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ABSTRACT: Magnetic ellipsoidal particles adsorbed at a liquid interface
provide exciting opportunities for creating switchable functional materials,
where self-assembly can be switched on and off using an external field
[Davies et al., Adv. Mater., 2014, 26, 6715]. In order to gain a deeper
understanding of this novel system in the presence of an external field, we
study the capillary interaction and self-assembly of tilted ellipsoids using
analytical theory and finite element simulations. We derive an analytical
expression for the dipolar capillary interaction between tilted ellipsoids in
elliptical polar coordinates, which exhibits a 1/r2 power law dependence in
the far field (i.e., large particle separations r) and correctly captures the
orientational dependence of the capillary interactions in the near field.
Using this dipole potential and finite element simulations, we further
analyze the energy landscape of particle clusters consisting of up to eight
tilted ellipsoids in contact. For clusters of two particles, we find that the
side-to-side configuration is stable, whereas the tip-to-tip configuration is unstable. However, for clusters of more than three
particles, we find that circular loops of side-to-side particles become globally stable, whereas linear chains of side-to-side
particles become metastable. Furthermore, the energy barrier for the linear-to-loop transition decreases with increasing particle
number. Our results explain both thermodynamically and kinetically why tilted ellipsoids assemble side-to-side locally but have a
strong tendency to form loops on larger length scales.

1. INTRODUCTION

Particles adsorbed at liquid interfaces occur in a wide range of
soft matter systems from particle-stabilized emulsions and
foams,1 to membrane and interfacial proteins,2 to functional
surfaces for nanotechnology.3,4 Most of the research in this
area has focused on spherical or nearly spherical particles.
However, with advancements in the synthesis of colloidal
particles, particles with other shapes have received increasing
attention over the last decade, including ellipsoids,5−10

cylinders,11−13 cubes,14−17 and so forth. The behavior of
such anisotropic particles at liquid interfaces is even richer than
that of spherical particles for two reasons. First, anisotropic
particles can adopt multiple orientations at the liquid
interface.11,13−17 Second, for non-neutrally wetting particles
(i.e., contact angle θw ≠ 90°), the constant contact angle
requirement at the three-phase contact line leads to significant
deformations of the liquid meniscus around the anisotropic
particles and hence strong capillary interactions between
particles, even for particles on the micron scale where capillary
forces due to gravity (i.e., so-called flotation forces) are
negligible.5−7,12,15−19

These capillary interactions lead to a rich variety of self-
assembled structures, a subject that is attracting growing
interest, as evidenced by the number of recent review articles
in this area.20−22 By imposing external fields on particles at
liquid interfaces such as electric,23 magnetic,4,24,25 or interfacial
curvature,26,27 it is possible to gain further control over the
capillary interaction between particles and hence the self-
assembly of particles at liquid interfaces, opening up exciting
opportunities for creating switchable functional materials for
photonic and sensing applications.28 In this paper, we focus on
controlling the self-assembly of anisotropic particles using
magnetic fields. In particular, we focus on magnetic particles
with ellipsoidal shape, arguably the simplest anisotropic shape
one can consider. When such particles are adsorbed at a liquid
interface, in the absence of an external magnetic field, the
equilibrium orientation is the side-on state (i.e., long axis of the
ellipsoids parallel to the liquid interface).7 However, recent
studies have shown that when an external field is applied
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perpendicular to the interface, it is possible to stabilize tilted
orientations of the ellipsoidal particles, and above a critical field
strength, the particles undergo an irreversible transition to the
end-on state (i.e., long axis of ellipsoids perpendicular to the
liquid interface).8−10

In a seminal study, Davies et al. showed using Lattice−
Boltzmann (LB) simulations that the dipolar capillary
attractions that exist between ellipsoidal particles in the tilted
state can be used to create a simple switchable system where
self-assembly can be turned on and off using an external field.4

Specifically, Davies et al. considered an ensemble of micron-
sized, neutrally wetting (θw = 90°) ellipsoidal particles at a
liquid interface, where both monopolar capillary forces due to
gravity and quadrupolar capillary deformations due to contact
line undulations are negligible. In the absence of a magnetic
field, the system is in the isotropic state where the side-on
ellipsoids are randomly oriented within the interface. However,
when an external field (below the critical field) is applied
perpendicular to the interface, the dipolar capillary attractions
cause the tilted ellipsoids to assemble side-to-side within the
interface, forming so-called “capillary caterpillars”. Davies et al.
also observed that these capillary caterpillars had a strong
tendency to form closed loops of different sizes, suggesting that
dangling ends of the caterpillars are energetically unfavorable.
In order to gain a deeper understanding of the rich self-

assembly behavior of this system, some of us performed a
follow-up study of both the capillary interactions and self-
assembly of tilted magnetic ellipsoids.25 Using finite element
simulations based on Surface Evolver,29 we found that these
capillary interactions conformed to the expected 1/r2 dipolar
power law in the far field (i.e., large interparticle separations r)
but deviated significantly from the dipolar power law in the
near field (i.e., small r regime), presumably because of the
importance of higher-order multipoles in this regime. We also
found that the capillary attraction in the near field was stronger
for particle pairs in the side-to-side configuration compared to
the tip-to-tip configuration, consistent with the findings of ref 4
where the tilted ellipsoids preferred to assemble side-to-side. In
addition, we investigated the self-assembly of between 3 and 12
tilted magnetic ellipsoids using LB simulations and found that
these small clusters had a strong tendency to form closed
loops, in excellent agreement with the observations of the
larger-scale simulations in ref 4. However, the energy landscape
for these small clusters was not mapped out as this information
is not available from LB simulations.
An unexpected result in ref 25 is the fact that when the

