Validated screening tools for the assessment of Cachexia, Sarcopenia and Malnutrition: A systematic review

Janice Miller¹, Liz Wells², Ugochinyere Nwulu³, David Currow^{3,4}, Miriam J. Johnson^{3*}, Richard J.E.Skipworth^{1*}

- 1 Clinical Surgery, University of Edinburgh, Royal Infirmary of Edinburgh, UK
- 2 Diabetes, Endocrinology and Metabolism, Hull Royal Infirmary, UK
- 3 Wolfson Palliative Care Research Centre, Hull York Medical School, University of Hull, Hull, UK
- 4 IMPACCT, Faculty of Health, University of Technology, Sydney, New South Wales, Australia

*Joint final authors

Author's last names:

Miller, Wells, Nwulu, Currow, Johnson, Skipworth

Disclaimers: Nil

Corresponding author:

Janice Miller University of Edinburgh School of Clinical Sciences 49 Little France Crescent Edinburgh EH16 4SB, UK E-mail: J.Miller@ed.ac.uk Telephone: +44(0)131 242 3615

Sources of support: No funding was provided for this review. Publishing costs will be provided by the University of Edinburgh and The Yorkshire Cancer Research Endowment Programme.

Running head: Validated screening tools review

Abbreviations: BAPEN (British Association for Parenteral and Enteral Nutrition, BIA (Bioelectrical impedance analysis), BNST (British Nutrition Screening Tool), CASCO (Cachexia Score), CINAHL (Cumulative index to Nursing and Allied Health Literature),CNST (Canadian Nutrition Screening Tool), CONUT (Controlling Nutritional Status), DEXA (dualenergy x-ray absorptiometry), EDC (ESPEN Diagnostic Criteria for Malnutrition), ESPEN (European Society for Clinical Nutrition and Metabolism), GNRI (Geriatric Nutrition Risk Index), INSYST (Imperial Nutritional Screening System), MST (Malnutrition Screening Tool), MSTC (Malnutrition Screening Tool for Cancer), NRI (Nutritional Risk Index), NRS-2002 (Nutritional Risk Screening), NUFFE (Nutritional Form For the Elderly), SGA (Subjective Global Assessment), SNAQ (Short Nutritional Assessment Questionnaire), Spinal NST (Spinal Nutritional Screening Tool), 3-MinNS (3 Minute Nutrition Screening), UWL (Unintentional weight loss)

Clinical trial registry number: N/A Abstract

1

2 Background

3 There is great overlap between the presentation of cachexia, sarcopenia and malnutrition.

- 4 Distinguishing between these conditions would allow for better targeted treatment for patients.
- 5

6 **Objectives**

To systematically review validated screening tools for cachexia, sarcopenia and malnutrition
in adults and, if a combined tool is absent, make suggestions for the generation of a novel
screening tool.

10

11 Design

12 A systematic search was performed in Ovid MEDLINE, EMBASE, CINAHL (Cumulative 13 index to Nursing and Allied Health Literature) and Web of Science. Two reviewers performed 14 data extraction independently. Each tool was judged for validity against a reference method. 15 Psychometric evaluation was performed as was appraisal of the tools ability to assess the 16 patient against consensus definitions.

17

18 **Results**

19 Thirty-eight studies described 22 validated screening tools.

- 20 The Cachexia score (CASCO) was the only validated screening tool for cachexia; performing
- 21 well against the consensus definition.

Nineteen tools screened for malnutrition. The 3 minute nutrition score (3 MinNS) scored best
 meeting consensus definition criteria (ESPEN) and also having sensitivities and specificities
 >80%.

28

No tool contained all the currently accepted components to screen for all three conditions. Only
three tools were measured against cross-sectional imaging, a clinical tool that is gaining wider
interest in body composition analysis.

32

33 Conclusion

No one validated screening tool can be implemented for the simultaneous assessment of cachexia, sarcopenia and malnutrition. The development of a tool that encompasses consensus definition criteria and directs clinicians towards the underlying diagnosis would be optimal to target treatment and improve outcomes. We propose that tool should incorporate a stepwise assessment of nutritional status; oral intake; disease status; age; muscle mass/function; and metabolic derangement.

40

41 Keywords: Cachexia, Sarcopenia, Malnutrition, Screening, Assessment

- 42
- 43
- 44
- 45
- 46

This is a pre-copyedited, author-produced version of an article accepted for publication in The American Journal of Clinical Nutrition following peer review. The version of record [Janice Miller, Liz Wells, Ugochinyere Nwulu, David Currow, Miriam J Johnson, Richard J E Skipworth; Validated screening tools for the assessment of cachexia, sarcopenia, and malnutrition: a systematic review, The American Journal of Clinical Nutrition, Volume 108, Issue 6, 1 December 2018, Pages 1196–1208] is available online at: https://doi.org/10.1093/ajcn/nqy244.

48

49

50 Introduction

Unintentional weight loss (UWL) as a form of nutritional depletion is commonly seen in 51 52 ageing, cancer and many chronic diseases. The main subtypes can be categorised into three 53 primary syndromes: cachexia, age-related sarcopenia and malnutrition; however, it is not clear 54 whether existing screening tools are able to distinguish between these three conditions. This is 55 due in part to the complex overlap between them. Loss of muscle mass is a key feature in both 56 cachexia and sarcopenia but patients with sarcopenia are not necessarily cachectic. Sarcopenia can occur simply with ageing and leads to functional decline [1,2]. Cachexia involves complex 57 58 metabolic pathways leading to systemic inflammation, muscle and fat wasting and must be 59 present in association with a chronic disease [3]. Cachexia differs from malnutrition in that it 60 cannot be reversed by simple nutritional support [4]. There are many definitions for each 61 condition, with nutritional depletion playing a part in each, therefore making it difficult to 62 separate them out [1,2,3,4]. These conditions are also often not noticed in their earlier phases but do become apparent following a critical event or development of disability [5]. 63

64

71

More than 70 nutritional screening tools for use in hospitals have been developed to facilitate easy screening or assessment of a patient's nutritional status or to predict poor clinical outcome related to UWL. Despite increasing research, there appears to be a lack of a practical and implementable clinical screening tool to support diagnosis [6]. In the general community, the European Society for Clinical Nutrition and Metabolism (ESPEN) endorses the use of Malnutrition Screening Tool (MUST) [6,7], and Nutritional Risk Screening (NRS-2002) [8]

and the Mini Nutritional Assessment – Short Form (MNA-SF) for the elderly [9,10]. Some

tools claim to have been developed to screen in specific target groups however, there are currently no disease specific recommendations. There is no international consensus on a single 'best tool' to identify all three syndromes across populations. The use of different tools in different studies makes drawing any conclusions about their comparison and meta-analyses difficult.

77

78 Current diagnostic methods for sarcopenia and cachexia include the assessment of body 79 anthropometry using either body mass index (BMI) or estimated weight loss, or by direct 80 assessment of muscle and fat mass using dual-energy X-Ray absorptiometry (DXA), bioelectrical impedance analysis (BIA), CT or MRI scanning. Whilst the latter two 81 82 radiographic modalities are accurate, they are impractical, expensive and some expose the 83 patient to radiation. This diagnostic approach to detect the presence of sarcopenia is time 84 consuming, expensive and requires highly specialised equipment [11]. Therefore, a screening 85 tool that is implementable in a larger population that allows for early detection is important. 86 This approach would highlight the potential for further assessment with early biomarkers, thus allowing prophylactic intervention in malnutrition and driving further research in sarcopenia 87 88 and cachexia.

We aimed to systematically review validated screening tools for the general adult population to enable clinicians to distinguish between the three syndromes. The specific strengths and limitations of each tool were assessed, as was the appropriateness of the validation population. Through psychometric evaluation and assessment of the tools against the agreed consensus definitions, we also investigated if any one single tool could be used for the simultaneous assessment of all three.

⁹⁵

96

- 97
- 98
- 99

100 Methods

101 Methods for conducting systematic reviews of the effectiveness of interventions have been well 102 described. In accordance with PRISMA guidelines [12] we applied the principles to 103 systematically reviewing validated screening tools used in the assessment of cachexia, 104 sarcopenia and malnutrition.

