakage of intracellular 

contents, which results in the bacterial cell death [72].
 
Hewitt et al. have evaluated the effects 

of three ceramic powders MgO, ZnO and CaO on E. coli. They indicated that MgONPs 

initiated the sensitivity changes in E. coli produced by active oxygen [73]. However, Leung 

et al. have described that very efficient antibacterial action of the MgONPs could be observed 

in the absence of any ROS generation. They showed that the mechanism of antimicrobial 

action might be because of the damage of cell membrane. They reported that the toxicity of 

MgONPs, similar to other metal oxide NPs, is commonly due to the generation of ROS [74].  
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Copper nanoparticles (CuNPs) and Copper oxide nanoparticles (CuONPs) 
 

CuNPs have exceptional biological, physical and chemical properties, and due to the low cost 

of their preparation have become very popular to researchers developing novel antimicrobial 

agents [75-77].
 
Usman et al. have studied the antimicrobial action of copper-chitosan 

nanoparticles with sizes in the range of 2–350 nm. They assessed the antibacterial and 

antifungal activities of these nanoparticles on different microorganisms, including 

methicillin-resistant Staphylococcus aureus, Salmonella choleraesuis, Candida albicans, 

Pseudomonas aeruginosa, and Bacillus subtilis [76]. Their results showed the high capability 

of these nanoparticles as antimicrobial agents in anaerobic conditions. However, rapid 

oxidation of the copper nanoparticles upon exposure to air limits their application as 

antimicrobials in aerobic conditions [76,78].
 
Katwal et al. developed a new electrochemical 

method for preparation of CuONPs with different morphologies [79] which gave enhanced 

antibacterial and antifungal activity against several pathogenic strains (Fig. 8). 

 

(Place Fig.  8 here) 

 

Mahapatra et al. have tested the antibacterial action of copper oxide nanoparticles (CuONPs) 

towards Klebsiella pneumoniae, Salmonella paratyphi, Shigella strains and Pseudomonas 

aeruginosa. According to their results, these nanoparticles showed measurable antibacterial 

action towards the mentioned microorganisms. They proposed that such nanoparticles cross 

through the bacterial cell membrane and affect vital enzymes of the bacteria which were the 

critical factors leading to their death. Also, they showed that CuONPs were not cytotoxic on 

some human cells (HeLa cell line) [78]. Azam et al. have reported a study on the effect of 

particle size on the antibacterial action of CuONPs. They examined the antibacterial activities 

towards two Gram-negative bacteria (E. coli and P. aeruginosa) and two Gram-positive 

bacteria (B. subtilis and S. aureus). It was found that CuONPs exhibited inhibitory effects 

towards both groups of bacteria. The authors have shown that the antibacterial action of 

CuONPs depends on their stability, particle size and concentration added to the bacterial 

growth media. They concluded that the metal nanoparticles limit bacterial growth by 

interacting with nanometric pores that exist on the cell membranes of most microorganisms 

[80]. Ahamed et al. have discovered that CuONPs of particle size around 23 nm had 

significant antimicrobial action towards different bacterial strains (Klebsiella pneumoniae, 
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Pseudomonas aeruginosa, Escherichia coli, Enterococcus faecalis, Shigella flexneri, 

Salmonella typhimurium, Staphylococcus aureus, and Proteus vulgaris). Among these 

microorganisms, Escherichia coli and Enterococcus faecalis showed the highest sensitivity to 

copper oxide nanoparticles while Klebsiella pneumoniae was almost resistant to these 

nanoparticles [77].  

 

Silver nanoparticles (AgNPs) and silver oxide nanoparticles (Ag2ONPs) 
 

AgNPs are one of the most studied inorganic nanoparticles utilized as antimicrobial agents 

[81-84].
 
AgNPs find antimicrobial applications in the production of injection mould plastics, 

textiles and coating-based usages [85] and they are also widely used in biomedical 

applications [86,87]. Jo et al. have discovered that AgNPs show a good antimicrobial activity 

comparable to silver in its ionic form [88]. Allahverdiyev et al. have demonstrated that 

AgNPs have significant antimicrobial activity towards drug-resistant bacteria [89].
 
Lok et al. 

have reported that the antibacterial activity of AgNPs results from destroying the bacterial 

outer membrane [90]. A number of studies have suggested that AgNPs can cause pits and 

gaps in the bacterial membrane and after that can fragment the cell [91,92].
 
Egger et al. have 

also shown that Ag
+
 ions emitted by AgNPs interact with disulfide or sulfhydryl groups of 

enzymes that lead to damage of metabolic processes which causes the bacterial cell death 

[85].
  

According to Sintubin et al. [93], AgNPs release silver ions (Ag+) which can damage the 

target cells through several different pathways: (i) Ag
+
 ions binding to DNA and RNA which 

result in their loss of biological function; (ii) AgNPs can also react with sulphur containing 

peptides inside the cells and on the cell membrane which in affects their viability. (iii) AgNPs 

can potentially destabilise cell membrane proteins and inhibit various intracellular enzymes. 

(iv) at high AgNPs concentration, the released Ag
+
 ions affect the cytoplasm components and 

nucleic acids whereas at lower concentrations they tend to inhibit respiratory chain enzymes 

and impair membrane permeability to proton and phosphates [93]. 

Mie et al. have examined the antibacterial action of their custom-synthesized AgNPs of 

particle size 19 nm towards eight different microorganisms utilizing the disk diffusion 

method. Their results showed that such AgNPs synthesized using Parmotrema 

praesorediosum have potential antibacterial action towards Gram-negative bacteria. 

