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Abstract
Using panel data from theBHPSand itsUnderstandingSociety extension,we study life
satisfaction (LS) and income over nearly two decades, for samples split by education,
and age, to our knowledge for the first time. The highly educated went from lowest to
highest LS, though their average income was always higher. In spite of rapid income
growth up to 2008/2009, the less educated showed no rise in LS, while highly educated
LS rose after the crash despite declining real income. In panel LS regressions with
individual fixed effects, none of the income variables was significant for the highly
educated.

Keywords Education · Income · Economic growth · Life satisfaction · Easterlin
paradox

JEL Classification I31 · O47

1 Introduction

Education is correlated with both income and health—each of which, in turn, has a
positive effect on life satisfaction (LS). Those with higher education generally have
access to more interesting and better-paid jobs, together with other non-pecuniary
benefits. Meanwhile, manual labour is systematically correlated with lower LS—so
it is not surprising that (higher) education is generally considered to be beneficial for
subjective well-being, happiness or LS, as well as for objective individual economic
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and social goals. Thus, in their wide-ranging, cross-country survey of ‘Happiness at
Work’ based on Gallup World Poll data, De Neve and Ward (2017) find a highly
significant, positive effect of high education on LS in the presence of many other
relevant controls such as health, income and employment—although a gender split
for a much smaller sample based on European Social Survey data then indicates that
a similar effect is only evident for men.

It is, therefore, initially rather surprising that a previous study of LS with British
Household Panel Survey (BHPS) data found negative or insignificant effects of higher
education in various specifications with numerous controls, while the positive effect
was robust in German SOEP data (FitzRoy et al. 2014). However, using only Wave 1
BHPS data, Clark and Oswald (1996) report a negative relationship between a more
specific job satisfaction variable and both education and comparison income. Via
analysis of Wave 6–14 of the BHPS data, Powdthavee (2010) shows mainly negative
estimates for education controls in pooled OLS estimation of LS and insignificant
estimates for fixed-effects estimation. Green (2011) finds a negative effect of higher
education on LSwith Australian (HILDA) data using many controls, but Nikolaev and
Rusakov (2016) find that higher education has a positive and increasing effect on LS
from about the age of 35 in the same data set. Nikolaev (2016) also reports generally
positive associations of education with various components of LS with the same data.
Adding to conflicting results from HILDA, Powdthavee et al. (2015) estimate a struc-
tural model of education and life satisfaction and conclude that the direct effect of
education is negative, while positive associations arise from the well-known positive
effects of education on income and health. Overall, the existing literature contains
mixed findings.

Here, we consider the UK over a rather longer time series. We extend the BHPS
panel with the corresponding component of the Understanding Society data set (part
of which involves individuals drawn from the BHPS) to study the development of life
satisfaction (LS) and income across a couple of decades, in different education (and
age) groups. Real household income (deflated by the Consumer Prices Index1) was
always highest for the highly educated and for all groups grew substantially in the
10 years up to the financial crash of 2008/2009. The subsequent decline and partial
recovery were steepest for the highly educated. That group also saw a rise in average
household size around the time of the crash, whereas the households of the least
educated tended to become smaller.

LS, on the other hand, rose fastest for the highly educated from a surprising lowest
to being highest among the education groups, a significant increase over a period
when the proportion of highly educated roughly doubled. LS declined steeply for
the low education group up to and beyond the crash, in spite of their rising income.
Overall, average LS declined pre-crash despite rapid income growth. Except for the
highly educated before the crash, whose income and LS both increased, these results
contradict standard economic growth theories, but are consistent with the Easterlin
paradox found in macro data. Of course, mainly negative correlations of averages are
no guarantee of the sign of the average of LS–income correlations at the individual

1 Measured by ONS series D7BT.
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level—in general terms, this point can be traced back at least to Robinson (1950), and
the coining of the term ‘ecological fallacy’ in Selvin (1958).

Various additional details emerge when we split the samples by age—specifically,
for those aged under 45, and for those aged 45+. The LS of the younger, high education
group overtook the rest by Wave 8 (1998/1999), while in the older group, LS only
overtook the rest after the crash of 2008/2009 (in Wave 19), while relative incomes
were similar. The older low educated suffered the steepest decline of LS over thewhole
period—from 5.40 (Wave 6) to 5.12 (Wave 23).