105 *Literature review*

106 A systematic search was performed on 26th September 2017 in Ovid MEDLINE (1946-2017), 107 EMBASE (1974-2017), CINAHL (Cumulative index to Nursing and Allied Health Literature) 108 and Web of Science. Relevant articles were identified by title and abstract. Reference lists of 109 review articles were also hand searched. Double data extraction was performed by two 110 reviewers independently to ensure consistency. Any disagreements were settled by a third 111 reviewer.

The basic search strategy was "Sarcopenia" OR "Cachexia" OR "Malnutrition" AND "screening" AND "validation study" using MeSH terms and keywords appropriate to each database. No language restriction was imposed. The search was designed to be broad to ensure all validated tools were identified. A full copy of the search used for MEDLINE can be found in the online supplementary material (OSM). There were no disease specific or language limits.

117 Inclusion and exclusion criteria

118	Studies were included if they had developed a screening tool which had been validated for the
119	screening of either cachexia, sarcopenia or malnutrition in adults (Table 1). Disease specific
120	tools were included. Papers were excluded if the tools had not been validated or if they assessed
121	malnutrition in children or obesity in adults. Studies which described modified versions of pre-
122	existing tools were also excluded as this was out with the scope of this review. It was intended
123	that studies that included less than 25 patients should be excluded as they were unlikely to yield
124	robust, generalisable psychometric results, however no studies with numbers smaller than this
125	were found.
126	Assessment of Validity
127	Studies had to have evaluation of at least two of the following psychometric characteristics:
128	Content validity
129	• Construct validity e.g. including convergent validity, discriminant validity
130	• Test-retest reliability
131	• Internal consistency
132	• Responsiveness
133	• Factor analysis
134	Criterion validity
135	Primary criteria used to evaluate the tools were construct validity and responsiveness.
136	Criterion and construct validity, reference method
137	Studying the validity of a tool usually compares to a gold standard. Although many research
138	groups are now using cross sectional imaging to investigate UWL there is currently the absence

- 139 of a perfect gold standard. Studies used different reference methods to validate their tools e.g.
- 140 DXA and assessment by a health professional. The tools SGA and MNA are the tools currently

recognised as the industry standard and were therefore considered valid references. The termcriterion validity was used for these comparisons.

Less valid reference methods including the use of other screening tools and blood tests for example albumin which can be influenced by other factors including inflammation and acute disease were included as many research groups vary in their opinion on the optimal reference method. [13] These comparisons were termed construct validity.

147

148 *Predictive validity*

Predictive validity was assessed as the ability of the tool to predict the probability of a betteror worse clinical outcome due to nutritional risk.

151 Diagnostic criteria

Tools were also assessed for their ability to identify the risk of cachexia, sarcopenia or
malnutrition by comparison of their components against the components of each set of chosen
diagnostic criteria (**Table 2**).

155 Assessment of bias

156 Assessment of bias was made using a form of the Newcastle-Ottowa scale adapted for cross-

157 sectional studies [14]. Each study was scored out of 10 and a study with a score of <5 was

158 considered to be at high risk of bias. Full details of the scoring used can be found in **the OSM**.

159 Secondary criteria

¹⁶⁰ Secondary criteria included face validity, development and content validity, factor analysis,

¹⁶¹ test-retest reliability, internal consistency, respondent and administrative burden (the time and This is a pre-copyedited, author-produced version of an article accepted for publication in The American Journal of Clinical Nutrition following peer review. The version of record [Janice Miller, Liz Wells, Ugochinyere Nwulu, David Currow, Miriam J Johnson, Richard J E Skipworth; Validated screening tools for the assessment of cachexia, sarcopenia, and malnutrition: a systematic review, The American Journal of Clinical Nutrition, Volume 108, Issue 6, 1 December 2018, Pages 1196–1208] is available online at: https://doi.org/10.1093/ajcn/nqy244.

effort required to complete the tool). These are also summarised in table 1. Data were extracted concerning the study participants, the tool used and psychometric evaluations (Inclusion criteria Table 1). Assessment of sensitivity and specificity was made. A value >80% was considered good, 60-80% fair and <60% poor. Agreement was also assessed as: 0.9-1 =excellent, 0.80-.90 = good, 0.60-0.80 = fair and <0.60 = poor.

- 167 168 169 170 **Results** 171 Principal findings 172 Thirty-eight studies were included which described the validation of 22 screening tools. The 173 majority of papers were excluded as they described un-validated tools. This is summarised in 174 figure 1. 175 176 The Cachexia score (CASCO) was the only screening tool for cachexia that had been validated. It performed well against diagnostic criteria (Fearon 2011) [3], but sensitivities and 177 specificities were not recorded. Only two tools assessed sarcopenia (the Short Portable 178 179 Sarcopenia Measure [SPSM] and the SARC-F) and scored well against the agreed definition 180 (Baumgartner 1998) [1]. However, the SPSM required a large amount of equipment and the 181 SARC-F had a very low sensitivity. Both were validated for use in the outpatient setting. 182 Nineteen tools screened for malnutrition. The 3 minute nutrition score (3 MinNS) proved to be 183 the best, scoring well against the consensus definition (ESPEN) as well as having sensitivities 184 and specificities >80%. There was no one validated tool which adequately screened for all three 185 conditions. A critical appraisal of all tools can be found in table 3.
- 186

187 Tools with evidence of validity, reliability and acceptability

The available validity, reliability and acceptability data are summarised in tables 4 and 6. **Table 5** assesses how well each tool encompasses the criteria in the chosen definitions.
Assessment of bias is shown in table 7.

- 191
- 192 Sarcopenia

193 In total two tools were found that were validated for the assessment of sarcopenia (SPSM and 194 SARC-F). Three other tools assessed muscle function but no other tools made an assessment 195 of muscle strength, mass or wasting. Both tools which were validated for the assessment of 196 sarcopenia were done so in the community setting. They agreed with the SCWD diagnostic 197 criteria but the SARC-F showed variation in agreement against the three consensus definitions 198 it was validated against (EWGSOP, IWGS criteria and the Asian working group for 199 sarcopenia). The SARC-F had good specificity (94.2-99.1%) but poor sensitivity (3.8-9.9%) 200 dependent on sex) and also showed good agreement (0.78-0.90). Values for the SPSM were 201 not assessed.

202

203 Cachexia

Only one tool had been validated for the screening of cachexia – the CASCO. Overall six tools quantified weight loss within a specified time frame, with a further three quantifying it within an unspecified time frame. Sixteen tools characterised weight loss as unintentional. Only seven tools asked about the presence of underlying disease and only the CASCO took into account the presence of raised inflammatory markers and quality of life. Sensitivities and specificities were not recorded for the CASCO but it scored well in the assessment of its validity with it being able to quantitatively classify stages of cachexia. Its ability to predict patient's outcome

211 was not assessed.

212

214 Nineteen screening tools were found to be validated for the assessment of malnutrition. 215 However, only twelve of these incorporated a question about dietary intake or decline. Six 216 measured percentage weight loss over time and 13 assessed BMI. In particular those tools 217 which had high sensitivities and specificities (MSTC and SNST) did not encompass all parts of the agreed definition: The SNST did not assess BMI and the MSTC made no assessment of 218 219 quantifying weight loss within a specified time frame. The 3 MinNS was the tool which 220 incorporated the consensus definition criteria and also had high sensitivities and specificities 221 (>80%).

222

223

224 Discussion

225 Overview

226 Whilst recent systematic reviews have described the results of studies examining malnutrition 227 screening tools, to our knowledge this is the first review to examine tools that have been 228 validated against another to assess cachexia, sarcopenia and malnutrition. There has only been 229 one prior review on tools for cachexia, sarcopenia and malnutrition [53]. This review did not 230 include psychometric evaluation, did not comment on the validity of the tools, nor compare 231 them to the agreed consensus definitions. Existing systematic reviews of malnutrition screening 232 tools have been limited to describing tools that are non-disease specific and 'quick and easy' 233 or have been narrative in nature.