Therefore, the authors recommended that such synthesized AgNPs could be used in the 

pharmaceutical and biomedical industries [94].
 
Hernández-Sierra et al. have studied the 
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bactericidal action of AgNPs, ZnONPs, and AuNPs against Streptococcus mutans. The 

authors demonstrated that that AgNPs displayed the most effective antibacterial action for 

controlling S. mutans, suggesting that AgNPs could be utilized in fighting dental caries since 

it usually is caused by S. mutans [95].
 
Besinis et al. have also examined the toxicity effect of 

AgNPs towards S. mutans and showed that the antibacterial activity of AgNPs towards 

Streptococcus mutans was higher than that of chlorhexidine [96]. Zarei et al. have studied 

toxicities of AgNPs against four foodborne pathogens namely Escherichia coli, Vibrio 

parahaemolyticus, Listeria monocytogenes and Salmonella typhimurium. As indicated by 

their results, AgNPs had the strongest antibacterial impact against the mentioned pathogens. 

Thus, the authors concluded that AgNPs could be a good option for cleaning and disinfection 

of equipment and surfaces in the food-related environments [97]. Additionally, AgNPs have 

been reported to be less toxic than numerous different disinfectants. Marambio-Jones and 

Hoek  had reviewed the antibacterial effects of the AgNPs and their implications for the 

environment and human health [98]. Kim et al. reported strong antifungal effect of AgNPs 

against pathogenic yeast [99].  

Ag2ONPs have been found to have very strong antimicrobial properties and may be 

considered as an alternative of most modern antiseptic agents [89, 100]. Sondi and Salopek-

Sondi  have tested the antimicrobial activity of Ag2ONPs towards E. coli. These authors 

believed that when E. coli were exposed to Ag2ONPs nanoparticles, they can end the cell 

cycle at the G2/M phase because of the DNA damage through oxidative stress [101].
 
Such 

nanoparticles would be promising substitutes for various broad spectrum antibiotics. 

 

Gold nanoparticles (AuNPs) 
 

AuNPs are thought to be so important in the development of antibacterial action because of 

their photothermal activity, nontoxicity, polyvalent impacts, high ability to functionalization 

and ease of detection [102-105].
 
Cui et al. have reported that the antimicrobial action of 

AuNPs do not include any ROS-related mechanisms [106]
 
rather than the adhesion of the 

AuNPs to the bacterial membrane followed by membrane potential modification and ATP 

level decline. In addition, AuNP have been found to inhibit the tRNA by binding to the 

ribosomes [106]. Tiwari et al. have tested the antibacterial and antifungal effects of the 

AuNPs functionalized with 5-fluorouracil towards Staphylococcus aureus, Escherichia coli, 

Pseudomonas aeruginosa, Aspergillus fumigatus, Aspergillus niger and Micrococcus luteus. 

Their results revealed that the AuNPs had higher antibacterial activity towards Gram-
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negative bacteria than Gram-positive bacteria because of the easier nanoparticle transfer into 

the Gram-negative bacteria. Likewise, they indicated antifungal activity against Aspergillus 

fumigatus and Aspergillus niger [103].  

Zhou et al. have investigated antibacterial effects of Au and AgNPs on bacillus Calmette-

Guérin (BCG) and E. coli. According to their results, AgNPs showed excellent antibacterial 

activity on both the Gram-positive bacteria BCG and the Gram-negative bacteria E. coli. 

They also investigated AuNPs with a weakly bound capping agent (citrate) and a strongly 

bound capping agent (poly-allylamine hydrochloride, PAH). The researchers showed that the 

PAH could strongly interact with the bacterial cell membrane because of its positively 

charged nature.
 
The authors commented on the mechanisms of interaction between AuNP and 

AgNPs and E. coli.[104]
 
These bacterial cells were found to take up single citrate-coated 

AuNPs or aggregates of AuNPs complexes. The PAH-coating facilitated the AuNPs uptake 

into the bacterial cells followed by lysis. However, most of the AgNPs were trapped on the 

cell walls [104].  

 

Aluminium oxide nanoparticles (Al2O3NPs) 

 
Aluminium oxide nanoparticles have a wide range of applications in different fields such as 

personal care products as well as industrial sorbents and fillers. Alumina forms very stable 

nanoparticles which are impervious to temperature changes and have a hexagonal close 

packing structure, including the O2
-
 and the Al

3+
 ions that fill 65% of all the octahedral sites 

existing in the structural network [107-110].
 
Sadiq et al. have studied the action of Al2O3NPs 

as anti-oxidants that block the generation of reactive oxygen species (ROS), indirectly 

blocking apoptosis, which starts the ROS defence system, before finishing the cell death 

program [110]. Furthermore, they have reported the growth inhibition of the pathogen E. coli 

by alumina nanoparticles with a particle size of approximately 179 nm in the concentration 

range of 10-1000 µg mL
-1

. The majority of the metal oxides act as antimicrobials by using the 

processes of production of ROS, which leads to damage of the bacterial cell wall. However, 

Al2O3NPs can likewise act as a radical scavenging agent which have non-toxic effect to the 

human cell [110].
 
The method of action of Al2O3NPs towards E. coli can be explained by an 

initial adhesion of positively charged alumina nanoparticles to the negatively charged 

bacterial cell surface. When a bacterial cell influences a human cell, it leads to the generation 

of ROS, which can be very damaging to human health, as it can cause DNA damage that 

could be a probable cause of cancer.
 
Since, Al2O3NPs have a radical scavenging property, 
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they block the production of ROS, which leads to bacterial cell death, before the human cells 

are damaged [110,111].  