Easterlin’s (1974) seminal paper found no correlation between long-term economic
growth in rich countries, and subjective well-being (SWB—evaluated in surveys of
LS or happiness). With 40 years of additional data, and economic growth, there is
little evidence of any generally increasing SWB trend,2 (even in some of the fastest
growing developing countries such as China). However, there is a strong cyclical
relationship between real GDP per capita and SWB, with unemployment being a
major cause of unhappiness that moves with the cycle, and critics have usually failed
to distinguish carefully between trend growth and deviations from the trend (Easterlin
2013). Confirming and explaining these results, on the basis of ‘loss-aversion’, De
Neve et al. (2014) show that economic downturns have negative effects on SWB
which are several times the magnitude of the impact of longer periods of equivalent
positive growth.

The paradox is deepened by the fact that richer people are generally happier than
the poor in any one country at a given time, though many other factors such as health,
family and employment are more important than income (but usually also correlated
with income and education).3 The well-established importance of socio-economic
status or relative income is often advanced as part of the explanation, but studies
using only macro data on average happiness and per capita GDP obviously cannot
explore this factor, while also omitting numerous important individual variables such
as health, age and education, which do actually change in the aggregate over time.
Other possible factors that could offset the benefits of growing average real incomes
are rising inequality, reduced social mobility and the widely observed decline in many
components of social capital, such as community, personal and family relationships,
as well as security of employment—although these issues are beyond the scope of this
paper. None of them seem to offer explanations for our surprising results. Adaptation
to higher income was found to have only small effects by Layard et al. (2010).

It thus seems appropriate to use available large panel data sets, which follow indi-
viduals over time, to examine the effects of income (potentially, its level and growth)
on their well-being, while controlling for both individual fixed effects and changing
characteristics recorded in the survey data. Ourmain innovation here is to disaggregate
the sample by three levels of education and by age. To the best of our knowledge, the
education split in this context is a novel approach, which yields some really surprising
results, including the lack of any significant own-or-comparison income effects on the
LS of the highly educated, although their LS increased more than in other groups in

2 Helliwell et al. (2017).
3 Rich countries are also generally happier than poor countries, though there is much variation within these
groups and possible problems with international comparisons of SWB which do not concern us here.
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the period. Another puzzle is why the high education group had lowest LS initially,
but overtook the less educated to become most satisfied while higher education was
rapidly expanding—see Blundell et al. (2016).

2 Data andmethodology

Our main data are taken from Waves 6–10 and 12–18 of the British Household Panel
Survey4 (BHPS), covering a period that runs from1996/1997 to 2008/2009 (University
of Essex, Institute for Social and Economic Research 2010) and from those parts
of Waves 2–6 of the section of the new Understanding Society5 longitudinal study
(Kantar Public, NatCen Social Research, University of Essex. Institute for Social and
Economic Research 2016) that relate to active, consenting former members of the
BHPS sample, covering a period6 from 2010–2011 to 2014–2015. An initial baseline
of 214,704 observations is available, across the full income range. However, as is
evident in Fig. 1, LS data were not collected for BHPSWave 11 (17,609 observations
for 2001/2002). Also evident from Fig. 1 (and its 95% confidence limits) is the fact that
not all of the time variation in average LS can be attributed to sampling variation. For
regression analysis, we generate results for up to 178,382 observations across 23,748
individuals, with those cases where there are missing values, and the highest income
outliers,7 excluded. As usual, we note the deliberate over-sampling of the smaller
nations of the UK since Wave 9—so that about half of the individuals in the BHPS
are from Scotland, Wales and Northern Ireland,8 compared with less than 20% in the
overall population.

A plausible hypothesis is that those with higher education, who generally have
the best-paid and most interesting jobs, would be most likely to enjoy increasing life
satisfaction with higher incomes, so we split the sample into three groups. For the
initial BHPS waves, classification through the International Standard Classification
of Education (ISCED) is available—and the split is into higher (ISCED categories
5a and 6—for first degrees and higher degrees), middle (ISCED categories 3a and
5b—for higher secondary and middle/higher vocational) and low (ISCED categories
primary, low secondary and 3c—low secondary vocational) education. However, no