energy landscape for two tilted ellipsoids in contact was
analyzed using Surface Evolver, it was found that while the
side-to-side configuration was the global energy minimum, the
tip-to-tip configuration was a locally stable metastable state
with an energy barrier between the two states.25 This result is
in contrast to both experimental30 and theoretical18 studies of
non-neutrally wetting side-on ellipsoidal particles, where the
tip-to-tip configuration is found to be unstable and any particles
approaching each other tip-to-tip tend to roll into the stable
side-to-side configuration.
Clearly, despite the progress made in ref 25, there remain a

number of important open questions regarding the self-
assembly of tilted magnetic ellipsoids that require further
investigation. The aim of this paper is to address these
questions by performing a fuller analysis of the problem. First,
we derive analytical expressions for the dipolar capillary
interaction between tilted ellipsoids in elliptical polar

coordinates. The advantage of using elliptical polar coordinates
is that it allows us to effectively include higher-order circular
polar multipoles in our pair potentials so that the resultant
analytical expressions are accurate down to smaller r values.7

Our analytical expression for the pair potentials also allows us
to distinguish between particle pairs in the side-to-side
compared to the tip-to-tip configuration. Second, we use
both our derived pair potentials and Surface Evolver to map
out the energy landscape of particle clusters containing two or
more particles. Performing accurate Surface Evolver simu-
lations for more than two particles is a nontrivial task, and as
far as we are aware, our study represents the first time that the
energy landscape for interfacial clusters containing more than
two three-dimensional (3D) anisotropic particles has been
mapped out in the literature. For two tilted ellipsoids in
contact, we confirm that the side-to-side configuration is the
global energy minimum. However, we also find that the tip-to-
tip configuration is unstable. Interestingly, for clusters of three
particles in contact, we find that circular loops of three side-to-
side particles become metastable, whereas for four or more
particles in contact, circular loops become globally stable,
whereas linear chains of side-to-side configuration particles
become metastable. Our study thus corrects an error we made
in ref 25 about the stability of the tip-to-tip configuration for
two-particle clusters but otherwise does not change the main
conclusions of that paper. More importantly, the current study
provides deeper mechanistic insights into the self-assembly
results for tilted ellipsoids found in refs.4,25

Note that our theoretical approach neglects contact line
pinning and hysteresis, although such phenomena could be
present and important in real experimental systems. For
example, recent experiments have shown that contact line
pinning plays a dominant role in the adsorption of anisotropic
particles at liquid interfaces.31,32 However, theories neglecting
pinning and contact line hysteresis have proven to serve as
useful guidelines for both capillary interactions and self-
assembly of anisotropic particles at liquid interfaces.5,12,17,18 In
addition, we believe that contact line pinning is more
important in adsorption because the forces driving the motion
are small (and become smaller and smaller as we approach the
final equilibrium configuration of the particle), whereas
pinning is comparatively less important in our system because
we are applying a large external torque on each particle.
The rest of this paper is organized as follows. In Section 2,

we discuss the configurational variables describing the
collective behavior of multiple tilted ellipsoids and results for
both the capillary interaction and self-assembly of clusters of
two or more tilted ellipsoids. In Section 3, we summarize our
key conclusions. In Section 4, we discuss the theoretical
models used to analyze the behavior of the system, including
details of the Surface Evolver model and the elliptical dipole
potential.

2. RESULTS AND DISCUSSION
2.1. Configurational Space and Thermodynamics of

the System. We consider magnetic ellipsoidal particles with
semimajor axis length L/2, semiminor axis length R, and aspect
ratio Λ = L/2R, which are adsorbed at an interface between
two immiscible liquids. For convenience, we refer to the top
liquid as “oil” and the bottom liquid as “water” in what follows.
The particles have magnetic dipoles lying along their
semimajor axis. An external magnetic field B is applied
perpendicular to the oil/water interface, which interacts with
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these magnetic dipoles and causes the particles to tilt such that
their semimajor axes make an angle θt with respect to the
unperturbed interface (Figure 1a). The value of the tilt angle θt
depends on the magnetic field strength B.8−10 In what follows,
we parameterize the magnetic field strength by fixing θt to be at
an appropriate value and B plays no further role in our
discussion. For convenience, in what follows, we work with
length and energy units, where R = 1 and the oil/water
interfacial tension γow = 1.
We consider micron-scale particles where monopolar

capillary forces (i.e., flotation forces) are negligible. As we
wish to focus on the effect of dipolar capillary forces in this
paper, we assume that all ellipsoids are neutrally wetting (i.e.,
contact angle θw = 90°) so that quadrupolar capillary
interactions between particles are absent in the absence of a
magnetic field. It is of course difficult to achieve perfect neutral
wetting conditions in practice in an experimental system.
However, the results in this paper should still apply to non-
neutrally wetting tilted ellipsoids provided the tilt angle θt is
high enough so that the amplitude of dipolar contact line
undulations is greater than the amplitude of quadrupolar
contact line undulations. In addition, as we shall see later, both
dipolar and quadrupolar capillary forces tend to align the
ellipsoidal particles in the same way, that is, into the side-to-
side configuration. This again suggests that our results should
apply to tilted ellipsoids that are not perfectly neutrally wetting.
For clusters of two tilted ellipsoids, translational and