 

Cerium oxide nanoparticles (CeO2NPs)   

CeO2 is a technologically significant material because of its properties and applications in 

different fields ranging from engineering to biological sciences [112].
 
Santos et al. have 

found that at lower temperatures the CeO2NPs have antimicrobial action towards different 

bacteria, including Shewanellaoneidensis, Pseudokirchneriella subcapitata, E. coli and B. 

subtilis, due to damaging of the microorganisms cell walls [112].
 
Many studies state that the 

concentration of Ce
3+

 increases compared to Ce
4+

 as the size of the nanoparticles decreases, 

with the concentration of Ce
3+

 is under 1% in suspension of 10 nm CeO2NPs, while it 

increases to 6% for CeO2NPs. There are O2 gaps present in the oxidation states of these two 

CeO2NPs. The production of an O2 vacancy is accompanied by the reduction of the Ce
4+

 

formula to the Ce
3+

, resulting in the loss of O2 molecule. This distinctive radical scavenging 

property of CeO2 (IV) nanoparticles makes them an attractive option for applications in 

wound healing dressings. Moreover, CeO2NPs have an important antimicrobial action, as 

they can act as radical scavengers and block the ROS generation which can also eliminate 

microorganisms [112,113].  

 

Yttrium oxide nanoparticles (Y2O3NPs) 

Y2O3NPs have multiple applications in mechanical polishing, chemical synthesis and as 

additives to drugs, varnishes, food and cosmetics [114]. Y2O3NPs have one of the highest 

free energy of formation of their oxide structure [115]
 
and do not deviate from their 

stoichiometry under the normal temperature and pressure conditions or by the impact of 

atmospheric CO2 and H2O vapours. Y2O3NPs have two polymorphs, which are A and B form 

of hexagonal close-packing structure (hcp). Atou et al. have indicated that the antioxidant 

properties of the Y2O3NPs prevent the cell death because of excessive oxidative stress [116]. 

Furthermore, Schubert et al. have shown that the properties of Y2O3NPs are dependent on 

their structure but independent of the particle size in the range of 6-1000 nm. The researchers 

also showed that the Y2O3NPs act as direct antioxidants to limit the amount of reactive 

oxygen species required to kill the cells [117]. The Y2O3NPs are relatively non-toxic to 

neutrophils and macrophages which is a very beneficial wound healing property [113,117].  
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(Place Fig.  9 here) 

 

Colloid antibodies for microbial cells shape and surface recognition 

Conventional antimicrobial nanoparticles have one major drawback as they cannot 

specifically differentiate between microbial and human cells, which is why they could 

potentially have a toxic effect on human health. This is the reason why direct replacement of 

common antibiotics with antimicrobial nanoparticles formulations can be challenging. This 

can be partially overcome by functionalising antimicrobial nanoparticles with antibodies. An 

interesting alternative was recently proposed by Borovicka et al. where a combination of 

antimicrobial nanoparticles with inorganic shells imprinting the shape of target microbes [119] 

was used in their cell shape-selective recognition and killing in a mixture with microbial cells 

of different cell shape and size. These “colloidal cell imprints” were prepared by depositing 

silica on microbial cells pre-coated with AuNPs. These composite shells were then partially 

fragmented by ultrasound and the fragments were recovered after removing the templated 

cells with a bleaching solution [118] (see Fig. 9). 

 

(Place Fig. 10 here) 

 

The incubation of these AuNPs-functionalised colloidal cell imprints in a mixture of 

microbial cells of various shapes (Fig. 9) showed that they attach only to cells matching the 

imprinted cell shape and deliver antimicrobial agent (gold nanoparticles) directly to their 

membranes. Since the AuNPs have photothermal properties, irradiation with laser led to cell 

shape selective killing of microbial cells due to overheating of their surface in contact with 

the imprint (see Fig. 9b and Fig. 10). The same approach can be applied with many other 

antimicrobial nanoparticles. This cell shape recognition of the microbial cell imprints 

minimises the direct exposure of other cells to antimicrobial nanoparticles [118].
 
Generally, 

the size recognition of the target cell and its colloid imprint amplifies the magnitude of the 

interaction energy between their surfaces. When the free interaction energy (sum of 

electrostatic, van der Waals and biospecific interactions) between the surfaces of the target 

microbial cell and its colloid imprint is attractive, the cell size and shape matching amplifies 

the attraction. For micrometre-sized target cells and moderate ionic strength this can result in 

more than three orders of magnitude difference in the interaction energy [120].
 
Rahma et al. 
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developed similar approach by using hemispherical silica shell particles produced by 

templating yeast cells with silica followed by their fragmentation, bleaching and surface 

functionalisation with N-chloramines. Antimicrobial testing was carried out on Gram-

negative (E. coli) and Gram-positive (B. cereus) bacteria and confirmed their superior 

antimicrobial efficacy compared with small molecule antiseptic agents [121]. This approach 

opens a number of new avenues for building powerful selective biocides based on 

combinations of colloid antibodies and cell killing strategies based on nanoparticles which 

can be applied in new antibacterial therapies. 