4 The earlier waves of the BHPS (up to Wave 10) were limited in coverage to Great Britain. The full UK
(including Northern Ireland) is covered in Waves 12–18. BHPS data are available via the UK Data Service
(formerly the UK Data Archive).
5 Since Wave 2 of Understanding Society is the first to follow on from BHPS Wave 18, we re-number the
Understanding Society Waves (2–6) as 19–23.
6 With interviews taking place across calendar year boundaries (and two boundaries for Waves 21–22),
a given Wave will see certain regressors defined according the year of interview, as appropriate to each
individual.
7 A cut-off of 9.5 for the natural logarithm of (deflated) monthly household income is around £160,000 per
year. This reduces the number of observations by 684, whilst a further 19 cases are excluded due to issues
relating to the identification of individuals across waves. By definition, regressors measuring changes in
household income between successive waves are not available for the first wave in which any individual
responds. This is some 18,010 observations.
8 Across Waves 6–23, 44% of observations are for individuals outside England. Northern Ireland was not
included in the BHPS data until Wave 11 (2001/2002).
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Fig. 1 Life satisfaction, BHPS and Understanding Society (USoc), Waves 6–10, 12–23

ISCED codings are yet available for the Understanding Society waves—so that the
three-way split had to be undertaken on the basis of a less sophisticated derived highest
qualification variable.9 Since the crucial difference is the striking and quite counter-
intuitive contrast between the higher and the two lower groups, we aggregate the
latter pair to simplify Figs. 2, 3 and 4 (again, including confidence intervals) and our
regressions.

Our estimation approach is quite similar to FitzRoy et al. (2014)—we use individual
fixed effects in estimation of a LS equation with quite a number of controls—many
of which are fairly standard when using BHPS data. These include marital status
(including cohabiting), number of children, health status, education, labour market
status, time spent in panel, whether year of last interview, log household size, age
(via six age dummies to create seven age categories), housing ownership status, wave
number and regions. We also tested the alternative of a traditional polynomial age
specification—and found results quite similar to FitzRoy et al. (2014).

InOnlineAppendix, samplemeans are shown formany of the controls in TableA1a:
the sample is also split by education level (see Fig. 5 as well). We also followMoulton
(1990) in recognising the potential (cluster related) effect of aggregate regressors on
standard errors. Given that we are focusing on the estimation of individual-specific
fixed-effects regressions, we assume clustering at the level of the individual.

For the crucial test of the effects of income on LS in different education groups,
we include (deflated) own household income (for the month before interview) and
comparison (peer group) income separately. The definition used here for comparison
income follows that employed by FitzRoy et al. (2014)—whereby comparison groups
are defined by age bands (between 3 years younger and 6 years older), sex, education

9 This split is essentially between degrees, A levels and GCSEs (alongside others, and none).
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Fig. 2 Life satisfaction by education, BHPS and USoc, Waves 6–10 and 12–23

Fig. 3 Life satisfaction by education, BHPS and USoc, aged <45, Waves 6–10 and 12–23

(two categories), region (three categories) and Wave. The groups are quite broad in
specification—with a median cell size around 335 members, and a bottom decile at 80
members. We also experiment with the inclusion of upward and downward changes in
ownhousehold income, allowing for asymmetricLS responses. In addition to including
a full set of regional dummies (with Greater London as the reference region), we
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Fig. 4 Life satisfaction by education, BHPS and USoc, aged 45+, Waves 6–10 and 12–23

Fig. 5 Education categories, BHPS and USoc, Waves 6–23

control for (the ILO measure10 of) regional unemployment—which is not exclusively
cyclical, of course—as well as regional house prices.11 The type of equation that
is estimated—sometimes split by age range (under 45 and 45+, respectively) and

10 The annual ILO unemployment rates for NUTS1 regions of the UK are to be found in series YCNC-
YCNK and YCNM-YCNN.
11 The use of a simple average of house prices across all dwellings is a simplification, but it does enable
the availability of a longer continuous run of data.
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sometimes split by education level (high vs. medium/low)—takes the following form,
for the typical fixed-effects regression:

LSi t � β0 + β1 ln Ȳ j t + β2 ln Yit + β3 ln

(
Yit
Yit−1

)+

+ β4 ln

(
Yit−1

Yit

)−
+ αX i t + vi + εi t ,

(1)

where the i subscript indexes the individual, the t subscript indexes the wave (year) of
the panel data and j denotes the reference group (regarding individual i) for comparison
income

(
Ȳ

)
. Household income is denoted Y , while the + and − superscripts capture,

respectively, the cases where deflated household income rises (relative to the previous
wave) or falls. The separate terms allow, firstly, for a baseline effect of household
income on life satisfaction. This effect is expected to be positive, and since income
is entered in log form, the declining positive marginal utility of raw real household
income is reflected naturally by a positive coefficient. In addition, any impact on current
life satisfaction from wave-to-wave changes in household income (and, potentially,
asymmetry in the respective impacts of a given magnitude of rise and fall in household
income) can also be captured. The X term captures a vector of additional included
controls, with an attendant vector of estimated coefficients α. The individual fixed
effect is denoted v, while ε is the remaining disturbance term.