234

235 Thirty-eight studies describing 22 tools were identified and judged for validity against a 236 reference method. In the absence of a generally recognised gold standard for screening, 237 assessment by a professional, DXA, CT, MRI, anthropometry or the screening tools SGA and 238 MNA were considered 'valid' reference methods by our research group [13,44-46]. Although cross sectional imaging is now used routinely for body composition analysis, only three tools 239 240 identified were validated against CT. The heterogeneity in populations, age groups, tools and 241 reference methods was large, and therefore pooling of results was impossible. Most tools had 242 only been tested in one population making the drawing of any definitive conclusions difficult. 243 There were too few disease-specific tools to conclude which would be superior for different 244 disease processes.

245

246 *Problems with current screening tools*

For the generalised adult population, all tools showed inconsistent results regarding their validity. The SGA which is often considered to be the industry standard [54] and against which

249 many tools are validated has not itself been well validated. It performed well against the 250 diagnostic criteria but sensitivities and specificities were either not recorded or poor. Arguably the most well-known tools 'MUST' and 'NRS-2002' showed a variation in results from poor 251 252 to good [27,29,34-39,42], and consistency between groups in which the tools were studied was poor. The less well-known NUFFE showed good validity, but it has been described in only a 253 254 small volume of literature and is not implemented widely [43]. The "quick and easy" screening 255 tools, including SNAQ and MST performed reasonably (sensitivities ~80%) in most studies in 256 which they were used [25-30,35,47,48]. Of note because these tools are quick, they require a 257 further detailed assessment by a qualified health professional if screening is positive. They also 258 miss approximately 20% of at risk patients at initial screen and therefore may be more useful 259 in screening high risk patients.

260

The tool which performed the best for malnutrition was the 3MinNS [52]. It showed high 261 262 sensitivity and specificity (>80%) and accurately encompassed the correct diagnostic criteria 263 (percentage weight loss over specified time and measurement of BMI) for malnutrition. It was validated in acute medical and surgical patients and proved quick and easy to complete. It has 264 265 only been validated in one paper and therefore it cannot be assumed that it would perform as 266 well in different patient populations. Both tools which assessed sarcopenia (SPSM, SARC-F) 267 scored well against the agreed definition [15,16]. However, the SPSM required transport of 268 equipment and the SARC-F had a very low sensitivity [13,15]. The CASCO was the only 269 validated screening tool for cachexia [17]. It performed well against diagnostic criteria, but sensitivities and specificities were not recorded. It has also only been validated in the cancer 270 271 setting; more work would be needed to validate the tool in other cachectic populations or the 272 general adult population.

273

Most tools were validated in the adult hospital inpatient setting. Tools for sarcopenia have only been validated in the healthy, community dwelling [15,16]. Length of hospital stay is diminishing worldwide and outpatient nutritional screening is advocated to pick up patients at risk. In this review, we identified eight studies in which outpatients were included. More studies focussing on the construct and predictive validity of tools for outpatient screening are warranted, especially since care is shifting to this setting.

280

The tool which appeared to have the broadest coverage was the CASCO [17]. It is the only tool which screens for cachexia, but also picks up many of the variables required for a diagnosis of malnutrition. However, assessment of muscle mass or function (required for sarcopenia) is not included. One previous review showed that 20 screening tools appeared relevant for starvation, but none contained all the currently accepted components needed to screen for sarcopenia and cachexia risk [53]. Our study supports this.

287

288 *Outlook and recommendations for future tools*

A screening tool needs to be developed that encompasses the criteria to pick up all three 289 290 possible syndromes. This concept is supported by the notion that, in the human being, there 291 may be no "pure" phenotype of cachexia, as it is usually associated with reduced food intake 292 (potential for malnutrition) and increasing age (increasing sarcopenia) [55]. There is also 293 currently a lack of agreement as to the diagnostic criteria of each syndrome and the relative 294 importance of body composition analysis and the nature of depleted tissue within each definition. We hypothesised that the overlap between syndromes could be illustrated as in 295 figure 2 along with the identified best performing tools for each aspect. 296

297 There are clearly many existing validated screening tools (at least for malnutrition). It is

unlikely that any further novel tools will be devised without breakthroughs in biomarker

development. We therefore suggest that the ideal composite tool incorporate a stepwise assessment of nutritional status; oral intake; disease status; patient age; muscle mass/function; and metabolic derangement. The presence of underlying disease is a key question in order to stratify the syndromes. Suggested components for use in creating a new tool are depicted in **table 8**.

304 By screening for all three syndromes, it will allow for a more targeted intervention. Screening 305 for cachexia, sarcopenia or malnutrition is not warranted unless it is accompanied by an 306 intervening care plan. It would be expected that an adequate intervention would prevent any

307 further decline in health status and therefore lead to a positive effect on disease outcome.

308 Most studies did not comment on intervention, which depending on the balance of the three 309 syndromes may need to include varying attention to nutrition, exercise and measures to combat 310 inflammation.

311

312 Strengths, limitations and assessment of bias

313 One of the strengths of this review is that it provides a complete overview of tools that have 314 been validated for cachexia, sarcopenia and malnutrition. We did not describe reliability, 315 repeatability or other clinical outcome measures in any great detail. The review used the 316 consensus definitions of each syndrome, we are aware however that many other definitions 317 exist. However, there were a number of study limitations. There was a risk of bias when 318 assessing each tool for their predictive validity. Studies may have been biased if they did not 319 adjust for factors such as cancer stage or disease severity. As clinical outcome is affected by 320 more than just nutritional status alone adjusting for these variables is important. Nutritional 321 intervention is likely to improve outcomes for malnutrition but potentially not for age-related 322 sarcopenia or established cachexia. Only one study discussed whether they did this. There is 323 no agreed 'gold standard' tool and therefore we chose cross sectional imaging and the SGA

324 and MNA based on the results of previous studies [13]. Tools that were compared to potentially 325 less valid standards were also included to allow a wider analysis. Full nutrition assessments 326 were different in each study ranging from anthropometric to biochemical measures and full 327 assessment by a medical professional. Conclusions from this study were based upon the original papers in which there may have been varying definitions with regards to the subject 328 329 group, syndrome or assessment undertaken. Another potential limitation is that we excluded 330 modified versions of pre-existing tools. They were excluded as reliability and validity data 331 would only relate to the modified tool and it was therefore difficult to assess improvements 332 from the original. It is possible that these tools were being improved or evaluated more thoroughly. 333

334

335 Conclusion

We have highlighted that many practitioners who regularly come into contact with patients suffering from weight loss are not able to easily screen between the conditions of cachexia, sarcopenia and malnutrition as there is no one validated tool which can be implemented for the assessment of all three conditions. The adaptation of existing screening tools incorporating all relevant criteria described in this review would be optimal for diagnosis and to direct the content of complex interventions.

342

343 Acknowledgements

- 344 Conflict of interest
- 345 The authors declare no conflicts of interest.
- 346 Authors contributions

- 347 MJ and LW designed the project. JM and UN conducted the review. JM and LW wrote the
- 348 manuscript. RJES, DC and MJ critically appraised the manuscript. MJ and RJES had overall
- 349 responsibility for the final content.
- 350

References

- RN Baumgartner, KM Koehler, D Gallagher, L Romero, SB Heymsfield, RR Ross. Epidemiology of sarcopenia among the elderly in New Mexico. *Am J Epidemiol*. 1998;147:755–763
- Morley JE, Anker SD, Haehling von S. Prevalence, incidence, and clinical impact of sarcopenia: facts, numbers, and epidemiology-update 2014. J Cachexia Sarcopenia Muscle 2014; 5: 253–259
- Fearon K, Strasser F, Anker SD, Bosaeus I, Bruera E, Fainsinger RL, Jatoi A, Laprinzi C, MacDonald N, Mantovani G, Davis M, Muscaritoli M, Ottery F, Radbruch L, Ravasco P, Walsh D, Wilcock A, Kaasa S, Baracos VE. Definition and classification of cancer cachexia: an international consensus. Lancet Oncol 2011;12(5):489-95
- Cederholm T, Bosaeus I, Barazzoni R, Bauer J, Van Gossum A, Klek S, Muscaritoli M, Nyulasi I, Ockenga J, Schneider SM, de van der Schueren MAE, Singer P. Diagnostic criteria for malnutrition – An ESPEN Consensus Statement. Clinical Nutrition 2015; 34:335-340
- Yu SCY, Khow KSF, Jadczak AD, Visvanathan R. Clinical screening tools for sarcopenia and its management. Curr Gerontol Geriatr Res 2016 http://dx.doi.org/10.1155/2016/5978523
- Kondrup J, Allison SP, Elia M, Vellas B, Plauth M. ESPEN guidelines for nutritional screening 2002. Clinical Nutrition 2003; 22(4): 415-421
- Elia M. The 'MUST' report. In: BAPEN, editor. Nutritional screening of adults: a multidisciplinary responsibility 2003.
- Kondrup J, Rasmussen HH, Hamberg O, Stanga Z. Nutritional risk screening (NRS 2002): a new method based on an analysis of controlled clinical trials. Clin Nutr 2003;22
- 9. Guigoz Y, Vellas B, Garry PJ. Mini Nutritional Assessment: a practical assessment tool for grading the nutritional state of elderly patients. Facts and Research in Gerontology.