rotational invariance means that we require three variables to
describe a general in-plane configuration of the system. We
choose these variables to be the bond angles of each particle
θb1, θb2 and the center-to-center distance between the particles
r12 as shown in Figure 1b. However, mapping out the entire
energy landscape (i.e., minimum energy as a function of all the
configurational variables) for even such a small system is
already computationally very expensive. We therefore restrict
ourselves to considering mirror symmetric configurations, that
is, where θb1 = 180° − θb2 = θb (see Figure 1c), because dipolar
capillary interaction energies are minimized for such
configurations in polar coordinates.25,39 In addition, because
capillary interactions are attractive for mirror symmetric
configurations, the energy of the cluster is minimized when
the particles are in contact. We therefore set r12 = rc, where rc is
the center-to-center distance between the particles in the
mirror symmetric configuration when they are in contact. The
distance rc depends on both the bond angle θb and tilt angle θt
of the two particles, and an analytical expression for rc(θt,θb) is
given by eq A3 in Appendix A. Finally, to circumvent the
numerical issues caused by simulating particles in contact, we
define a thin exclusion zone of thickness Δ/2 around each
particle so that the minimum center-to-center distance
between particles is rc + Δ (Figure 1c). In all our calculations,
we use Δ = 0.1R. By varying Δ and extrapolating to Δ = 0, we
estimate that the energies obtained using Δ = 0.1R agree with

the contact values to within 2%. Note that the two-particle
configurations shown in Figure 1c are characterized only by the
bond angle θb, with θb = 0° corresponding to the tip-to-tip
configuration and θb = 90° corresponding to the side-to-side
configuration (see Figure 4).
For clusters of three tilted ellipsoids, an even larger set of

variables is required to describe the general in-plane
configuration of the system, specifically the in-plane position
vectors of particle centers and the bond angle of each particle
(see Figure 2a). We can reduce the number of degrees of

freedom from 9 to 6 by invoking translational and rotational
invariance, but even so, a full exploration of the energy
landscape of this system is computationally prohibitive.
Following our discussion of two-particle clusters, we therefore
restrict ourselves to considering configurations shown in Figure
2b, where nearest neighbors in the cluster have mirror
symmetric configurations with a center-to-center distance of
rc + Δ. Once again, such three-particle configurations are
characterized only by the bond angle θb, with θb = 30°
corresponding to a circular loop of three particles and θb = 90°
corresponding to a linear chain of three side-to-side particles
(see Figure 5). Finally, we can generalize the mirror symmetric
configuration shown in Figure 2b to n particles, with the bond
angle θb = 90° − 180°/n corresponding to a circular loop of n
particles and θb = 90° corresponding to a linear chain of n
particles (i.e., looped and circular capillary caterpillars,
respectively).

Figure 1. (a) Side view of single tilted ellipsoidal particle at an oil/water interface; (b) top-down view of a two-ellipsoidal particle system and
variables used to describe the general in-plane configuration of the system; (c) top-down view of a mirror symmetric configuration of a two-
ellipsoidal particle system where the particles are essentially in contact but with an exclusion zone of thickness Δ/2 around each particle.

Figure 2. (a) Top-down view of a three-ellipsoidal particle system and
variables used to describe the general in-plane configuration of the
system; (b) top-down view of a mirror symmetric configuration of a
three-ellipsoidal particle system, including an exclusion zone of
thickness Δ/2 around each particle.
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For a given configuration of tilted ellipsoidal particles
adsorbed at an oil/water interface, the total energy of the
system is given by

E A A Aow ow po po pw pwγ γ γ= + + (1)

where γij and Aij are the surface tension and area, respectively,
of the i/j interface (i, j = o: oil, w: water, p: particle). Note that
the above energy represents the interfacial energy of the
system. We have not included the magnetic dipole−field
interactions in the energy because these interactions are
independent of the in-plane particle configurations and hence
irrelevant to our discussions. We have also not included
magnetic dipole−dipole interactions between particles because
the primary focus of this paper is on the effect of capillary
interactions on self-assembly. Using Young’s equation cos θw =
(γpo − γpw)/γow, we can simplify eq 1 (up to a constant) to E =
γowAow − γow cos θwApw. Finally, because we are only
considering neutrally wetting particles in this paper where
the contact angle θw = 90°, the total energy of the system
simplifies to

E Aow owγ= (2)

In what follows, we calculate the interfacial energy of the oil/
water interface numerically using Surface Evolver (see
Subsection 4.1) and analytically by modeling each tilted
ellipsoid as an elliptical dipole (see Subsection 4.2).
2.2. Capillary Interaction. We first check the accuracy of

the elliptical dipole potential given by eq 12. In Figure 3, we

compare the capillary pair potential, that is, ΔE(r12) = E(r12) −
E(∞), as a function of the center-to-center distance r12
between two tilted ellipsoids with Λ = 2, θt = 5°, calculated
from eq 12 (solid curves) and from Surface Evolver
simulations in ref 25 (data points), for the tip-to-tip
configuration (blue) and the side-to-side configuration (red).
For reference, we also show the asymptotic circular dipole
potential given by eqs 13 and 14 (black dashed curve). For
comparison in Figure 3, we used He as a fitting parameter and
adjusted He so that the circular dipole potential (eq 13)
matches the simulation data at large r12. This procedure yields
He = 0.101R, in good agreement with the value of He = 0.087R

obtained from our single particle simulations (see Subsection
4.2).
In the far field (large r12), we see that the Surface Evolver

data for both the tip-to-tip and side-to-side configurations
approach the 1/r12

2 power law expected for dipoles. However,
in the near field (small r12), there are significant deviations of
the Surface Evolver data from the circular dipolar potential
because of the importance of higher-order circular polar
multipoles.25 Specifically, for all particle separations, the side-
to-side configuration has a lower energy compared to the 1/
r12

2 power law, whereas the tip-to-tip configuration has a
higher energy (note the sign of the vertical axis in Figure 3).
Comparing now the elliptical dipole potential with the

Surface Evolver results, we see that the elliptical potential (eq
12) correctly reproduces the 1/r12

2 power law in the far field.
The elliptical potential also captures the correct sign for the
near-field deviations from the circular dipolar potential for
both the side-to-side and tip-to-tip configurations. However,
the elliptical potential underestimates the magnitude of these
deviations for both configurations, suggesting that higher-order
elliptical multipoles are needed if we want to obtain
quantitative agreement between analytical theory and numer-
ical simulations. Nevertheless, the elliptical dipole potential
(unlike the circular dipole potential) can correctly distinguish
between the near-field interaction energies for different particle
pair configurations and is therefore a useful tool for studying
the energy landscape for particle clusters.