We also tested for any additional effects of regional gross value added (GVA) per
capita, in unreported regressions. It is clear from Fig. 10 (“Appendix 1”) how different
Greater London is, in this respect (as in many others) from the other UK NUTS1
regions. Like Pfaff and Hirata (2013), we found little systematic effect of regional
GVA, which is not surprising given the inclusion of household income, and we also
add comparison income. In contrast to their claims, this hardly supports Easterlin,
since (on average) household incomes grow with macro income measures, and are
closely related to LS in cross section, and in some of our panel results.

3 Results and discussion

Figure 1 demonstrates the lack of an obvious time trend in LS across Waves 6–18 of
the BHPS12—although, within the Understanding Society waves, there appears to be
some evidence of a lagged adverse reaction to the infamous Great Recession (itself
evident via the real GVA per capita plots in Fig. 10). There is also a bounce-back in
LS between Waves 22 and 23.

We present plots of LS by education in Figs. 2, 3 and 4, log real household income
in Fig. 6 and normalised13 real household income by education in Figs. 7, 8 and 9.
The most surprising message from these plots is that the highly educated (top 14%

12 Close examination of wave-specific means and standard errors for life satisfaction indicates a little
more volatility than might be naturally expected, with high satisfaction in Wave 8 (1998/1999—may be a
sign of hopes springing from the 1997 General Election victory by Labour, after 18 years of Conservative
governments), and low satisfaction in Waves 10 and 15 (2000/2001 and 2005/2006).
13 The normalising division by the square root of household size (the “square root scale”) is employed in
a number of OECD publications on income inequality and poverty (albeit across countries). In fact, the
appearance of Figs. 7, 8 and 9 is similar to the look of corresponding plots for raw log real household
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Fig. 6 Log income, BHPS and USoc, Waves 6–23

or so overall, but with a trend from 10% in Wave 6 to 15% in Wave 18 and 20% in
Wave 23—as shown in Fig. 5) started with the lowest LS, but consistently have the
highest LS fromWave 15 onwards (Fig. 2). This is despite the fact that the percentage
growth (around 17%) in their average real household incomes over the period was
very similar to those with medium and low education (17% and 18%) and, at 14%
for equivalised income, below that for those with medium and low education (18 and
21%). An interesting further dimension is the expansion of the proportion of the UK
population that are highly educated (see Fig. 5). Between BHPS Waves 6 and 18, this
rose by 42% and 96% between BHPS Wave 6 and Wave 23 (Understanding Society
Wave 6).14

Summary statistics are displayed for a few key variables in Table 1—split by edu-
cation level. Overall, there is a tendency towards a positive link between LS and
education level. There is a more noticeable (and expected) positive link between
household income and education level, and this unsurprisingly is also reflected in
comparison income. The decline in average age by education level is consistent with
the known ongoing increase in access to higher levels of education in the UK, over
the last couple of decades (and beyond).

A further split of the sample into a younger group (those under 45 years) and an older
group (those aged 45+) reveals that the positive relationship between LS and education

Footnote 13 continued
incomes. Figures 6, 7, 8 and 9 all include income data for BHPS Wave 11, although no LS data were
collected for that wave.
14 The percentage increase among women over the same period was even greater, but we do not pursue
the gender dimension further in this paper. It should be noted that there is noticeable attrition between
Waves 6 and 23: differential attrition (by education level) might exaggerate the rise in the percentage of
highly qualified. So too might the move away from an ISCED-based definition of qualifications in the
Understanding Society data.
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Fig. 7 Normalised income by education, BHPS and USoc, Waves 6–23

Fig. 8 Normalised income by education, BHPS and USoc, aged <45, Waves 6–23

level for the former is reversed for the latter. This can also be seen by examining Figs. 3
and 4, where the older highly educated have the lowest LS for most of the period. On
the other hand, average household income (and also average comparison income) is
robustly higher for an increase in education level, for both age groupings (see Tables 2
and 3; and also Figs. 8 and 9, on normalised income). For age itself within the younger
group, the highly educated tend to be older—which is likely to be a reflection of the
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Fig. 9 Normalised income by education, BHPS and USoc, aged 45+, Waves 6–23