Nutrition 1994;Supplement

- Rubenstein LZ, Harker JO, Salva A, Guigoz Y, Vellas B. Screening for undernutrition in geriatric practice: developing the short-form mini- nutritional assessment (MNA-SF). J Gerontol A Biol Sci Med Sci 2001;56
- Rubbieri G, Mossello E, Di Bari M. Techniques for the diagnosis of sarcopenia. Clin Cases Miner Bone Metab. 2014 Sep-Dec; 11(3): 181-184
- Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(7): e1000097.doi:10.1371/journal.pmed10000097
- 13. Van Bokhorst-de van der Schueren M, Guaitoli PR, Jansma EP, de Vet HCW. Nutrition screening tools: Does one size fit all? A systematic review of screening tools for the hospital setting
- 14. Wells GA, Shea B, O'Connell D, Peterson J, Welch V, Losos M, Tugwell P. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomized studies in meta-analyses, 2012 http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp
- Woo J, Leung J, Morley J. Validating the SARC-F: a suitable community screening tool for sarcopenia? Journal of the American Medical Directors Association 2014; 15(9):630-634
- 16. Miller D, Malmstrom T, Andresen E, Miller J, Herning MM, Schootman M, Wolinsky FD. Development and validation of a short portable sarcopenia measure in the African American health project. The journals of gerontology 2009; 64(3):388-394
- Argiles JM, Betancourt A, Guardia-Olmos J, Pero-Cebollero M, Lopez-Soriano FJ,Madeddu C, Serpe R, Busquets S. Validation of the Cachexia SCOre (CASCO). Staging cancer patients: The use of miniCASCO as a simplified tool. Frontiers in physiology 2017; 8:92
- 18. Weekes CE, Elia M, Emery PW. The development, validation and reliability of a nutrition screening tool based on the recommendations of the British Association for Parenteral and Enteral Nutrition. Clinical nutrition 2004; 23(5):1104-1112
- Mirmiran P, Hosseinpour-Niazi S, Mehrabani HH, Kavian F, Aziz F. Validity and reliability of a nutrition screening tool in hospitalised patients. Nutrition 2011; 27(6): 647-652
- Laporte M. Validity and reliability of the new Canadian Nutrition Screening Tool in the 'real-world' hospital setting. European Journal of Clinical Nutrition 2015; 69(7):865

- Ignacio De Ulibarri J, Gonzalez-Madrono A, De Villar NGP, Gonzalez P, Gonzalez B, Mancha A, Rodriguez F. CONUT: a tool for controlling nutritional status. First validation in a hospital population. Nutricion hospitalaria 2005; 20(1):38-45
- Guerra RS, Fonseca I, Sousa AS, Jesus A, Pichel F. ESPEN diagnostic criteria for malnutrition – A validation study in hospitalised patients. Clinical nutrition 2017; 36(5):1326-1332
- 23. Abd-El-Gawad W, Wafaa M, Abou-Hashem R, El Maraghy MO, Amin GE. The validity of Geriatric Nutrition Risk Index: simple tool for prediction of nutritionalrelated complication of hospitalised elderly patients. Comparison with Mini Nutritional Assessment. Clinical nutrition 2014; 33(6): 1108-1116
- 24. Tammam J D, Gardner L, Hickson M. Validity, reliability and acceptability of the Imperial Nutritional Screening System (INSYST): A tool that does not require body mass index. Journal of Human Nutrition and Dietetics 2009; 22(6): 536-544
- 25. Ferguson, M, Capra, S, Bauer, J, Banks, M. Development of a valid and reliable malnutrition screening tool for adult acute hospital patients. Nutrition 1999; 15(6): 458-464
- 26. Isenring E, Cross G, Daniels L, Kellett E. Validity of the malnutrition screening tool as an effective predictor of nutritional risk in oncology patients receiving chemotherapy. Supportive care in cancer 2006; 14(11): 1152-1156
- 27. Neelemaat F, Meijers J, Kruizenga H, van Ballegooijen H, van Bokhortst-de van der Schueren M. Comparison of five malnutrition screening tools in one hospital population. Journal of Clinical Nursing 2011; 20(15-16): 2144-52
- 28. Nursal TZ, Noyan T, Atalay BG, Koz N, Karakayali H. Simple two part screening tool for malnutrition. Nutrition 2005; 21(6): 659-65
- 29. Young A, Kidston S, Banks M, Mudge A, Isenring A. Malnutrition screening tools: comparison against two validated nutrition assessment methods in older medical inpatients. Nutrition 2013; 29: 101-106
- 30. Wu ML, Courtney MD, Shortridge-Baggett LM, Finalyson K, Isenring EA. Validity of the malnutrition screening tool for older adults at risk of hospital readmission. J Gerontol Nurs 2012; 38(6): 38-45
- 31. Bhuachalla EB, Daly LE, Power DG, Cushen SJ, MacEneaney P, Ryan AM. Computed tomography diagnosed cachexia and sarcopenia in 725 oncology patients: Is nutritional

screening capturing hidden malnutrition? Journal of Cachexia, Sarcopenia and Muscle 2018; 9: 295-305

- 32. Leiopold CE, Bertino SB, L'Huillier HM, Howell PM, Rosenkotter M. Validation of the malnutrition screening tool for use in a community rehabilitation program. Journal of the Dieticians Association of Australia 2018; 75(1): 117-122
- 33. Kim JY, Wie GA, Cho YA, Kim SY, Kim SM, Son KH, Park SJ, Nam BH, Joung H. Development and validation of a nutrition screening tool for hospitalised cancer patients. Clinical nutrition 2011; 30(6): 724-729
- 34. Boleo-Tome C, Monteiro-Grillo I, Camilo M, Ravasco P. Validation of the Malnutrition Universal Screening Tool (MUST) in cancer. British Journal of Nutrition 2012; 108(2): 343-348
- 35. Leistra, E, Langius, J A E, Evers, A M, van Bokhorst-de van der Schueren, M A E, Visser, M, de Vet, H C W, Kruizenga, H M. Validity of nutritional screening with MUST and SNAQ in hospital outpatients. European Journal of Clinical Nutrition 2013: 67(7);738-742
- 36. Sharma Y, Thompson C, Kaambwa B, Shahi R, Miller M. Validity of the Malnutrition Universal Screening Tool (MUST) in Australia hospitalised acutely unwell elderly patients. Asia Pacific Journal of clinical nutrition 2017; 26(6): 994-1000
- 37. Kyle UG, Kossovsky MP, Karsegard VL, Pichard C. Comparison of tools for nutritional assessment and screening at hospital admission: a population study. Clin Nutr 2006; 25(3): 409-17
- 38. Almeida AL, Correia M, Camilo M, Ravasco P. Nutritional risk screening in surgery: valid, feasible, easy! Clin Nutr 2012; 31(2):206-11
- Velasco C, Garcia E, Rodriguez V, Frias L, Garriga R, Alvarez J, Garcia-Peris P, Leon M. Comparison of four nutritional screening tools to detect nutritional risk in hospitalized patients: a multicentre study. Eur J Clin Nutr. 2011 Feb;65(2):269-74
- 40. Prasad N, Gupta A, Sinha A, Saxena A, Sharma A. Study on the validity of nutrition risk index (NRI) as a malnutrition screening tool in peritoneal dialysis (PD) patients. Peritoneal Dialysis International 2012; 32:S48
- 41. Faramarzi E, Mahdavi R, Mohammad-Zadeh M. Validation of nutritional risk index method against patient-generated subjective global assessment in screening malnutrition in colorectal cancer patients. Chinese journal of cancer research 2013; 25(5):544-548