 

(Place Fig. 11 here) 

 

Environmentally benign antimicrobial nanoparticles 

Biodegradable antimicrobial nanoparticles with cores prepared from renewable materials 

could be used as sustainable delivery system for active payloads in molecular or ionic form, 

such as metal ions and other useful bioactive components [123]. Lignin is the most abundant 

aromatic biopolymer in nature [124]. It has an amorphous 3D structure [125,126], and it is 

naturally degradable and biocompatible [127,128]. Biodecomposition of lignin in the 

environment [129,130] transforms it in soil humus [131]. Frangville et al. [132] and Richter 

et al. [122,133] proposed two alternative methods for preparation of environmentally 

biodegradable lignin nanoparticles from Kraft and Organosolv lignin which can be loaded 

with hydrophilic [132] and hydrophobic [132,133] antimicrobial payloads. Their work was 

extended by Richter et al. by synthesizing environmentally-benign antimicrobial 

nanoparticles from lignin cores infused with silver-ion [122] (see Fig. 12). These lignin 

nanoparticles were turned cationic by adsorption of a cationic polyelectrolyte, 

polydiallyldimethylammonium chloride (PDAC) to give Ag
+
-loaded environmentally benign 

nanoparticles (EbNPs-Ag
+
-PDAC). The cationic nature of these particles facilitated the 

targeted adhesion of the nanoparticles to negatively-charged cell membranes of a range of 

bacteria. These particles exhibit broad-spectrum antimicrobial activity during application, 

while offering an environmentally friendly alternative to metallic silver nanoparticles (Fig. 

13). The EbNPs-Ag
+
-PDAC exhibit broad spectrum biocide action and are capable of killing 

common Gram-negative and Gram-positive human pathogens as well as quaternary amine-

resistant bacteria, while using 10× less silver when compared with conventional branched 
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poly ethylene imine–coated AgNPs (BPEI-AgNPs) and AgNO3 aqueous solution. The array 

of high-throughput screening tests on mammalian cells and zebrafish embryos indicate that 

the EbNPs have decreased impact on the majority of biological endpoints, when compared 

with equivalent mass of AgNPs and Ag
+
. However, the EbNPs-Ag

+
-PDAC were showed to 

have time-limited antimicrobial action after they can release their residual silver ions [122]. 

 

 (Place Fig. 12 here) 

 

Different methods for characterisation of the nanoparticle antimicrobial action have been 

employed, e.g. growth inhibition method [134], the estimation of the minimum inhibitory 

particle concentration [93], and the minimum bactericidal concentration [135]. Nanoparticles 

have also been used to encapsulate and deliver antibacterial. Martins et al. has encapsulated 

violacein poly-(D,L-lactide-co-glycolide) (PLGA) nanoparticles to deliver it as bactericidal 

agent. This minimum inhibitory concentration of PGLA NPs-loaded violacein has been found 

to be five times lower than free violacein in solution [136]. Biodegradable nanoparticles 

made of dextran loaded with silver carbene complex have also been shown by Ornelas-

Megiatto et al. to have higher antibacterial activity compared to the free silver complex [137]. 

Hybrid nanoparticles (e.g. magnetite), whose surfaces are coated by polymers (chitosan/PGA) 

of high affinity for the microbial cells have shown a boost in their antimicrobial efficiency.  

Qi et al. demonstrated that the vancomycin-modified mesoporous silica nanoparticles 

(MSNs⊂Van) can efficiently target and kill Gram-positive bacteria over macrophage-like 

cells (Fig. 13). Owing to the specific hydrogen bonding interactions of vancomycin toward 

the terminal D-alanyl-D-alanine moieties of gram-positive bacteria, the MSNs⊂Van 

exhibited enhanced recognition for Gram-positive bacteria due to the multivalent hydrogen 

binding effect [138]. 

 

(Place Fig. 13 here) 

 (Place Table 1 here) 

 

Biomedical and industrial applications of antimicrobial nanoparticles 

Recently, nanoparticles have offered great possibilities for applications as antimicrobial 

agents. Metal and metal oxide based nanoparticles with antimicrobial action could find many 
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applications in health related and industrial products, like food preservation, cosmetics, home 

and personal care, water treatment and crop protection as shown in Fig. 14 [21].  

 

(Place Fig. 14 here) 

 

ZnONPs and colloidal size ZnO powders have numerous applications in pharmaceutical and 

cosmetic formulations, textile industry, electronics and electro technology industries and 

photocatalysis due to their distinct properties such as large binding energy, wide bandgap and 

chemical stability [152]. Moreover, ZnONPs are used as antimicrobial agents for surface 

coatings on walls and wallpapers. Mg(OH)2NPs are approved as additives in a number of 

foods and drugs [153]. Furthermore, the MgONPs can be utilized in medical treatments as 

well as in environmental preservation and food processing [154]. TiO2NPs have already been 

utilized in cosmetics, waste water treatment and foods. AgNPs have also been used in textiles 

and other consumer goods for surface sterilization [21]. The antifungal and antiviral activity 

of nanoparticles has not yet been studied extensively but it is a very promising area with a 

huge potential. Silver nanoparticles ware recently used by Lara et al. as antiviral agents 

against HIV-1 strain at non-cytotoxic levels. It showed good efficiency at the early stage of 

viral replication [155].  

(Place Table 2 here) 

 

Table 1 summarizes the modes of action of various antimicrobial particles and Table 2 points 

to their advantages and drawbacks. 

  

Conclusions 
 

Nanotechnology offers unconventional approaches for fighting microbes that do not rely on 

the existing pathways of antibiotic action. This makes possible to address the challenge of 

antimicrobial resistance by using nanoparticles with engineered antimicrobial action designed 

to target specific pathogens. There is a lot of ongoing work on several classes of inorganic 

and organic colloid particles of added functionality which exhibit strong and universal 

antibacterial, antifungal and antiviral action towards which microbes have not been able to 

develop resistance. We have discussed the mechanisms by which such nanoparticles attack 

microbial cells or inhibit their growth, which involve generation of reactive oxygen species 

(ROS) upon irradiation with UV light, cell membrane disruption due to the NPs cationic 
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surface, ROS scavenging, emission of heavy ions, as Ag
+
 and Cu

2+
 on the cell surface, etc. 