Table 1 UK, BHPS and USoc, Waves 6–10 and 12–23

(1) (2) (3) (4)
All Low education Medium education High education

Summary statistics

Life satisfaction (mean) 5.21 5.19 5.21 5.24

Life satisfaction (SD) 1.34 1.42 1.27 1.17

Age (mean) 46.17 49.05 43.28 41.94

Age (SD) 18.46 19.54 17.48 14.10

Household income (mean) 2728.04 2248.48 3005.18 3910.18

Household income (SD) 1836.48 1559.89 1838.08 2118.10

Comparison income (mean) 2751.80 2446.78 2697.91 4039.75

Comparison income (SD) 886.35 736.95 633.11 765.51

Observations 196,392 104,823 64,064 27,505

longer time taken to complete education to a high level. Meanwhile, there is a negative
relationship between age and education level within the older age grouping, which
provides further evidence that the incidence of high education is increasing among
successive birth cohorts. This view is broadly supported by Figs. 11 and 12, although
a switch from low to medium education is noticeable for both age groupings.15

Most of the compositional aspects in the data set are unsurprising. For instance, the
highly educated group is drawn disproportionately from Greater London, South East
England and Scotland. Its members are more likely to be employed, and less likely to

15 Alongside the move away from ISCED-based education groupings in the Understanding Society data.
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Table 2 UK, BHPS and USoc, Waves 6–10 and 12–23

(1) (2) (3) (4)
Under 45 years Low education,

<45
Medium
education, <45

High education,
<45

Summary statistics

Life satisfaction (mean) 5.15 5.08 5.18 5.25

Life satisfaction (SD) 1.27 1.35 1.22 1.14

Age (mean) 30.68 30.22 30.35 32.64

Age (SD) 8.41 8.93 8.33 6.68

Household income (mean) 3067.66 2644.16 3174.35 3980.88

Household income (SD) 1801.52 1576.07 1790.30 2010.65

Comparison income (mean) 3126.79 2908.18 2927.38 4142.67

Comparison income (SD) 639.15 403.20 412.20 579.63

Observations 98,002 45,272 35,934 16,796

Table 3 UK, BHPS and USoc, Waves 6–10 and 12–23

(1) (2) (3) (4)
Aged 45+ Low education,

45+
Medium
education, 45+

High education,
45+

Summary statistics

Life satisfaction (mean) 5.26 5.28 5.25 5.23

Life satisfaction (SD) 1.41 1.47 1.33 1.22

Age (mean) 61.60 63.36 59.79 56.52

Age (SD) 11.54 11.71 10.99 9.61

Household income (mean) 2389.77 1947.68 2789.08 3799.29

Household income (SD) 1808.33 1478.25 1875.33 2272.10

Comparison income (mean) 2378.28 2096.01 2404.79 3878.33

Comparison income (SD) 938.97 739.93 736.64 967.24

Observations 98,390 59,551 28,130 10,709

be unemployed or to be long-term sick or disabled (across the full age range and on
both sides of the age split). They are also less likely to rent their dwelling. Among those
aged 45+, the highly educated are less likely to be retired and they enjoy a marked
health advantage (present, to a lesser extent, in the younger age range too). Perhaps less
obvious is the fact that the highly educated under 45 years have a lower average house-
hold size than the low or medium educated (maybe due in part to later marriage and
starting of a family), but, among those aged 45+, the highly educated have the highest
average household size—possibly linked to a lower proportion having been widowed.

Our first estimation results are in Table 4, containing estimates of LS fixed-effects
regressions across all education levels—initially across the entire age range, and then
for younger (<45) and older (45+) subgroups. Controls for high education are included
(among the long list of controls), with an interaction to allow for a differential impact
of high education on LS from Wave 14 (2004/2005) onwards (in line with Fig. 2).
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Table 4 Individual fixed effects, across education—UK, BHPS and USoc, Waves 6–10 and 12–23

Regressor All <45 45+

Comparison income (log form) −0.171*** 0.091 −0.307***

(−3.57) (1.07) (−4.80)

Household income (log form) 0.040*** 0.063*** 0.012

(4.30) (5.03) (0.91)