2.3. Energy Landscape.We next use both Surface Evolver
and the elliptical dipole potential to analyze the energy
landscape for the two-particle configurations shown in Figure
1c. In Figure 4, we plot the energy of two-particle clusters

(relative to the side-to-side configuration θb = 90°) as a
function of the bond angle θb for Λ = 2, θt = 5°, calculated
from Surface Evolver (data points) and eq 15 with He = 0.087R
(solid line). From our Surface Evolver results, we find that the
side-to-side configuration is the global energy minimum of the
system, in agreement with the results of Davies et al.25

However, unlike ref 25, we do not find a local minimum at θb =
0°, that is, the tip-to-tip configuration is unstable rather than
metastable. Our Surface Evolver results are corroborated by
the elliptical polar results, which also show that the side-to-side
configuration is globally stable, whereas the tip-to-tip
configuration is unstable. The results in Figure 4 are also
consistent with our expectation from simple electrostatics,
where two in-plane electric dipoles in the tip-to-tip

Figure 3. Capillary interaction energy as a function of the center-to-
center distance r12 between two tilted ellipsoids with Λ = 2, θt = 5°,
calculated from the elliptical dipole potential (eq 12, solid curves) and
from Surface Evolver simulations in ref 25 (data points), for the tip-
to-tip configuration (blue) and the side-to-side configuration (red).
For reference, we also show the asymptotic circular dipole potential
(eq 13, black dashed curve). Note the sign of the vertical axis.

Figure 4. Capillary energy of two-particle clusters with mirror
symmetric configurations shown in Figure 1c as a function of the
bond angle θb for Λ = 2 and θt = 5°, calculated from Surface Evolver
(data points) and the elliptical dipole potential (solid line).
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configuration with both dipoles pointing in the same direction
(the analogue of the tip-to-tip configuration for capillary
dipoles) are unstable and will ultimately collapse into an
antiparallel side-to-side configuration (the analogue of the side-
to-side configuration for capillary dipoles).
One possible reason for the error in ref 25 is that the relation

between the center-to-center distance corresponding to
contact and the bond and tilt angles is calculated via an
iterative scheme in ref 25, while in this paper it is calculated
exactly via an analytical formula (eq A3). From our experience,
capillary forces are extremely sensitive to small variations in the
minimum distance between particle surfaces so that even a
small truncation error in ref 25 could have resulted in a
(spurious) weak minimum in the potential. However, we
emphasize that while Figure 4 corrects the error made in ref 25
about the stability of the tip-to-tip configuration, it does not
change the main conclusion of that paper concerning the
global stability of the side-to-side configuration. In particular,
both our results here and those in ref 25 explain why tilted
ellipsoids assemble side-to-side to form capillary caterpillars.
Interestingly, the energy landscape shown in Figure 4 is

essentially the same as that for two-particle clusters of non-
neutrally wetting side-on (i.e., nontilted) ellipsoidal particles,
where the tip-to-tip configuration is also found to be unstable,
and any particles approaching each other tip-to-tip tend to roll
into the stable side-to-side configuration.18,30 This suggests
that if the tilted ellipsoids are not perfectly neutrally wetting,
any quadrupolar capillary forces that are present in the system
will reinforce the tendency of the dipolar forces to align the
tilted ellipsoids side-to-side. We therefore expect that tilted
ellipsoids that are not neutrally wetting will also form side-to-
side capillary caterpillars.
We note that while the Surface Evolver and elliptical dipole

results in Figure 4 agree with each other qualitatively, there are
significant quantitative discrepancies between the two. This
discrepancy can be attributed to the simplifying assumptions
we made in our analytical treatment. First, only elliptical
dipolar terms were included in our calculation, whereas Figure
3 suggests that higher-order multipoles should be included to
obtain quantitatively accurate results. Second, our analytical
calculations neglected nonlinear effects, such as large interfacial
deformations and moving particle contact lines (see Subsection
4.2), which could be important for the small particle
separations found in particle clusters. Notwithstanding this
discrepancy, the qualitative agreement between our analytical
and numerical results in Figure 4 confirms that the elliptical
dipole potential captures the essential physics required to
explore the energy landscape of ellipsoidal clusters.
We next use both Surface Evolver and the elliptical dipole

potential to explore the energy landscape for the three-particle
configurations shown in Figure 2b. In Figure 5, we plot the
energy of three-particle clusters (relative to the side-to-side
configuration θb = 90°) as a function of the bond angle θb for
Λ = 2, θt = 5°, calculated from Surface Evolver (data points)
and eq 16 with He = 0.087R (solid line). Note that for three
particles, θb goes from θb = 30° (circular loop of three side-to-
side particles) to θb = 90° (linear chain of three side-to-side
particles). From our Surface Evolver results, we find that the
linear chain configuration continues to be the global energy
minimum. However, the circular loop configuration is now
metastable, and there is an energy barrier between the linear
chain and circular loop states. These numerical results are
corroborated by the elliptical polar results, which show the