Various strategies have recently been pursued in search of antimicrobial agents based on 

natural as well as synthetic nanoparticles. The latter include nanoparticles synthesised from 

various metals, as copper, gold and silver and metal oxides, e.g. copper, zinc, titanium, 

aluminium and magnesium, as well as low soluble metal hydroxides, as Mg(OH)2. These 

inorganic nanoparticles have very different mechanisms of antimicrobial activity and can 

retain their antimicrobial action in a range of adverse conditions. Smaller nanoparticles 

usually show greater antimicrobial activity due to larger surface-to-volume ratio in 

suspension and greater area of contact with targeted microbial cells. However, significant 

research effort is needed to carefully test their side effects, environmental impact and 

potential nanotoxicity before nanoparticles can be safely and broadly used as efficient 

substitutes of conventional antimicrobials. 
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Table 1. Commonly used nanoparticles as antimicrobial agent, their surface properties and the 

cell-nanoparticle interactions. 

Type of 

nanoparticles 

Surface 

properties 

at pH 7 

Cell-particle interactions Refs. 

ZnO NPs Cationic, 

IEP 9.7  

Bacterial attachment by electrostatic 

interactions, ROS generation on the 

surface of the particles; zinc ion 

release, membrane dysfunction; and 

nanoparticles internalization into cell. 

[139-144] 

 

MgO NPs  Cationic 

IEP 9.8-

12.7 

Electrostatic interactions, Damaging 

the cell membrane and then causing 

the leakage of intracellular contents 

and death of the bacterial cells. 

[70,72-74] 

 

Cu NPs and 

CuO NPs 

Cationic 

IEP  9.5- 

10 

Release of Cu
2+

, electrostatic 

interactions, Crossing of nanoparticles 

from the bacteria cell membrane and 

then damaging the vital enzymes of 

bacteria. 

[77,78,142,145] 

Al2O3 NPs  Cationic bacterial attachment (electrostatic [146] 
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IEP 8-9 interaction) damage to the bacterial 

cell wall and increase the 

permeability. 

TiO2 NPs Cationic 

IEP 6.8 

Electrostatic interactions, oxidative 

stress via the generation of ROS; lipid 

peroxidation that cause to enhance 

membrane fluidity, disrupt the cell 

integrity. 

[35,89,143,147-

149] 

 

CeO2 NPs Cationic 

IEP6.7-8.6 

There are oxygen gaps present in the 

oxidation states of these two CeO2 

NPs. The creation of an oxygen 

vacancy is accompanied by the 

reduction of the Ce
4+

 form to the Ce
3+

, 

resulting in the loss of an oxygen 

molecule. This unique radical 

scavenging property of ceria makes 

them an attractive option in wound 

healing. CeO2 nanoparticles have a 

good antimicrobial activity, as they 

can act as radical scavengers and 

block the ROS production to eliminate 

bacteria. 

[112,113,117] 

Y2O3 NPs Cationic 

IEP7.2-8.9 

The Y2O3 nanoparticles act as direct 

antioxidants to limit the amount of 

reactive oxygen species required to 

kill the cells. 

[117] 

Ag NPs and 

Ag2O NPs 

Cationic 

IEP 9.4 

Release of Ag
+
, electrostatic 

interactions, Ion release; induction of 

pits and gaps in the bacterial 

membrane; interact with disulfide or 

sulfhydryl groups of intracellular 

enzymes that lead to disruption of 

metabolic processes. DNA loses its 

replication ability and the cell cycle 

halts at the G2/M phase owing to the 

DNA damage (in the case of Ag2O). 

[85,91,92,145,150,

151] 

 

Au NPs Cationic 

IEP 5.5-

6.8 

Electrostatic interactions, attachment 

of these nanoparticles to membrane 

which change the membrane potential 

and then cause the decrease the ATP 

level; and inhibition of tRNA binding 

to the ribosomes. 

[102,103,105,106] 

 

Mg(OH)2  NPs Cationic 

IEP 10-

12.7 

Electrostatic interactions, Firstly, the 

cationic Mg(OH)2NPs adsorb on the 

negatively charged bacterial cell wall 

by electrostatic attraction. Secondly, 

the adsorbed Mg(OH)2NPs disrupts 

the integrity of the cell wall which 

then increases the permeability of 

bacterial cell membrane and finally 

[52] 
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causes the bacteria’s death.  
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Table 2. A brief list of advantages and drawbacks of antimicrobial nanoparticles. 

Type of 

antimicrobial  

nanoparticles 

Advantages and applications Drawbacks 

ZnO NPs Antimicrobial, photocatalytic activity; 

high stability; cheap and easy to prepare; 

bactericidal effects on both Gram-

positive and Gram-negative bacteria; 

antibacterial activity against spores which 

are resistant to high temperature 

treatment [139-144]. 

Conventional antimicrobial 

nanoparticles have one 

major drawback as they 

cannot specifically 

differentiate between 

microbial and human cells 
 

MgO NPs 

 

Effective against both Gram-positive and 

Gram-negative bacteria; high stability; 

low cost; availability [70,72-74]. 

Non-specific antimicrobial 

action; 

 
Cu NPs and 

CuO NPs  

Effective against Gram-positive and 

Gram-negative bacteria; high stability; 

easy to fabricate, antifungal activity 

77,78,142,145]. The [antibacterial and 

antifungal activities of these 

nanoparticles on different 

microorganisms, including methicillin-

resistant Staphylococcus aureus, 

Salmonella choleraesuis, Candida 

albicans, Pseudomonas aeruginosa, and 

Bacillus subtilis [76]. 