- 42. Bauer JM, Vogl T, Wicklein S, Trogner J, Muhlberg W, Sieber CC. Comparison of the Mini Nutritional Assessment, Subjective Global Assessment and Nutritional Risk Screening (NRS 2002) for nutritional screening and assessment in geriatric hospital patients. Z Gerontol Geriatr 2005;38(5):322-7
- 43. Soderhamn U, Soderhamn O. Reliability and validity of the nutritional form for the elderly (NUFFE). Journal of advanced nursing 2002; 37(1): 28-34
- 44. Duerksen D R, Yeo TA, Siemens JL, O'Connor MP. The validity and reproducibility of clinical assessment of nutritional status in the elderly. Nutrition 2000; 16(9): 740-744
- 45. Cooper BA, Barlett LH, Aslani A, Allen B, Ibels LS, Pollock C. Validity of subjective global assessment as a nutrition marker in end stage renal disease. American journal of kidney disease 2002; 40(1):126-132
- 46. Moriana M, Civera M, Artero A, Real JT, Caro J, Ascaso JF, Martinez-Valls JF. Validity of subjective global assessment as a screening method for malnutrition. Prevalance of malnutrition in a tertiary hospital. Endocrinologia y nutricion 2014; 61(4):184-189
- 47. Kruizenga, H M, Seidell, J C, de Vet, H C W, Wierdsma, N J, van Bokhorst-de van der Schueren, M A E. Development and validation of a hospital screening tool for malnutrition: the short nutritional assessment questionnaire (SNAQ). Clinical nutrition 2005; 24(1);75-82
- 48. Harada K, Ochi K, Taguchi T, Nakamura T, Kuwahata Kanazawa M, Yoshida N, Neriya H, Okagaki M, Nishida N, Takishita Y, Yamamoto Y, Wada S, Yokota I, Sekido K. Validity of the short nutritional assessment questionnaire for Japanese patients with cancer undergoing outpatient chemotherapy. Journal of Medical Investigation 2017; 64(1.2):117-121
- 49. Susetyowati, Hadi H, Hakimi HM. Development, validation and reliability of the simple nutrition screening tool (SNST) for adult hospital patient in Indonesia. Pakistan Journal of Nutrition 2014; 13(3): 157-163
- 50. Wong S, Derry F, Jamous A, Hirani SP, Grimble G, Forbes A. Validation of the spinal nutrition screening tool (SNST) in patients with spinal cord injury (SCI): results from a multicentre study. European Journal of Clinical Nutrition 2011; 66(3): 382-387

- 51. Xia Y, Healy A, Kruger R. Developing and validating a renal nutrition tool to effectively identify undernutrition risk among renal inpatients. Journal of renal nutrition 2016; 26(5): 299-307
- 52. Lim SL, Tong CY, Ang E, Lee EJ, Loke WC, Chen Y. Development and validation of 3 minute nutrition screening (3-MinNS) tool for acute hospital patients in Singapore. Asia Pacific Journal 2009: 18(3);395-403
- 53. Healy E, Yaxley A, Isenring E, Bannerman E, Miller M. Ability of existing malnutrition screening tools to identify risk of starvation, sarcopenia and cachexia: A systematic review. E-SPEN Journal 2014;9(3): e109-e122
- 54. Cederholm T, Jensen GL. To create a consensus on malnutrition diagnostic criteria: A report from the Global Leadership Initiative on Malnutrition (GLIM) meeting at the ESPEN congress 2016. Clin Nutr 2017; 36(1):7-10
- 55. Skipworth RJE, Stewart G, Dejong CHC, Preston T, Fearon KCH. Pathophysiology of cancer cachexia: Much more than host-tumour interaction? Clin Nutr 2007; 26(6):667-76

Tables

Table 1 Inclusion criteria

Types of participants Adults (>18 years) undergoing routine screening for cachexia, sarcopenia, or malnutrition	Includes patients with advanced cancer, end stage cardiac, renal and liver disease
Types of tools Validated, quantitative measurements of cachexia, sarcopenia or malnutrition	Tools developed for clinical or research purposes. Completed by health care professionals
Psychometric evaluation	Demonstration of at least 2 criteria:
Content Validity	Breadth of scope of tool; to what extent does it appear to capture the relevant aspects of unintentional weight loss; are there gaps?
Construct validity, including convergent validity, discriminant validity	How well the tool relates to other measures of the same construct; lack of correlation with dissimilar or unrelated constructs or variables
Test-retest reliability	How consistent an individual's scores are over a defined time-period presuming weight stays constant
Internal consistency	How closely related are the different items in the tool?
Responsiveness	Ability to detect clinically meaningful change for individuals
Factor analysis	For a tool comprising several items, a way of grouping them into factors which may tap into a particular construct

This is a pre-copyedited, author-produced version of an article accepted for publication in The American Journal of Clinical Nutrition following peer review. The version of record [Janice Miller, Liz Wells, Ugochinyere Nwulu, David Currow, Miriam J Johnson, Richard J E Skipworth; Validated screening tools for the assessment of cachexia, sarcopenia, and malnutrition: a systematic review, The American Journal of Clinical Nutrition, Volume 108, Issue 6, 1 December 2018, Pages 1196–1208] is available online at: https://doi.org/10.1093/ajcn/nqy244.

Criterion validity	A shortened version of a scale, concurrent
	validity with the longer version which has been validated

Table 2 Summary of proposed diagnostic criteria for identification of cachexia, sarcopenia and malnutrition

Syndrome	Diagnostic criteria
Cachexia	Weight loss greater than 5%, or weight loss greater than 2% in individuals already showing depletion according to current bodyweight and height (body-mass index [BMI] <20 kg/m ²) or skeletal muscle mass (sarcopenia) [3]
Sarcopenia	Loss of function – 6-minute walk < 400m OR gait speed <1.0m/s Muscle mass – low appendicular lean mass/height [2] (2 standard deviations below the mean diagnostic on DXA) [1,2]
Malnutrition	Protein/energy deficiency - risk indicated by low BMI <18.5 kg/m ² OR weight loss >10% (indefinite time)/5% over last 3 months AND BMI <20 (if <70 years)/ <22 (if>70 years) or FFMI < 15 and 17 kg/m ² in men and women respectively [4]

BMI (Body Mass Index) DXA (Dual-energy -ray absorptiometry) FFMI (Fat-free mass index)

	Author	Tool	Description	Validation population	Validation reference	Strengths	Limitations
Sarcopenia	Woo et al, 2014 (15)	SARC-F	A questionnaire regarding ability to carry a heavy load, walking, rising from a chair, climbing stairs and falls frequency	Community dwelling Chinese (n=4000)	3 consensus definitions of sarcopenia	Not dependent on cut off values	No assessment of muscle mass, not validated in hospital populations
	Miller et al, 2009 (16)	SPSM	Portable measure that combines estimates of muscle quantity and function into a single scale	Community dwelling African Americans (n=998)	DXA	Portable	Time consuming, equipment dependent, muscle mass not measured
Cachexia	Argiles et al, 2017 (17)	CASCO	Score to classify cachectic patients into three different groups. Includes five components: body weight loss & composition, inflammation/metabolic disturbances/immunosuppression, physical performance, anorexia and quality of life	Cancer patients (n=186)	Assessment by oncologist	Encompasses all diagnostic criteria	Involves many questions and measurements, does not include questions on disease state
Malnutrition	Weekes et al, 2004 (18)	BAPEN	Tool based on four nutritional parameters (weight, height, recent unintentional weight loss and appetite)	Acute medical and elderly care wards (n=100)	Dietician	Quick and easy	Percentage weight loss not quantified
	Mimiram et al, 2011 (19)	BNST	Score based on UWL, unintentional eating loss and being unable to eat for >5 days	Medical and surgical (n=446)	Dietician	Easily completed by nursing staff	Low importance given to amount of weight loss
	Laporte et al, 2015 (20)	CNST	Tool containing two items: Weight loss and decreased food intake	Medical and surgical (n=150)	SGA	Very brief, can be completed by non-trained rater	Assessed on admission only. Validity of re-screening unknown
	Ignacio et al, 2005 (21)	CONUT	Evaluates nutrition using albumin, cholesterol and lymphocyte count. Automated system	Medical and surgical inpatients (n=53)	SGA	Simple, automated	Markers vary depending on disease state, only done on patients who have bloods taken
	Guerra et al, 2017 (22)	EDC	Screening tool based on ESPEN criteria for diagnosis malnutrition	Medical and surgical inpatients (n=632)	PG-SGA	Includes FFM assessment	Very low sensitivity
	Abd-El-Gawad et al, 2014 (23)	GNRI	Modified nutritional risk index for geriatric patients (based on albumin, current and previous weight)	Acute geriatrics ward (n=131)	MNA	Good prognosticator, does not require capacity	Diseases associated with high mortality or hypoalbuminaemia excluded