Household income upward change 0.023*** 0.024** 0.018

(3.14) (2.54) (1.64)

Household income downward change size −0.001 0.010 −0.011

(−0.07) (0.74) (−0.77)

Highly qualified * Wave 14+ (interaction) 0.113*** 0.106*** 0.127***

(6.03) (4.48) (3.96)

Observations 178,382 85,350 93,032

Individuals 23,748 14,745 12,643

Dependent variableLife satisfaction. Controls for marital status (including cohabiting), number of children,
health status, education, labour market status, time in panel, year of last interview, household size, age
groupings, housing ownership, wave number and regions are included. Standard errors clustered at the
individual level, robust t-statistics in parentheses
***p<0.01; **p<0.05; *p<0.1

We report only coefficients of the various income variables, plus those for the high
education * Wave 14+ interaction. A positive interaction effect is indeed evident for
Waves 14–23, but the overall effect of being highly educated across those waves is
significant at the 5% level only for the 45+ age range.16 Own income and its upward
changes have strong positive effects for the whole sample, and for those under 45 years
taken alone.Meanwhile, comparison incomehas the positive, signalling effect for them
that was found previously for those under 45 years17—but the effect is statistically
insignificant in our case. The usual negative effect for comparison income is again
found for those aged 45+, or for the whole sample across the entire age range. It
should be noted that the number of individuals reported in the first column of Table 4,
for the whole sample, cannot be expected to be the same as the sum of the totals in
the other two columns (for the age split). This is because the observations for some
individuals can be found on both sides of the age split boundary.

Although the alternative of pooled cross-sectional estimation is problematic for our
unbalanced panel data, we have included Table A2a inOnlineAppendix, for additional
context—with standard errors clustered this time by the comparison income grouping
regressor. This shows similar comparison income results to those found previously
in Table 8 of FitzRoy et al. (2014)—with a significant negative estimate for the full

16 Nikolaev and Rusakov (2016) find a positive effect of education on LS that increases with age in
Australian panel data.
17 FitzRoy et al. (2014) put forward a ‘hare and tortoise’ model, as a plausible basis to explain a positive
effect for comparison income amongst younger people (especially later developers, who can see higher
incomes for their peers as a signal of the potential for their own future). Meanwhile, older people may tend
to realise that they are unlikely to attain higher incomes of their peers—if they have already had many years
of opportunity, with such incomes remaining unrealised.

123



F. R. FitzRoy, M. A. Nolan

age range and also for the 45+ sample. Estimates for own household income are also
broadly in line with that earlier work.18 Moreover, unreported regressions across the
whole age range with comparison income interacted with the age grouping control
categories and own income interacted with an ‘aged 45+’ dummy generated chiefly
similar results to those in Table 24 of FitzRoy et al. (2014), both for fixed-effects and
for pooled OLS.

In Table 5, we report the same specification for the highly educated, with the really
remarkable result that none of the standard income variables is significant for either
age group (or across the full age range). Recall, from Fig. 2, that wave-specific LS
arithmetic means rose significantly between BHPS Wave 6 and BHPS Wave 18 for
the highly educated, while the number of highly educated individuals rose by 50%
(Fig. 5). Figure 3 indicates an increase in LS for the younger age group among the
highly educated, but no significant change for the older age group. The impact of the
Great Recession did seem to push down LS somewhat across Waves 20–22, albeit
with a bounce-back in Wave 23. These trends in LS must be due to other factors.
Of our controls, a few do have statistically significant attached estimates. For the
full age range, as expected, economic activity status categories such as employee,
self-employed, retirement, family care and full-time education are all positive for
LS, relative to unemployment, and long-term sickness or disability is negative. Being
married or cohabiting is positive for LS, comparedwith being single and nevermarried.
Good health and bad health each have the expected impact on LS, compared with
the baseline health category. Sampling variation may be a component in explaining
the insignificance of income regressors (especially given that this education grouping
contains fewer observations). In an effort to investigate the importance of low statistical
power for our findings, a similar fixed-effects regression specification was estimated
with the log of real household income as the dependent variable. This generated quite
a few more statistically significant estimates—and overall goodness of fit measures
around 5–7 times greater. The pooled cross-sectional results for this group (Table A2b)
do not appear to offer solutions to this puzzle: instead, alongside some standard positive
effects for own household income level, some additional queries are raised—by the
significant negative estimate for comparison income among those under 45 years, and
also the positive estimates for the magnitude of negative changes in own income.