Could potentially have a 

toxic effect on human 

health. This is the reason 

why direct replacement of 

common antibiotics with 

antimicrobial nanoparticles 

formulations can be 

challenging.  
 

Al2O3 NPs Antimicrobial properties, inert, cheap and 

easy to fabricate,  Al2O3NPs can act as a 

radical scavenging agent which have non-

toxic effect to the human cell [110]. 

Could potentially have a 

toxic effect on human health 

upon dissolution in acidic 

environment. 
TiO2 NPs 

 
Antimicrobial properties, suitable 

photocatalytic properties; cheap and easy 

to make, high stability; effective 

antifungal for fluconazole resistant 

strains, no toxicity in dark 

condition.TiO2NPs affect the C. 

reinhardtii cells viability at much lower 

particle concentrations [35,89,143,147-

149]. 

Non-specific antimicrobial 

action; 

 

CeO2 NPs Antimicrobial, catalyst support, radical 

scavenger [113] at lower temperatures the 

CeO2NPs have antimicrobial action 

towards different bacteria, including 

Shewanellaoneidensis, 

Pseudokirchneriella subcapitata, E. coli 

and B. subtilis, due to damaging of the 

microorganisms cell walls [112]. 

Non-specific antimicrobial 

action; 

Expensive to make in large 

quantities. 
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Y2O3 NPs Antimicrobial, UV protection, radical 

scavenger [113,117]. 

Non-specific antimicrobial 

action; 

Expensive to make in large 

quantities. 
Ag NPs and 

Ag2O NPs 

 

 

High antimicrobial activity against both 

bacteria and drug-resistant bacteria, 

antifungal activity on spore-producing 

fungal plant pathogens, high stability, 

nontoxicity, disinfectant, electrical 

conductive, UV protection 

[85,91,92,145,150,151].  

Non-specific antimicrobial 

action; 

This can be partially 

overcome by functionalising 

antimicrobial nanoparticles 

with antibodies (see Fig. 9) 

[118,119] 
Au NPs 

 

Nontoxicity, not inducing any ROS-

related process; high ability to 

functionalization, 

polyvalent effects; ease of detection; 

photothermal activity [102,103,105,106]. 

The antibacterial and antifungal effects of 

the AuNPs functionalized with 5-

fluorouracil towards Staphylococcus 

aureus, Escherichia coli, Pseudomonas 

aeruginosa, Aspergillus fumigatus, 

Aspergillus niger and Micrococcus 

luteus. Their results revealed that the 

AuNPs had higher antibacterial activity 

towards Gram-negative bacteria than 

Gram-positive [103]. 

Expensive to make in large 

quantities. 

Mg(OH)2  NPs 

 

Antibacterial, environmental processes, 

pharmaceutical formulations.  Due to its 

non-toxicity and low cost, Mg(OH)2 is an 

approved 

drug and food additive [52-59,61]. 

Mg(OH)2NPs were effective antibacterial 

agents towards several bacteria, like E. 

coli, S. aureus, P. aeruginosa and B. 

phytofirmans [61-66] 

Only moderately efficient as 

antimicrobial agents; require 

relatively high particle 

concentrations to act as 

antimicrobials; sensitive to 

pH of the environment. 

EBNPs Biodegradable environmental friendly; 

can outperform inorganic antimicrobials, 

more cost effective than AgNPs; 

Tested against  

E. coli, P. aeruginosa and Ralstonia sp. 

[122,133,136-138] 

Complexity of fabrication; 

Non-specific antimicrobial 

action; 

 

Colloid 

antibodies  

Cell shape specific better selectivity- see 

e.g. [118-120] 

Cost of production; 

Complexity of fabrication 
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FIGURE CAPTIONS 

 

Fig. 1. Classification of colloid particles as antimicrobial agents.  

 

Fig. 2. Schematics of the photocatalytic reactions of TiO2NPs and their antimicrobial action 

due to the formation of reactive oxygen species. Reproduced with permission from Ref. [35].
  

 

Fig. 3. Schematic overview of the nanotoxic impact of metal oxide NPs. The essential factors 

that result in toxicity towards microbial cells include nanoparticle size, dissolution, structure 

and morphology, exposure routes, etc. The cell destroying mechanisms include oxidative 

stress, genotoxicity, coordination effects and non-homeostasis [26,43]. 

 

Fig. 4. The effect of anatase TiO2NPs coated with different number of layers of anionic (PSS) 

and cationic (PAH) polyelectrolytes on the viability of C. reinhardtii at different particle 

concentrations (0, 100 and 500 mg mL
-1

). The cells were incubated with the bare and the 

coated TiO2NPs in dark conditions (A–D) and under UV light (E–H), respectively. The 

antimicrobial was assessed for: (A and E) bare TiO2NPs; (B and F) TiO2NPs/PSS; (C and G) 

TiO2NPs/PSS/PAH and (D and H) TiO2NPs/PSS/PAH/PSS at different nanoparticle 

concentrations and exposure times. Reproduced with permission from Ref. [35]. 

 

Fig. 5. (A) Mechanism of cytotoxic action of TiO2NPs due to the generation of reactive 

oxygen species (ROS) in the presence of sunlight and oxygen which can lead to cell damage. 