same qualitative behavior, that is, linear chains are globally
stable, whereas circular loops are metastable.
Interestingly, the discrepancy between the Surface Evolver

and elliptical polar results for three-particle clusters (Figure 5)
is significantly greater compared to that for two-particle
clusters (Figure 4). The larger discrepancy may be due to
many-body effects which were neglected in our analytical
treatment, where we assumed that interactions were pairwise
additive. However, it is known from the work of Fournier and
Galatola on interfacial spherical clusters that such many-body
effects can be significant for clusters.33 However, the qualitative
agreement between the analytical and numerical results in
Figure 5 once again indicates that the elliptical dipole potential
captures the essential physics required to explore the energy
landscape of ellipsoidal clusters, even those containing more
than two particles.
Comparing Figures 4 and 5, we see that the number of

particles in the cluster n has a significant effect on the relative
stability of the tip-to-tip and side-to-side configurations. In the
final part of our discussion, we therefore extend our analysis to
larger n values. In Figure 6, we show Surface Evolver results for
the energy of mirror symmetric configurations containing n
particles (i.e., the n particle analogues of Figure 2b) as a
function of the bond angle θb, for n = 2 → 8 ellipsoids with Λ

Figure 5. Capillary energy of three-particle clusters with mirror
symmetric configurations shown in Figure 2b as a function of the
bond angle θb for Λ = 2 and θt = 5°, calculated from Surface Evolver
(data points) and the elliptical dipole potential (solid line).

Figure 6. Capillary energy of n particle clusters with mirror symmetric
configurations as a function of the bond angle θb for Λ = 2 and θt =
5°, calculated from Surface Evolver for n = 2 → 8. In order to directly
compare energy curves for different n, each energy curve is normalized
by (n − 1), the number of nearest-neighbor capillary bonds in each
cluster.
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= 2, θt = 5°. In order to directly compare the energy curves for
different n, each curve is normalized by (n − 1), the number of
nearest-neighbor capillary bonds in each cluster. Note that θb
goes from θb = 90° − 180°/n (circular loop) to θb = 90°
(linear chain).
Interestingly, we see that for n ≥ 4, circular loops become

the global energy minimum, whereas linear chains become
metastable. Indeed, the energy of circular loops relative to
linear chains, Emin, decreases as we increase n (see Figure 7a).

These results suggest that dangling ends of linear chains are
energetically unfavorable, providing a strong thermodynamic
driving force for loop formation. In addition, the energy barrier
for the linear chain to loop transition, Emax, also decreases with
increasing n, tending to zero for large n (see Figure 7b).
Furthermore, the bond angle at which the energy barrier
occurs, θbmax increases with increasing n, tending toward 90°
for large n (see Figure 7c). These results suggest that the
kinetic barrier for loop formation decreases for large clusters.
Together, the results in Figures 6 and 7 explain why the
capillary caterpillars observed in refs4,25 have such a strong
tendency to form loops both thermodynamically and kineti-
cally.

One of the striking features in Figure 6 is the collapse of the
different energy curves onto a universal curve around θb = 90°.
This universal behavior can be understood as follows. The
parabolic shape of the energy curves around θb = 90° suggests
that the energetics in this regime is dominated by the elastic
energy required to bend a linear capillary caterpillar.18

Specifically, the curvature of each energy curve at θb = 90° is
related to the flexural rigidity of the capillary caterpillar, which
locally is due to the splaying of the ellipsoids on either side of a
capillary bond.18 Because the energy required to splay each
capillary bond is independent of n, we expect all the energy
curves to collapse onto a universal curve when they are
normalized with respect to the number of capillary bonds.
We can rationalize the key features of the energy landscapes

of the particle clusters by considering the micromechanics of
bending the capillary caterpillars. Starting from the linear chain
state at θb = 90°, as we decrease the bond angle, the initial rise
in energy is due to the elastic energy associated with bending
the linear chain, as discussed earlier. However, as we decrease
θb further, the chain ends eventually “see” each other. Because
the capillary interactions between the chain ends are attractive,
it is energetically favorable for the chain ends to be in contact
to form the looped state. The energy curves therefore
eventually deviate from the parabolic curve as θb is decreased,
leading to an energy barrier between the linear and looped
states. However, because the angular “distance” 90° − θb
before chain ends come into contact (or equivalently the
degree to which the linear chains need to be bent locally)
decreases as we increase n, the energy curves peel off from the
parabolic regime at larger θb, leading to a larger θbmax and
hence smaller Emax as we increase n.
We can also rationalize why Emin decreases as we increase n

as follows. First, we note that Emin is essentially the bonding
energy of chain ends, that is, the energy of chain ends when
they are in contact relative to when they are not. Next, we see
from Figure 4 that Emin depends on the bond angle θb of the
chain ends when they are in contact. Specifically, because Emin
is approximately the energy at θb relative to the energy at θb =
0° in Figure 4, Emin decreases as we increase θb. Finally,
because the bond angle of chain ends when they are in contact
θb increases as we increase n, this means that Emin decreases as
we increase n.
Finally, we discuss the relevance of our calculations to

experiment. Interestingly, both linear and looped caterpillars
have been observed for nonmagnetic, non-neutrally wetting
ellipsoidal particles in the “side-on” state.18,34 With advance-
ments in materials science, it is now possible to produce
anisotropic particles with embedded ferromagnetic dipoles35 or
superparamagnetic dipoles.36,37 We therefore expect that it
should be possible to synthesize the required magnetic
ellipsoidal particles and experimentally prepare the self-
assembled structures predicted in this paper and in refs 4
and 25. Note also that for particles on the microscale, the
energy barrier separating the different (locally or globally)
stable states in Figure 6 can be very large (∼several million
kT). We therefore expect that the self-assembled structures
formed by tilted ellipsoids may be easily trapped in metastable
states. Indeed, it is observed experimentally that capillary
interactions between anisotropic microparticles typically lead
to kinetically trapped configurations.19,38 Therefore, in order to
prepare self-assembled tilted ellipsoids which are in the ground
state, it may be necessary to apply external fields such as