Table 3 Critical appraisal of tools to measure unintentional weight loss

Tammam et al, 2009 (24)	INSYST	Two-tiered tool – first is a simple pre-screen aiming to establish if malnourished, second provides a more detailed evaluation	Medical, surgical and oncological inpatients (n=61)	MUST and MNA	Doesn't require height and BMI, quick and easy	Ease of completing dependent on patient's cognitive state
Ferguson et al, 1999 (25) Isenring et al, 2006 (26) Neelemaat et al, 2011 (27) Nursal et al, 2005 (28) Young et al, 2013 (29) Wu et al, 2012 (30) Bhuachalla et al, 2018 (31) Leipold et al, 2018 (32)	MST	Two questions regarding appetite and unintentional weight loss	Medical and surgical inpatients (n=408) Oncology outpatients (n=51) Acute hospitalised (n=193) Medical and surgical inpatients (n=2211) Elderly medical inpatients (n=134) Elderly inpatients (n=157) Oncology patients (n=725) Rehabilitation patients (n=160)	SGA PG-SGA Malnutrition definition CT	Very quick, does not require calculations	Non-specific
Kim et al, 2011 (33)	MSTC	Tool based on intake change, weight loss, ECOG performance status and BMI	Oncology inpatients (n=1057)	PG-SGA	Cancer specific	Designed to be performed by dieticians, not nurses Does not pick up patients
Boleo-Tome et al, 2012 (34) Leistra et al, 2013 (35) Sharma et al, 2017 (36) Neelemaat et al, 2011 (27) Kyle et al, 2006 (37) Young et al, 2013 (29) Almedia et al, 2012 (38) Velasco et al, 2011 (39) Bhuachalla et al, 2018 (31)	MUST	Five step tool including BMI, unplanned weight loss and presence of acute disease	Oncology inpatients (n=450) Medical and surgical outpatients (n=2236) Acute medical inpatients (n=132) Elderly inpatients (n=198) Medical and surgical (n=995) Medical inpatients (n=134) Surgical inpatients (n=300) Medical and surgical (n=400) Oncology patients (n=725)	PG-SGA Malnutrition definition CT	Quick, easy	with normal BMI who are malnourished, UWL reported by patients is subjective
Prasad et al, 2012 (40) Faramarzi et al, 2013 (401) Bhuachalla et al, 2018 (31)	NRI	Derived from serum albumin concentration and ratio of usual to present weight	Peritoneal dialysis patients (n=283) Colorectal cancer (n=52) Oncology patients (n=725)	SGA CT	Assesses dialysis patients at risk	Relies on previous weight – limited use with changes in fluid status
Neelemaat et al, 2011 (27) Kyle et al, 2006 (37) Young et al, 2013 (29) Almedia et al, 2012 (38) Bauer et al, 2005 (42) Velasco et al, 2011 (39)	NRS-2002	Tool containing nutritional components of the MUST along with disease severity	Elderly inpatients (n=198) Medical and surgical (n=995) Elderly medical patients (n=134) Surgical inpatients (n=300) Acute geriatrics ward (n=121) Medical and surgical (n=400)	Definition of malnutrition SGA	Includes disease severity therefore applicable in ITU	Ease of completing dependent on patient's cognitive state Many confounding factors
Soederhamn et al, 2002 (43)	NUFFE	Three-point ordinal scale with 15 items assessing weight loss, dietary history, appetite and general activity	Elderly care rehab ward (n=114)	MNA	Simple as lacks anthropometric measurements	in questionnaire

Duerksen et al, 2000 (44)	SGA	Assessment of nutritional status based on history and	Acute elderly care and elderly rehab	Geriatric and	Current gold	Reproducibility less than in
Cooper et al, 2002(45)		examination	(n=95)	internal	standard	non-elderly, unable to
Moriana et al, 2014 (46)			End stage renal disease (n=76)	medicine		predict severe malnutrition
			Medical and surgical inpatients	resident, Total		in ESRD, requires
			(n=197)	body Nitrogen,		experienced operator to
				Anthropometric		carry out
				and		
				biochemical		
				data		
Kruizenga et al, 2005(47)	SNAQ	26 questions related to eating and drinking difficulties,	Medical, surgical and oncological	Malnutrition	Corresponds to	High NPV, no outcome data
Leistra et al, 2013 (35)	510102	defecation, condition and pain	inpatients (n=291)	criteria, CONUT	ESPEN criteria	
Harada et al, 2017 (48)			Medical and surgical outpatients	chiena, conor	ESI EN CITCHI	
Neelemaat et al, 2011 (27)			(n=2236)			
Young et al, 2013 (29)			Oncology outpatients undergoing			
			chemotherapy (n=300)			
			Medical and surgical inpatients			
			(n=2211)			
			Elderly medical inpatients (n=134)			
Susetyowati et al, 2014 (49)	SNST	Six questions including weight loss, appetite and health status	Medical and surgical inpatients	SGA	Can be done by	No anthropometric
			(n=495)		non-trained	assessment, all subjective
					staff	
Marca et al. 2011/50)		· ₩1		Distantia	D	Development of the development
Wong et al, 2011(50)	Spinal NST	Tool which assesses eight criteria including appetite, weight	Spinal cord injury patients (n=150)	Dietetic	Disease specific	Requires specialised scales
		loss and level of spinal cord injury		assessment		to measure paralysed
						patients
Xia et al, 2016 (51)	R-NST	Nine questions assessing malnutrition risk/symptoms	Renal inpatients (n=122)	SGA	Renal specific	Patients picked up for
		combined with albumin, CRP and urea	······			conditions other than
						malnutrition e.g.
						hyperkalaemia
						/F
Lim et al, 2009 (52)	3-MinNS	Questionnaire based on diagnostic criteria for malnutrition	Medical and surgical inpatients	SGA	Quick and easy	Dependent on cognitive
		and muscle wastage	(n=818)			state

SPSM (Short Portable Sarcopenia Measure), CASCO (Cachexia Score), BAPEN (British Association for Parenteral and Enteral Nutrition, BNST (British Nutrition Screening Tool), CNST (Canadian Nutrition Screening Tool), CONUT (Controlling Nutritional Status), EDC (ESPEN Diagnostic Criteria for Malnutrition), GNRI (Geriatric Nutrition Risk Index), INSYST (Imperial Nutritional Screening System), MST (Malnutrition Screening Tool), MSTC (Malnutrition Screening Tool), MSTC (Malnutrition Screening Tool), MSTC (Malnutrition Screening Tool), MST (Spinal Nutritional Risk Index), INSYST (Imperial Nutritional Screening), SNAQ (Short Nutritional Assessment Questionnaire), Spinal NST (Spinal Nutritional Screening Tool) R-NST (Renal Nutritional Screening Tool), 3-MinNS (3 Minute Nutrition Screening)