(B) The adhesion of the uncoated TiO2NPs to the cell wall surfaces is favoured due to their 

opposite surface charges. (C) The interaction between the anionic surface of the cell 

membrane and TiO2NPs coated with anionic polyelectrolyte is repulsive. The cationic 

TiO2NPs and TiO2NPs/PSS/PAH nanoparticles are expected to be more toxic to the cells than 

the anionic TiO2NPs/PSS particles. Reproduced with permission from Ref. [35]. 

 

Fig. 6. Schematic diagram showing the different contacting patterns between bacterial cells 

and Mg(OH)2NP aggregates produced from different magnesium precursors (MgCl2, MgSO4 

and MgO) [52].  

 

 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

30 
 

Fig. 7. (a) TEM and (b) SEM images of E. coli treated with 0.5 mg/mL Mg(OH)2 colloidal  

slurries for 4 h. Inset images of (b) show the EDS analysis of bacteria. The size of all SEM 

images is 6.0 μm. Reproduced with permission from Ref. [52]. 

 

Fig. 8. SEM micrographs of CuONPs prepared in the presence of (a) water, (b) water–

methanol, (c) water–acetonitrile. (d) Inhibition rate (%) of E. coli, S. aureus, C. albicans and 

A. nigres after being exposed to 25 and 50 mg concentration (mg mL
-1

) of CuONPs. 

Reproduced with permission from Ref. [79]. 

 

Fig. 9. (a) Fabrication of the photothermal colloid antibodies (PCAs) by templating AuNP-

coated cells with silica and subsequent silica shell fragmentation and bleaching of the cell 

templates with Piranha solution. (b) Experimental setup illustrating the principle of action of 

PCAs with integrated AuNPs on their inner surface in a suspension of two types of microbial 

cells of different morphology. PCAs recognize and bind only to bacteria of matching shape, 

which are killed selectively by the photothermal effect after laser irradiation while the other 

bacteria in the mixture remain viable. Grey colour signifies dead cells. Redrawn from Ref. 

[118]. 

 

Fig. 10. Graphical summary of the selective yeast cell recognition and killing experiments by 

PCAs in a mixture of yeast and B. subtilis. Reproduced with permission from Ref. [118]. 

 

Fig. 11. Schematics of the general use cycle and principle of bactericidal action of the 

environmentally-benign lignin-core nanoparticles (EbNPs) compared to the presently used 

silver nanoparticles (AgNPs). (a) General mechanism of antimicrobial action of common 

AgNPs via release of Ag
+
 ions, which continues post utilization. (b) Antimicrobial action 

mechanism of Ag
+
 ion-infused EbNPs with cationic polyelectrolyte coating, which facilitates 

electrostatic attraction between the EbNPs and the negatively charged cell walls. In contrast 

to AgNPs, EbNPs are depleted of silver ions during application, minimizing their post-

utilization activity. (c), TEM micrograph of as-synthesized EbNPs in the size range of 40 to 

70 nm. (d), Confocal microscopy image of EbNPs with polyelectrolyte coating adhering to 

the cell membrane of E. coli. Reproduced with permission from Ref. [122]. 
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Fig. 12. Quantification of Colony Forming Unit (CFU) reduction efficiency as a function of 

mg L
-1

 Ag
+
 equivalent of EbNPs and control samples on E. coli, P. aeruginosa, and Ralstonia 

sp. (a), E. coli test – 1 min contact time. The fully functionalized sample is EbNPs-Ag
+
-

PDAC. It is compared to a number of controls, EbNPs without Ag
+
, PDAC polyelectrolyte 

solution, AgNO3 solution and BPEI-coated AgNPs. EbNPs-Ag
+
-PDAC achieved the highest 

CFU reduction of all samples with the smallest amount of silver. (b) PDAC-resistant 

Ralstonia test: For these bacteria EbNPs-Ag
+
-PDAC, BPEI-AgNPs and AgNO3 solutions 

outperformed PDAC samples. Note that EbNPs-Ag
+
-PDAC is the only sample that is 

consistently efficient at very low Ag
+
 loading. Reproduced with permission from Ref. [122]. 

 

Fig. 13.Top: Schematic representation of MSNs⊂Van for selective recognition and killing 

pathogenic Gram-positive bacteria over macrophage-like cells. Bottom: SEM images of S. 

aureus and E .coli. (a, b) S. aureus and E.coli (1 × 10
5
 CFU mL

−1
) suspended in PBS as 

control groups; (c, d) Images of S. aureus and E .coli treated by MSNs⊂Van with a 

concentration of 200 μg mL
−1

 for 2 h, respectively. Reproduced with permission from Ref. 

[138]. 

 

Fig. 14. Different antimicrobial practical applications of nanoparticles. Redrawn from Ref. 

[21]. 

 

 

 

TABLE CAPTIONS 

 

Table 1. Commonly used nanoparticles as antimicrobial agent, their surface properties and the 

cell-nanoparticle interactions. 

 

Table 2. A brief list of advantages and drawbacks of antimicrobial nanoparticles. 
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Fig. 2. Classification of colloid particles as antimicrobial agents.  
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Fig. 2. Schematics of the photocatalytic reactions of TiO2NPs and their antimicrobial action 

due to the formation of reactive oxygen species. Reproduced with permission from Ref. [35].
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Fig. 3. Schematic overview of the nanotoxic impact of metal oxide NPs. The essential factors 

that result in toxicity towards microbial cells include nanoparticle size, dissolution, structure 

and morphology, exposure routes, etc. The cell destroying mechanisms include oxidative 

stress, genotoxicity, coordination effects and non-homeostasis [26,43]. 
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Fig. 4. The effect of anatase TiO2NPs coated with different number of layers of anionic (PSS) 

and cationic (PAH) polyelectrolytes on the viability of C. reinhardtii at different particle 

concentrations (0, 100 and 500 mg mL
-1

). The cells were incubated with the bare and the 

coated TiO2NPs in dark conditions (A–D) and under UV light (E–H), respectively. The 

antimicrobial was assessed for: (A and E) bare TiO2NPs; (B and F) TiO2NPs/PSS; (C and G) 

TiO2NPs/PSS/PAH and (D and H) TiO2NPs/PSS/PAH/PSS at different nanoparticle 

concentrations and exposure times. Reproduced with permission from Ref. [35]. 
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Fig. 5. (A) Mechanism of cytotoxic action of TiO2NPs due to the generation of reactive 

oxygen species (ROS) in the presence of sunlight and oxygen which can lead to cell damage. 