Figure 7. Key parameters characterizing the energy landscape shown
in Figure 6 as a function of the number of particles in the cluster: (a)
energy of circular loops relative to linear chains Emin; (b) energy
barrier for the linear chain to loop transition Emax; and (c) bond angle
of energy barrier θbmax.
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interfacial shear or controlled sonication to help equilibrate the
system.

3. CONCLUSIONS

In this paper, we have used both analytical theory and Surface
Evolver numerical simulations to study the capillary interaction
and self-assembly of magnetic ellipsoids, which are in the tilted
state because of the application of an external field. Using a
superposition approximation in the limit of small slopes, we
first derived analytical expressions for the dipolar capillary
interaction between tilted ellipsoids in elliptical polar
coordinates. The derived elliptical dipole potential exhibits
the correct 1/r2 power law dependence in the far field and
correctly captures the orientational dependence of the capillary
interactions in the near field. However, there was only
semiquantitative agreement between the elliptical dipole
potential and the numerical results in the near field, suggesting
that higher-order elliptical multipoles need to be included in
order to model the near-field interactions quantitatively.
Nevertheless, the fact that the elliptical dipole potential can
correctly distinguish between the near-field interaction
energies for different particle pair configurations demonstrates
that it is a useful tool for exploring the energy landscape of
particle clusters.
Using the elliptical dipole potential and Surface Evolver

simulations, we next analyzed the energy landscape of particle
clusters consisting of up to eight tilted ellipsoids. For clusters
of two particles, we found that the side-to-side configuration
was stable, whereas the tip-to-tip configuration was unstable.
This corrects an error we made in an earlier study25 where we
found that the tip-to-tip configuration was metastable for two-
particle clusters. For clusters of three particles, we found that
linear chains of three side-to-side particles continued to be the
global energy minimum, but circular loops of three side-to-side
ellipsoids became metastable. Finally, for clusters of four or
more particles, circular loops became the global minimum,
whereas linear chains became metastable. We also found that
the energy barrier for the linear chain to loop transition
decreased with increasing particle number. The key features of
the energy landscape can be understood in terms of a
competition between the elastic energy for bending linear
chains and the bonding energy of chain ends. Our results
provide a deeper mechanistic insight into the self-assembly of
interfacial magnetic ellipsoids, which we hope will stimulate
further experimental investigations of this system and open up
exciting opportunities for creating responsive functional
materials.

4. THEORETICAL METHODS

4.1. Surface Evolver. In Surface Evolver, the relevant
interfaces in the system (in our case the oil/water interface
only, see eq 2) are represented by a mesh of small triangles,
and the resultant vertices are displaced to minimize the
interfacial energy subject to appropriate constraints.29 We
define the x−y plane of the lab frame to lie along the
unperturbed oil/water interface and the z-axis to be
perpendicular to the interface. Vertices on the three-phase
contact line are required to satisfy the ellipsoid equation given
by eq A1. The constant contact angle constraint is imposed by
requiring the surface energies of the three interfaces meeting at
the contact line to satisfy Young’s equation. Specifically, we set
γpo = γpw = 0 and γow = 1 to achieve θw = 90°. Homogeneous

Neumann boundary conditions are imposed at the outer
boundary of the simulation box to ensure a flat interface far
from the particle clusters. In order to compare our results to
those in ref 25, we consider ellipsoids with aspect ratio Λ = 2
and tilt angle θt = 5°. Depending on the number of particles
simulated (2−8), we used simulation box sizes ranging from
10L × 10L to 13L × 13L. The particle clusters were placed
close to the center of the simulation box to minimize edge
effects. For computational convenience and without loss of
generality, the z-coordinate of all particle centers was fixed at
zero, while the height of the oil/water interface was allowed to
freely vary relative to the particles. In order to achieve good
numerical accuracy, we used a mesh that had a higher level of
refinement close to the particle. In the last stages of evolution,
we changed the model type from linear to quadratic, which
adds vertices at the midpoints of each edge, followed by further
minimization which allows us to evaluate the areas and energy
with high accuracy. Note that these additional refinements are
critical because of the severe resolution requirements on the
finite element mesh in the contact region for obtaining
accurate and converged solutions in our calculations.

4.2. Capillary Interactions in Elliptical Coordinates. In
addition to calculating the interfacial energies numerically
using Surface Evolver, we also calculated these energies
analytically by modeling each tilted ellipsoid as an elliptical
dipole. For these calculations, we adopt a particle-centered
elliptical coordinate system (s,t) which is related to the
particle-centered Cartesian coordinate system (x,y) by the
transformation

x s t
y s t

cosh cos
sinh sin

α
α

=
= (3)

where the t = 0 line and the x-axis in eq 3 are assumed to lie
along the semimajor axis of the particle. The coordinates (s,t)
are analogous to the circular polar coordinates (r,θ), with 0 ≤ s
≤ ∞ and 0 ≤ θ ≤ 2π. However, the advantage of the elliptical
coordinates is that they take into account the aspect ratio of
the particle. Specifically, the parameter α is a metric length
scale that is adjusted so that the locus s = s0 (an ellipse)
coincides with the contact line of the particle. Using eq 3, it is
easy to show that for ellipsoids with aspect ratio Λ12