	Scale	Environment	Context (OP/IP)	Face validity	Content validity	Factor analysis	Construct validity	Discriminant validity	Predictive validity	Test- retest	Internal consistency	Responsiveness	Acceptability	Time to complete
Sarcopenia	SARC-F	Community	Outpatients	Valiancy	-	-	Validity	-	◆	-	♦	-	•	-
	SPSM	dwelling Community dwelling	Outpatients	-	-	•	x	•	•	•	•	•	-	•
Cachexia	CASCO	Oncology	Outpatients	•	•	•	•	•	-	-	•	•	-	-
Malnutrition	BAPEN	Acute medical and elderly care	Inpatients	•	-	-	•	-	-	•	-	•	•	•
	BNST	Spinal cord injuries	Inpatients	•	-	•	-	-	-	•	-	-	-	-
	CNST	Medical and surgical	Inpatients	•	-	-	•	-	•	•	-	-	-	-
	CONUT	Medical and surgical	Inpatients	•	-	x	•	-	-	-	-	*	•	-
	EDC	Medical and surgical	Inpatients	•	-	-	-	-	•	-	•	-	-	-
	GNRI	Acute geriatrics	Outpatients	•	-	•	-	-	•	-	-	-	•	-
	INSYST	Medical, surgical and oncology	Inpatients	•	•	-	•	-	-	•	-	*		•
	MST	Medical, surgical and oncology	Inpatients Outpatients	•	•	•	•	-	•	•	•	-	•	-
	MSTC	Oncology	Inpatients	•	х	•	•		-	-			x	
	MUST	Medical, surgical and oncology	Inpatients Outpatients	•	•	x	•	-	•	-	-	•	•	•
	NRI	Peritoneal dialysis and	Inpatients	-	-	•	-	-	•	-	-	-	•	-

Table 4 Psychometric evaluation of tools to measure unintentional weight loss

	colorectal cancer												
NRS- 2002	Elderly, medical and surgical	Inpatients	•	•	-		-	•	•	-	•	•	•
NUFFE	Elderly care rehab	Inpatients Outpatients	•	•	•	•	-	•	•	•	-	-	-
R-NST	Renal	Inpatients	•	♦	♦	•	-	-	-	-	-	х	•
SGA	Elderly, renal, medical and surgical	Inpatients	•	•	•	*	-	•	•	•	-	-	-
SNAQ	Medical, surgical and oncology	Inpatients Outpatients	•	•	-	•	•	•	•	-	•	♦	*
SNST	Medical and surgical	Inpatients	•	-	•	-	•	•	•	•	•	•	•
Spinal NST	Spinal cord injuries	Inpatients	•	-	•	-	-	-	•	-	-	•	•
3- MinNS	Medical and surgical	Inpatients	•	•	-		•	•	•	-	•	•	•
	ol assessed for a						h not to be valid				enough information		

tool assessed for and found to be valid
 tool assessed for and found not to be valid
 tool assessed for and found not to be valid
 tool assessed for/not enough information provided
 SPSM (Short Portable Sarcopenia Measure), CASCO (Cachexia Score), BAPEN (British Association for Parenteral and Enteral Nutrition, BNST (British Nutrition Screening Tool), CNST (Canadian Nutrition Screening Tool), CONUT (Controlling Nutritional Status), EDC (ESPEN Diagnostic Criteria for Malnutrition), GNRI (Geriatric Nutrition Risk Index), INSYST (Imperial Nutritional Screening System), MST (Malnutrition Screening Tool), MSTC (Malnutrition

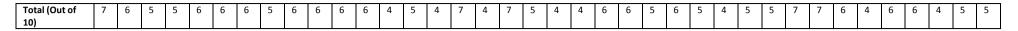
Screening Tool for Cancer), NRI (Nutritional Risk Index), NRS-2002 (Nutritional Risk Screening), NUFFE (Nutritional Form For the Elderly), SGA (Subjective Global Assessment), SNAQ (Short Nutritional Assessment Questionnaire), Spinal NST (Spinal Nutritional Screening Tool) R-NST (Renal Nutritional Screening Tool), 3-MinNS (3 Minute Nutrition Screening)

Table 5 Domains assessed by tools to measure relevant parameters required to identify risks of malnutrition, sarcopenia and cachexia [adapted from 51]

Г	լսսոր	Dotiont		weight loss				BMI &	EENA	NI++:-:-:	onal int	aka		Assessme	nt of	Disease	state	Measures	ofmoto	holic		Quality
		racient	reported	weight IOSS					rements	NUTRI	onal Inta	are		Assessme muscle m and funct	ass	Disease	e state	derangem		DOILC		of life
Disease	Screening tool	Weight loss quantified within specified time frame	Weight loss quantified without timeframe	Weight loss unquantified with time frame	Weight loss unquantified, without time frame	UWL specified	Muscle mass	ВМІ	FFMI	Loss of appetite	Poor dietary intake/ intake decline	Supplemental feeding in use?	Symptoms that would prevent eating e.g. vomiting, ulcers	Physical performance	Muscle strength	Presence of illness	Fatigue	Increased inflammatory markers	Anaemia	Low serum albumin	Other blood Tests e.g. glucose/urea	QOL
Sarcopenia	SARC-F SPSM	X X	X X	X X	x x	x x	X X	X ✓	X ✓	x x	X X	x x	X X	* *	✓ ✓	x x						
Cachexia	CASCO	х	~	х	х	~	х	х	~	~	~	х	х	~	х	х	~	~	~	~	~	~
Malnutrition	BAPEN BNST CNST CONUT EDC GNRI INSYST MST MSTC MUST NRI NRS-2002 NUFFE R-NST SGA SNAQ SNST SpinalNST 3-MinNS	x x x x x x x x x x x x x x x x x x x	× × × × × × × × × × × × × × × × × × ×	x x x x x x x x x x x x x x	✓ × × × × × × × × × × × × × × × × × × ×	$\begin{array}{c} \checkmark \\ \checkmark \\ \times \\ \times \\ \checkmark \\ \checkmark \\ \checkmark \\ \checkmark \\ \checkmark \\ \checkmark \\$	X X X X X X X X X X X X X X X X X X X	✓ × × × × × × × × × × × × ×	x x x x x x x x x x x x x x x x x x x	x x x x x x x x x x x x x x x x x x x	 ✓ ✓ × ×<td>x x x x x x x x x x x x x x x x x x x</td><td>× × × × × × × × × × × × × × × × × × ×</td><td>x x x x x x x x x x x x x x x x x x x</td><td>x x x x x x x x x x x x x x x x x x x</td><td>x x x x x x x x x x x x x x x x x x x</td><td>x x x x x x x x x x x x x x x x x x x</td><td>x x x x x x x x x x x x x x x x x x x</td><td>x x x x x x x x x x x x x x x x x x x</td><td>x x x x x x x x x x x x x x x x x x x</td><td>x x x x x x x x x x x x x x x x x x x</td><td>x x x x x x x x x x x x x x x x x x x</td>	x x x x x x x x x x x x x x x x x x x	× × × × × × × × × × × × × × × × × × ×	x x x x x x x x x x x x x x x x x x x								

SPSM (Short Portable Sarcopenia Measure), CASCO (Cachexia Score), BAPEN (British Association for Parenteral and Enteral Nutrition, BNST (British Nutrition Screening Tool), CNST (Canadian Nutrition Screening Tool), CONUT (Controlling Nutritional Status), EDC (ESPEN Diagnostic Criteria for Malnutrition), GNRI (Geriatric Nutrition Risk Index), INSYST (Imperial Nutritional Screening System), MST (Malnutrition Screening Tool), MSTC (Malnutrition Screening Tool), MSTC (Malnutrition Screening Tool), MSTC (Malnutrition Screening Tool), NSTC (Malnutrition Screening Tool), MSTC (Malnutrition Screening Tool), MSTC (Malnutrition Screening Tool), NSTC (Malnutrition Screening), NUFFE (Nutritional Form For the Elderly), SGA (Subjective Global Assessment), SNAQ (Short Nutritional Assessment Questionnaire), Spinal NST (Spinal Nutritional Screening Tool), R-NST (Renal Nutritional Screening Tool), 3-MinNS (3 Minute Nutrition Screening)