For medium and low education (Table 6), the effect of comparison income on
LS is almost fully consistent with FitzRoy et al. (2014)—although only statistically
significant at the 10% level (and still negative) for the younger age range. However,
own income and upward changes are only positive and significant for those aged
under 45. For this stratum of education, the older group sees the only substantial pre-
recession decline in LS (Fig. 4). Both age groups have rising (normalised) real income,
pre-recession (Figs. 8 and 9). Table 6 shows a negative effect of comparison income
for the 45+ group, and that—together with the rising real income trend—could be part
of the explanation for a pre-recession fall in LS. The offsetting negative externalities of
economic growth, and associated social change such as increasing prevalence of non-
standard and precarious employment, would instead be expected to impact especially

18 However, that earlier work did not have additional regressors for upward and downward changes in own
income.
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Table 5 Individual fixed effects, high education—UK, BHPS and USoc, Waves 6–10 and 12–23

Regressor All <45 45+

Comparison income (log form) −0.038 −0.020 0.031

(−0.41) (−0.13) (0.25)

Household income (log form) 0.016 0.043 −0.022

(0.69) (1.53) (−0.60)

Household income upward change 0.016 0.008 0.031

(1.05) (0.46) (1.14)

Household income downward change size 0.010 0.048 −0.033

(0.38) (1.46) (−0.84)

Highly qualified * Wave 14+ (interaction) 0.028 −0.243 0.403

(0.18) (−1.12) (1.41)

Observations 25,514 15,228 10,286

Individuals 3,427 2686 1419

Dependent variable Life satisfaction. Controls as in Table 4, except for education
***p <0.01; **p <0.05; *p <0.1

Table 6 Individual fixed effects, medium/low education—UK, BHPS and USoc, Waves 6–10 and 12–23

Regressor All <45 45+

Comparison income (log form) −0.200*** 0.228* −0.362***

(−3.41) (1.93) (−4.90)

Household income (log form) 0.041*** 0.060*** 0.019

(4.02) (4.19) (1.30)

Household income upward change 0.025*** 0.031*** 0.014

(2.90) (2.66) (1.15)

Household income downward change size −0.006 −0.001 −0.009

(−0.51) (−0.04) (−0.59)

Observations 152,868 70,122 82,746

Individuals 21,390 13,015 11,307

Dependent variable Life satisfaction. Controls as in Table 4, except for education (medium dummy only)
***p<0.01; **p<0.05; *p<0.1

on the younger less qualified persons.19 Corresponding pooled cross-sectional results
(Table A2c) also appear similar to their counterparts for the full sample across the
whole education range—albeit now with a statistically significant positive effect of
comparison income on LS, for those aged under 45.

Given especially our struggle to explain life satisfaction for the highly educated,
we consider the potential for a role of the Big Five personality traits, and especially
neuroticism—as examined by Proto and Rustichini (2015), and found to ‘mediate the
effect of income on life satisfaction’. The UK part of their work uses the BHPS data.

19 Unfortunately, such trends are not picked up by means of the standard labour market controls included
within our regression specifications.
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However, one practical difficulty is that only BHPSWave 15 (2005/2006) includes Big
Five data—as also used in the household finances context by Brown and Taylor (2014).
Proto and Rustichini (2015) argue—quite plausibly—that such traits are very stable
for most people across much of their lifespan. However, fixed-effects estimation could
not use rawBig Five scores taken from a singlewave.Much of the analysis in Proto and
Rustichini (2015) is based on the interaction between (standardised) Big Five scores
and a quadratic function of income, and they also include random-effects estimation.
For our investigations, the assumed zero correlation between the disturbances and the
regressors, inherent in random-effects estimation, appears to be a binding (and distort-
ing) constraint. Also, since Understanding Society Wave 3 (Wave 20 within our com-
posite panel, for 2012–2014) also includesBigFive data—asusedbyBrownandTaylor
(2015) to examine charitable givingbehaviour—wealso incorporated that information.