R 12α = Λ − (4)

s coth ( )0
1= Λ−

(5)

Consider two identical tilted ellipsoids with bond angles θb1
and θb2 and center-to-center distance r12 as shown in Figure 1b.
Let us denote the left and right particles in Figure 1b as
particles 1 and 2, respectively, and introduce two elliptical
coordinate systems, (s1,t1) and (s2,t2), centered around each of
the two particle centers. The contact lines for particles 1 and 2
are located at s = s01 and s = s02, respectively. For tilted
ellipsoids not acted upon by external forces, the leading order
deformation of the oil/water interface is a capillary di-
pole.7,12,39 Assuming the deformation of the oil/water interface
is small, by solving the linearized Young−Laplace equation,
one can show that the vertical displacement of the interface
created by each particle is given in particle elliptical
coordinates by7

h H te coss s
1 e

( )
1

1 01= − −
(6)
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h H te coss s
2 e

( )
2

2 02= − −
(7)

where He is the amplitude of the contact line deformation
around each particle, s01 = s02 = s0, and s0 is given by eq 5.
Using the superposition approximation,7,12,39,40 the total
deformation of the interface due to both particles is given by

h h h1 2= + (8)

For small deformations, the interfacial energy of the system
is (up to an unimportant constant)12,39,40

E r h h A( )
2

d
A

12
ow

0

∫γ
= ∇ ·∇

(9)

where ∇h is the two-dimensional (2D) gradient of h and the
integral is taken over the domain A0, where the in-plane
coordinates of the interface are external to the contact lines of
each particle. On the other hand, the capillary pair potential,
that is, ΔE(r12) = E(r12) − E(∞), is given by41

E r h Q( ) 212 ow 1 2 2γΔ = − ∇ | · (10)

where ∇h1|2 is the 2D gradient of h1 evaluated at the center of
particle 2 and Q2 is the capillary dipole moment vector for
particle 2 given by

h nQ d2 2∮=
(11)

n is the outward pointing normal to the contact line of particle
2 (i.e., s = s02) and d is the length of a line element on the
contact line. In Appendix B, we evaluate eq 10 analytically, and
the final result for the elliptical dipole potential is

E r H

s G s t

L s t

( , , ) 2 e

sinh( ) cos( ) ( , )

sin( ) ( , )

s
12 b1 b2 ow e

2

0 b1 b2 1 1

b1 b2 1 1

0θ θ πγ

θ θ

θ θ

Δ = −

[ −

+ − ]

−

(12)

where s0 is given by eq 5 and (s1,t1) are the elliptical
coordinates of the center of particle 2. The expressions for the
functions G(s1,t1), L(s1,t1) and the relationship between s1, t1
and r12, θb1, and θb2 are given in Appendix B.
For r12 → ∞, the factor in square brackets on the right-hand

side of eq 12 asymptotically approaches
r

cos( )
2

2
b1 b2
2− α θ θ+

so that

the elliptical dipole potential asymptotically approaches the
circular polar dipole potential25,39,40

E r H
R

r
( , , ) 2 cos( )12 b1 b2 ow p

2
2

12
2 b1 b2θ θ πγ θ θΔ = +

(13)

where Hp is the effective amplitude of the contact line
deformation in circular polars, that is, assuming the contact
line to be at r = R. Comparing eqs 12 and 13, the amplitudes
He and Hp are thus related to each other by

H H
R

se sinh( )
2

s

p e
0

1/2
0i

k
jjjj

y
{
zzzz

α=
(14)

The amplitude He depends on the tilt angle θt. Consistent
with the superposition approximation, we approximate He(θt)
as the contact line deformation amplitude for an isolated tilted
ellipsoid; this is an approximation because when two ellipsoids
approach each other, the contact line on each particle may
move in order to minimize the total interfacial energy of the
system.7 Using Surface Evolver, we obtain He = 0.087R for a

single ellipsoid with aspect ratio Λ = 2 and tilt angle θt = 5°. In
this paper, we use this value for He in our analytical
calculations unless otherwise stated.
We can use the elliptical dipole potential given in eq 12 to

analyze the energy landscape of the particle clusters considered
in Subsection 2.1 analytically. For the two-particle clusters
considered in Figure 1c, the interfacial energy of the cluster
(up to an unimportant constant) as a function of the bond
angle θb is given by

E E r( ) ( , , )b c b bθ θ π θ= Δ + Δ − (15)

where the expression for the contact distance rc is given in eq
A3. On the other hand, for the three-particle clusters
considered in Figure 2b, assuming that interactions are
pairwise additive and using simple geometry, the interfacial
energy of the cluster as a function of θb is given by

E E r

E r

( ) 2 ( , , )

2( )sin , 2
2

,
3
2

2

b c b b

c b b b
i
k
jjj

y
{
zzz

θ θ π θ

θ θ π π θ

= Δ + Δ −

+ Δ + Δ − −

(16)

where the first term on the right-hand side represents the
contributions from adjacent particle pairs in the cluster,
whereas the second term is the contribution from the
nonadjacent particle pair.