(B) The adhesion of the uncoated TiO2NPs to the cell wall surfaces is favoured due to their 

opposite surface charges. (C) The interaction between the anionic surface of the cell 

membrane and TiO2NPs coated with anionic polyelectrolyte is repulsive. The cationic 

TiO2NPs and TiO2NPs/PSS/PAH nanoparticles are expected to be more toxic to the cells than 

the anionic TiO2NPs/PSS particles. Reproduced with permission from Ref. [35]. 
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Fig. 6. Schematic diagram showing the different contacting patterns between bacterial cells 

and Mg(OH)2NP aggregates produced from different magnesium precursors (MgCl2, MgSO4 

and MgO) [52].  
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Fig. 7. (a) TEM and (b) SEM images of E. coli treated with 0.5 mg/mL Mg(OH)2 colloidal  

slurries for 4 h. Inset images of (b) show the EDS analysis of bacteria. The size of all SEM 

images is 6.0 μm. Reproduced with permission from Ref. [52]. 
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Fig. 8. SEM micrographs of CuONPs prepared in the presence of (a) water, (b) water–

methanol, (c) water–acetonitrile. (d) Inhibition rate (%) of E. coli, S. aureus, C. albicans and 

A. nigres after being exposed to 25 and 50 mg concentration (mg mL
-1

) of CuONPs. 

Reproduced with permission from Ref. [79]. 
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Fig. 9. (a) Fabrication of the photothermal colloid antibodies (PCAs) by templating AuNP-

coated cells with silica and subsequent silica shell fragmentation and bleaching of the cell 

templates with Piranha solution. (b) Experimental setup illustrating the principle of action of 

PCAs with integrated AuNPs on their inner surface in a suspension of two types of microbial 

cells of different morphology. PCAs recognize and bind only to bacteria of matching shape, 

which are killed selectively by the photothermal effect after laser irradiation while the other 

bacteria in the mixture remain viable. Grey colour signifies dead cells. Redrawn from Ref. 

[118]. 
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Fig. 10. Graphical summary of the selective yeast cell recognition and killing experiments by 

PCAs in a mixture of yeast and B. subtilis. Reproduced with permission from Ref. [118]. 
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Fig. 11. Schematics of the general use cycle and principle of bactericidal action of the 

environmentally-benign lignin-core nanoparticles (EbNPs) compared to the presently used 

silver nanoparticles (AgNPs). (a) General mechanism of antimicrobial action of common 

AgNPs via release of Ag
+
 ions, which continues post utilization. (b) Antimicrobial action 

mechanism of Ag
+
 ion-infused EbNPs with cationic polyelectrolyte coating, which facilitates 

electrostatic attraction between the EbNPs and the negatively charged cell walls. In contrast 

to AgNPs, EbNPs are depleted of silver ions during application, minimizing their post-

utilization activity. (c), TEM micrograph of as-synthesized EbNPs in the size range of 40 to 

70 nm. (d), Confocal microscopy image of EbNPs with polyelectrolyte coating adhering to 

the cell membrane of E. coli. Reproduced with permission from Ref. [122]. 
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Fig. 12. Quantification of Colony Forming Unit (CFU) reduction efficiency as a function of 

mg L
-1

 Ag
+
 equivalent of EbNPs and control samples on E. coli, P. aeruginosa, and Ralstonia 

sp. (a), E. coli test – 1 min contact time. The fully functionalized sample is EbNPs-Ag
+
-

PDAC. It is compared to a number of controls, EbNPs without Ag
+
, PDAC polyelectrolyte 

solution, AgNO3 solution and BPEI-coated AgNPs. EbNPs-Ag
+
-PDAC achieved the highest 

CFU reduction of all samples with the smallest amount of silver. (b) PDAC-resistant 

Ralstonia test: For these bacteria EbNPs-Ag
+
-PDAC, BPEI-AgNPs and AgNO3 solutions 

outperformed PDAC samples. Note that EbNPs-Ag
+
-PDAC is the only sample that is 

consistently efficient at very low Ag
+
 loading. Reproduced with permission from Ref. [122]. 
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Fig. 13. Top: Schematic representation of MSNs⊂Van for selective recognition and killing 

pathogenic Gram-positive bacteria over macrophage-like cells. Bottom: SEM images of S. 

aureus and E .coli. (a, b) S. aureus and E.coli (1 × 10
5
 CFU mL

−1
) suspended in PBS as 

control groups; (c, d) Images of S. aureus and E .coli treated by MSNs⊂Van with a 

concentration of 200 μg mL
−1

 for 2 h, respectively. Reproduced with permission from Ref. 

[138]. 
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Fig. 14. Different antimicrobial practical applications of nanoparticles. Redrawn from 

Ref.[21]. 
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This review focuses on various inorganic, organic and hybrid nanoparticles, and 

discussed their methods of preparation, mechanisms of antimicrobial action and 

applications. 
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