Although we standardise neuroticism scores prior to regression estimation, we do
not undertake a preliminary regression to generate residuals as a replacement for the
standardised scores, to net out certain systematic effects. This is largely because Proto
and Rustichini (2015) find little difference in the results on such a basis. Our results
are given in Table 7—to compare with the respective left-hand columns of Tables 4,
5 and 6. In each instance, estimates from previously listed regressors remain very
similar. However, in two out of three instances, the income–neuroticism interaction’s
estimates are statistically significant at the 5% level. Although it is for the highly
qualified that the estimate is insignificant, its similar magnitude at least suggests the
possibility that insignificance may be linked to the smaller sample size. Meanwhile,
the neuroticism score estimates are significant and negative in all three columns of
Table 7. Overall, it seems that the income–personality trait interactionmay offer useful
additional evidence, although it still appears that the picture is less clear for highly
educated individuals than for others (see Online Appendix Tables A2di–A2diii for
full sets of regression results). Of course, this impression is emphasised by our (well-
founded) primary concentration on fixed-effects estimation—rather than pooled OLS
or random effects, both of which generate greater statistical significance for more of
the included regressors.20 Note that our specifications including the Big Five have a
systematic linkage with BHPS attrition—in the sense that any individual who left the
panel prior to Wave 15 (and had not returned by Wave 23) cannot have a score for any
of the Big Five personality traits.21

Thus, in one sense we disagree with Easterlin (2013) by finding rising household
incomes and LS for the high education group up to the recession, but we are consis-
tent with his paradox for the less (low/medium) educated—since LS declined over this
period in spite of faster rising income. Our fixed-effects estimation highlights a major
puzzle—the almost complete lack of significance of any of the income variables in
explaining rising LS for the high education sample. With the expansion of UK higher

20 Indeed, unreported results for specifications to measure “between” effects—essentially using the indi-
vidual’s across-time mean of each variable to focus on cross-sectional variation—demonstrate statistically
significant coefficients for logged own income, and almost always also its interaction with neuroticism, for
the various groupings in Tables 4, 5 and 6.
21 A (neuroticism) missing value dummy was included, as a control. Its attached estimate was negative
but insignificant under fixed-effects estimation—and of the same sign and greater significance for random
effects, and for pooled OLS estimation of the highly educated sub-sample.
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Table 7 Individual fixed effects, whole age range—UK, BHPS and USoc, Waves 6–10 and 12–23

Regressor All High education Medium/low education

Comparison income (log form) −0.171*** −0.033 −0.200***

(−3.56) (−0.36) (−3.41)

Household income (log form) 0.040*** 0.018 0.041***

(4.38) (0.75) (4.09)

Household income (log form) * neuroticism 0.016** 0.024 0.016**

(2.45) (1.48) (2.23)

Household income upward change 0.023*** 0.016 0.024***

(3.10) (1.04) (2.88)

Household income downward change size 0.00004 0.012 −0.005

(0.004) (0.45) (−0.43)

Highly qualified * Wave 14+ (interaction) 0.112*** 0.031

(6.00) (0.19)

Big five neuroticism (standardised) −0.194*** −0.280** −0.190***

(−3.70) (−2.12) (3.30)

Observations 178,382 25,514 152,868

Individuals 23,748 3427 21,390

Dependent variable Life satisfaction. Controls as in Tables 4, 5 and 6 (respectively), plus a control dummy
for missing data on neuroticism
***p<0.01; **p<0.05; *p<0.1

education reaching more families without any prior tradition, it might be that benefi-
ciaries are simply enjoying their new-found ‘highly educated’ status independently of
earnings. When the sample is not split by education, the high education dummy has its
most positive (statistically significant) impact for BHPS Waves 14 and beyond (since
about 2004) and for those aged 45+, who represent the traditional elite. Exploring
these factors remains an important topic for future research.

4 Conclusions

Our results contradict standard findings from growth and happiness economics, but
declining LS for the older least educated, in spite of growing real income until about
2010, is certainly consistent with the support of this group for populist movements
in several countries, including Brexit in the UK. However, the obvious correlation
between rising income and LS for the highly educated up to the crash leaves the
insignificance of income variables in fixed-effects regressions for this group all the
more surprising, and to the best of our knowledge, unprecedented in happiness eco-
nomics. The older highly educated have the lowest LS for most of the period, right up
to the recession, in spite of having the highest incomes and presumably the best jobs
in the age group, and in contradiction to standard findings for other countries. We are
left with major puzzles and an obvious need for more research in this area.
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Appendix 1

See Figs. 10, 11 and 12.
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Fig. 11 Education categories, BHPS and USoc, aged <45, Waves 6–23

Fig. 12 Education categories, BHPS and USoc, aged 45+, Waves 6–23
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