Author	Screening	Sensitivity	Specificity	PPV	NPV	Agreement
	tool	_				_
Woo et al, 2014 (15)	SARC-F	3.8-9.9	94.2-99.1	8.4-54.8	78.4-94.9	0.78-0.90
Miller et al, 2009 (16)	SPSM	-	-	-	-	-
Argiles et al, 2017 (17)	CASCO	-	-	-	-	
Weekes et al, 2004 (18)	BAPEN	-	-	-	-	0.77
Weekes et al, 2004 (18)	DAFLIN	-	-	-	-	0.77
Mirmiram et al, 2011 (19)	BNST	86.7	61.7	79.1	73.1	0.74
Laporte et al, 2015 (20)	CNST	72.6	85.1	81.2	77.0	0.88
Ignacio et al, 2005 (21)	CONUT	92.3	85	-	-	0.488
Guerra et al, 2017 (22)	EDC	17.1	98.3	89.1	58.9	0.803
Abd-El-Gawad et al, 2014 (23)	GNRI	83.1	51.2	78.95	58.33	0.713
Tammam et al, 2009 (24)	NSYST	95-100	65-83	-	-	0.73
Kim et al, 2011 (31)	MST	93	93	98.4	72.7	0.7
Ferguson et al, 1999 (25)		100	92	80	100	0.83
Isenring et al, 2006 (26)		67	86	-	-	0.53
Neelemaat et al, 2011 (27)		49	86	-	-	0.33
Nursal et al, 2005 (28)		73	55	-	-	0.28
Young et al, 2013 (29)		73	70	-	-	-
Wu et al, 2012 (30)		39	93	-	-	0.21
Bhuachalla et al, 2018 (31)		39.4-100	47-74.6	-	-	0.71
Leipold et al, 2018 (32)		72.2	83.8	69.6	85.4	-
Kim et al, 2011 (33)	MSTC	94	84.2	67.8	97.6	0.70
Boleotome et al, 2012 (34)	MUST	80	89	100	100	-
Leistra et al, 2013 (35)		75	94	43	98	-
Sharma et al, 2017 (36)		69.7	75.8	75.4	70.1	0.49
Neelemaat et al, 2011 (27)		96	80	-	-	-
Kyle et al, 2006 (37)		61	79	-	-	-
Young et al, 2013 (29)		87	86	-	-	-
Almedia et al, 2012 (38)		85	93	-	-	-
Velasco et al, 2011 (39)		72	90	-	-	-


Table 6 Sensitivity, specificity, predictive values, and reproducibility of the studies included

Bhuachalla et al, 2018 (31)		20.8-72.8	48-98.3	-	-	0.816
Prasad et al, 2012 (40)	NRI	92.9	32.39	80.41	60.53	0.63
Faramarzi et al, 2013 (41)		66	60	64	62	0.267
Bhuachalla et al, 2018 (31)		21.2-95	21.2-92.1	-	-	-
Neelemaat et al, 2011 (27)	NRS-2002	92	85	-	-	-
Kyle et al, 2006 (37)		62	93	-	-	-
Young et al, 2013 (29)		90	83	-	-	-
Almeida et al, 2012 (38)		80	89	-	-	-
Bauer et al, 2005 (42)		70	85	-	-	-
Velasco et al, 2011 (39)		74	87	-	-	-
Soederhamn et al, 2002 (43)	NUFFE	71	86	-	-	-
Xia et al, 2016 (51)	R-NST	97.3	74.4	88.0	93.6	0.95
Duerksen et al, 2000 (44)	SGA	-	-	-	-	-
Cooper et al, 2002 (45)		59-68	61-65	41-42	70-83	0.6
Moriana et al, 2014 (46)		-	-	-	-	-
Kruizenga et al, 2005 (47)	SNAQ	79	83	70	89	-
Leistra et al, 2013 (35)		43	99	78	96	-
Harada et al, 2017 (48)		43	99	-	-	-
Neelemaat et al, 2011 (27)		75	84	-	-	-
Young et al, 2013 (29)		79	90	-	-	-
Susetyowati et al, 2014 (49)	SNST	97	80	78	92	-
Wong et al, 2011 (50)	Spinal NST	85.7	76.1	62	92	0.57
Lim et al, 2009 (52)	3-MinNS	86	83	67	94	-

SPSM (Short Portable Sarcopenia Measure), CASCO (Cachexia Score), BAPEN (British Association for Parenteral and Enteral Nutrition, BNST (British Nutrition Screening Tool), CNST (Canadian Nutrition Screening Tool), CONUT (Controlling Nutritional Status), EDC (ESPEN Diagnostic Criteria for Malnutrition), GNRI (Geriatric Nutrition Risk Index), INSYST (Imperial Nutritional Screening System), MST (Malnutrition Screening Tool), MSTC (Malnutrition Screening Tool), MSTC (Malnutrition Screening Tool), MSTC (Malnutrition Screening Tool), CONUT (Controlling Nutritional Status), EDC (ESPEN Diagnostic Criteria for Malnutrition), GNRI (Geriatric Nutrition Risk Index), INSYST (Imperial Nutritional Screening System), MST (Malnutrition Screening Tool), MSTC (Malnutrition Screening Tool), MSTC (Malnutrition Screening Tool), CONUT (Screening Tool for Cancer), NRI (Nutritional Risk Index), NNP (Negative predictive value) NRS-2002 (Nutritional Risk Screening), NUFFE (Nutritional Form For the Elderly), PPV (Positive predictive value) SGA (Subjective Global Assessment), SNAQ (Short Nutritional Assessment Questionnaire), Spinal NST (Spinal Nutritional Screening Tool) R-NST (Renal Nutritional Screening Tool), 3-MinNS (3 Minute Nutrition Screening)

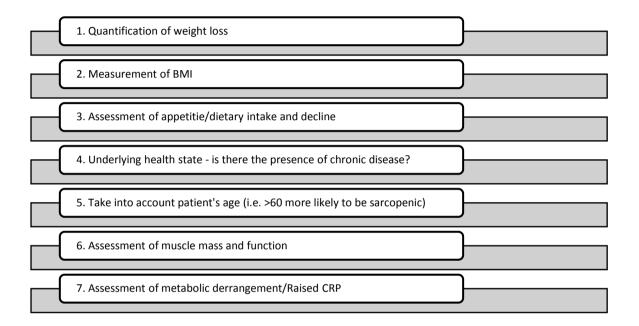

	Woo et al, 2014	Miller et al, 2009	Argiles et al, 2017	Weekes et al, 2004	Mirmiram et al, 2011	Laporte et al, 2015	Ignacio et al, 2005	Guerra et al, 2017	Abd-El-Gawad et al, 2014	Tammam et al, 2009	Ferguson et al, 1999	Isenring et al, 2006	Neelemaat etal, 2011	Nursal et al, 2005	Young et al, 2013	Bhuachalla et al, 2018	Leiopold et al, 2018	Wu et al, 2012	Kim et al, 2011	Boleo-Tome et al, 2012	Leistra et al, 2013	Sharma et al, 2017	Kyle et al, 2006	Almedia et al, 2012	Velasco et al, 2011	Prasad et al, 2012	Faramarzi et al, 2013	Bauer et al, 2005	Soederhamn et al, 2002	Duerksen et al, 2000	Cooper et al, 2002	Moriana et al, 2014	Kruizenga et al, 2005	Harada et al, 2017	Susetyowati et al, 2014	Wong et al, 2011	Xia et al, 2016	Lim et al, 2009
Selection (max																																						
5 stars) 1.Representati veness of the sample 2. Sample size	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
justified 3. Response rate satisfactory	*	*	*	*	*	*			*			*	*	*		*		*			*		*	*	*	*		*	*	*	*	*	*	*	*		*	*
4. Ascertainment of exposure (validated measurement tool used)	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Comparability (max 2 stars)																																						
1.The study controls for disease severity 2. Study controls for other confounding factors	*	*	*					*	*										*				*							*				*				
Outcome (max 3 stars)																																						
 Assessment of outcome Appropriate statistical test described 	*	*	*	*	* * *	* * *	* * *	*	*	* * *	* * *	*	*	*	*	**	*	* *	*	*	*	* *	*	*	*	*	*	*	*	* * *	* * *	*	*	*	*	*	*	*

Table 7 Newcastle-Ottawa scale adapted for cross-sectional studies

*= Assessed in study and found to be present Score <5 = high risk of bias

Table 8 Suggested components for use in creating a new screening tool

Figures

Figure 1 PRISMA flow diagram [12]

Figure 2 Diagram to show overlap between cachexia, sarcopenia and malnutrition

Legend figure 2: The sizes of the circles represent the perceived sizes of each clinical problem