■ APPENDIX A

Derivation of the Contact Distance rc
In this section, we derive an analytic expression for rc(θt,θb),
the center-to-center distance between two contacting ellipsoi-
dal particles with configuration given by Figure 1c (but with Δ
= 0) as a function of the tilt angle θt and bond angle θb. Let us
define the x−y plane of the lab frame to lie along the
unperturbed oil/water interface and the z-axis to be
perpendicular to the interface. For definiteness, let us focus
on the particle on the left in Figure 1c and define the positive
x-axis to point to the right and the positive y-axis to point
vertically upward. The surface of this particle is described by
the ellipsoid equation

f x y z
x
L

y
R

z
R

( , , )
2

1
2 2 2i

k
jjj

y
{
zzz

i
k
jjj

y
{
zzz i

k
jjj

y
{
zzz= ″ +

″
+ ″ =

(A1)

where x″, y″, z″ are the particle frame coordinates with the
origin at the particle center, x″ aligned along the semimajor
axis and y″, z″ along the semiminor axis. Denoting the
coordinate of the particle center in the lab frame as R = (X, Y,
Z), the particle coordinates (x″, y″, z″) are related to the lab
coordinates (x, y, z) by the transformation

x
y

z

x X
y Y

z Z

cos 0 sin

0 1 0
sin 0 cos

cos sin 0
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0 0 1

t t
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θ θ
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θ θ
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″
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−

−
−
−

−
(A2)

that is, to obtain the particle frame, the lab frame is first
translated by R so that the origin is at the particle center,
rotated about the z-axis by the bond angle θb, and then rotated
about the resultant y′-axis by the tilt angle θt.
The surface normal vector for the ellipsoid is given by ∇f,

where f(x,y,z) is the function given by eq A1 and ∇ is the 3D
grad operator in the lab frame. At the point of contact between
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the two particles in Figure 1c, the y and z components of ∇f
are zero, that is, 0f

y
f
z

= =∂
∂

∂
∂ . Together with eq A1, this gives

us three simultaneous equations which we can solve to find the
coordinates of the contact point. The contact distance rc is
then just twice the x contact coordinate. The final result is

r R( , ) 2 (cos ) (cos ) (cos ) (sin )

(sin ) (cos )
1
2

(sin ) (3 cos 2 )

c t b
2

b
2

t
2

b
4

t
2

b
2

t
2

t
2

b
1/2

θ θ θ θ θ θ

θ θ θ θ

= {Λ +

+ [ + + ]}

(A3)

■ APPENDIX B

Derivation of the Elliptical Dipole Potential
In this section, we evaluate eq 10 analytically to find the
capillary pair potential ΔE as a function of the particle
separation r12 and bond angles θb1 and θb2 shown in Figure 1b.
To simplify our discussion, we first rewrite the interfacial
deformation due to each particle h1, h2 as

h H te cos( )s
1 e 1

1= ̂ −
(B1)

h H te cos( )s
2 e 2

2= ̂ −
(B2)

Comparing eqs 6 and 7 with eqs B1 and B2, the amplitudes
in both sets of equations are related to each other by

H H es
e e

0̂ = (B3)

where s0 is given by eq 5. In elliptic coordinates, the normal to
the reference contact line (s0,t)in eq 11 is

n
s t

s t

s t
1

sinh sin

sinh cos

cosh sin2
0

2

0

0

i

k
jjjjjj

y

{
zzzzzz=

+ (B4)

and s t td sinh sin d2
0

2α= + .
To simplify the calculation of eq 10, we first write the

gradient and the dipole moment vector in the frames of
reference (x1′,y1′) (x2′,y2′) aligned with the major axis of each
particle and then rotate the vectors in a frame aligned with the
line joining the centers of the two particles. The rotated frames
(x1,y1) and (x2,y2) have centers separated by a distance r12.
Their axes x1 and x2 are parallel to each other, so the dot
product in eq 10 can be obtained readily. The frame (x1′,y1′) is
obtained from (x1,y1) upon a counterclockwise rotation by an
angle θb1, and similarly (x2′,y2′) is obtained from (x2,y2) upon a
counterclockwise rotation by an angle θb2.
In the (x1′,y1′)frame, the components of the gradient are

h h s h tx s x t x1 1 1 1 11 1 1 1 1
∂ = ∂ ∂ + ∂ ∂′ ′ ′ (B5)

and

h h s h ty s y t y1 1 1 1 11 1 1 1 1
∂ = ∂ ∂ + ∂ ∂′ ′ ′ (B6)

where s t s t, , ,x x y y1 1 1 11 1 1 1
∂ ∂ ∂ ∂′ ′ ′ ′ can be obtained by implicit

differentiation of the mapping between Cartesian and elliptic
coordinates given by eq 3, namely,

x s tcosh cos1 1 1α′ = (B7)

y s tsinh sin1 1 1α′ = (B8)

In the (x1,y1) frame, the components of the gradient are
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In the (x2′,y2′) frame, the components of the dipole vector are
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and

Q 0y2
=′ (B11)

In the (x2,y2) frame, the corresponding components are
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Carrying out the dot product, the capillary energy can be
written as

E Q h h2 cos( ) sin( )x x yb1 b2 1 b1 b2 12 1 1
γ θ θ θ θΔ = − [ − ∂ + − ∂ ]′ ′ ′

(B13)

where
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or, more compactly, as
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and
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(B18)

Inserting eq B3 and s02 = s0 into eq B16, we obtain eq 12.
Finally, we need to express the elliptic coordinates (s1,t1) of the
center of particle 2 as a function of r12, θb1, and θb2. The
relationship between these two sets of coordinates can be
obtained by noting that

r s tcos cosh cos12 b1 1 1θ α= (B19)

r s tsin sinh sin12 b1 1 1θ α= (B20)

Using these expressions, it is easy to see that t1 can be first
calculated from
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and then s1 is calculated from

s
t
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1 b1

1

θ
= −

(B22)

In eq B21, the minus sign is for 0 ≤ θb1 ≤ π and the plus sign
is for θb1 < 0 or θb1 > π.
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