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This work presents the current state-of-the-art in techniques for tracking a number of objects moving in
a coordinated and interacting fashion. Groups are structured objects characterized with particular motion
patterns. The group can be comprised of a small number of interacting objects (e.g. pedestrians, sport
players, convoy of cars) or of hundreds or thousands of components such as crowds of people. The
group object tracking is closely linked with extended object tracking but at the same time has particular
features which differentiate it from extended objects. Extended objects, such as in maritime surveillance,
are characterized by their kinematic states and their size or volume. Both group and extended objects
give rise to a varying number of measurements and require trajectory maintenance. An emphasis is given
here to sequential Monte Carlo (SMC) methods and their variants. Methods for small groups and for
large groups are presented, including Markov Chain Monte Carlo (MCMC) methods, the random matrices
approach and Random Finite Set Statistics methods. Efficient real-time implementations are discussed
which are able to deal with the high dimensionality and provide high accuracy. Future trends and avenues
are traced.

© 2013 The Authors. Published by Elsevier Inc. Open access under CC BY-NC-ND license.
1. Motivation: Why is group and extended object tracking
important? Differences and similarities

In recent years there has been an increasing interest in track-
ing a number of objects moving in a coordinated and interacting
fashion. There are many fields in which such situations are fre-
quently encountered: video surveillance, sport events, biomedicine,
neuroscience, meteorology, situation awareness and search rescue
operations, to mention but a few. Although individual objects in
the group can exhibit independent movement at a certain level,
overall the group moves as one whole, synchronously with respect
to the individual entities and avoiding collisions.

Terminology. Groups are structured objects, formations of enti-
ties moving in a coordinated manner, whose number varies over
time because targets can enter a scene, or disappear at random
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times. The groups can split, merge, can be relatively near to each
other or move independently of each other. What is typical for
group formations is that they maintain certain patterns of motion.
Some typical examples are: formations of aircrafts and ships, re-
spectively, for air traffic control, sea, harbor or land surveillance
[45,124], flocks of bird migration trajectories for ecological pur-
poses, tracking groups of cells [38,107,149,127] (for in vitro pur-
poses, stem cells, cardiovascular treatment and other medical diag-
nostics), a group of robots (for industrial tasks), a group of football
players [152] in sport videos, convoys of vehicles and groups of
pedestrians for traffic management [3]. Within this broad range of
problems, one can distinguish two main classes: (1) tracking of
multiple groups with only a few components per group, which is
called small groups tracking, and (2) groups with a relatively large
number of constituents whose individual members cannot be eas-
ily distinguished, termed large groups. Large groups are also often
referred as to crowds or clusters.

A related but distinct is the problem of tracking extended ob-
jects, such as a cyclist and maritime vessels [5]. Extended objects
cannot be considered as points but instead have a spatial extent
characterizing their size or volume [74]. They are usually modeled
 license. 
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Fig. 1. Taxonomy of sequential Monte Carlo methods for tracking a small number of groups with only a few objects.
with simple geometrical shapes which are typically circles [111],
ellipses [117], rectangles [10,11,51,55,56], closed contours or arbi-
trary shapes such as star-convex contours [9]. Other examples are
tracking a cloud [69,122] of radio-active materials and a human
face or hand in video [21]. Human body limb tracking is also often
referred to extended target tracking.

Challenges and differences. The challenges in solving the task for
groups with a small number of components differ from those of
groups with a large number of components. In small groups it is
possible to model the interactions and interrelationships between
the components within a group. The difficulties with groups of
hundreds or thousands of objects (such as pedestrians and riots in
video surveillance and radar based tracking of hundreds of aircraft)
are mainly due to two reasons: (1) the individual objects cannot be
distinguished/identified within the group, (2) the information and
features extracted by the sensors are not sufficient to track those
objects. Hence, one considers the aggregated motion of the whole
group. In small groups one can estimate the states of each par-
ticular object and parameters characterizing the size or volume of
the group. In large groups by contrast, one typically considers the
group as a geometric shape and its centre coordinates.

Similarities. Both groups of objects and extended objects give
rise to a large, varying number of measurements and require a
flexible framework able to deal with all these challenges. Although
the methods for solving these two kinds of problems vary, there
is a common approach in which both extended and large group of
targets are seen as the same problem. The large group or extended
object is surrounded with a shape (e.g. a circle) and the center
and extent of this shape are sequentially computed based on the
incoming data. Consequently, in this paper, the choice is made to
classify the existing works in the literature into methods dealing
with small groups and method dealing with large groups and for
extended objects.

This classification of extended/group objects is according to
whether: (1) the group/extended object is rigid and unchanging
in shape/size, (2) whether individual entities can be tracked dy-
namically and interact with one another.

Examples of non-rigid extended objects are radioactive clouds.
They can be spawn and also disappear. The group tracking and
non-rigid extended object tracking lead to dynamic state and vary-
ing parameter estimation. Rigid extended targets such as sub-
marines, ships, have fixed shapes and fixed size. This leads to
dynamic state and static parameter estimation.

1.1. Objectives

The aim of this paper is to expose the reader to the various
aspects of the problems of group and extended object tracking, un-
derlying difficulties, and the key factors facilitating their solution
in the context of Bayesian estimation. An overview of the state-
of-the-art concepts and methodologies underlying contemporary
Monte Carlo-based group and extended object tracking schemes
is provided. The taxonomy of methods is given in Section 1.2 and
background knowledge in Section 2. Methodologies for small group
tracking are described in Section 3 and for large groups and ex-
tended objects in Section 4. The high dimensionality of the prob-
lem and the need of real time implementation calls for efficient
algorithmic implementations, in a distributed and parallelized way,
which are discussed in Section 5. Future avenues are summarized
in Section 6.

1.2. Taxonomy of methods for multiple groups and extended object
tracking

Over the past decade various methods have been developed for
group and extended object tracking. These can be divided into two
broad classes depending on the underlying complexities:

1. Methods for a relatively small number of groups, with a small
number of group components [51,109,76,6].

2. Methods for groups comprised of hundreds or thousands of
objects (normally referred to as cluster/extended object/crowd
tracking): track before detect methods for extended ob-
jects [18,17], Poisson likelihood approaches [48,49,120,22],
groups’ extent parameter estimation and random matrix
techniques [5,8,75,74,46], parametric level curves [69,122],
and random finite sets [94,143,136,137,86,91], including the
Bernouli random finite set filters [116,113].

Figs. 1 and 2 present the taxonomy of methods for tracking
small groups and respectively large groups/extended objects. De-
tails are given in the next sections.

Results for small groups with a fixed number of targets are
presented in [66,48,139,42]. These SMC algorithms exploit point



L. Mihaylova et al. / Digital Signal Processing 25 (2014) 1–16 3
Fig. 2. Taxonomy of sequential Monte Carlo methods for tracking large groups and extended objects.
process formulations for properly assigning measurements to their
originating targets. As part of this, smart procedures are used
to eliminate non-probable association hypotheses. Other SMC
schemes adopt various approaches for dealing with the high di-
mensionality problem [121,77].

An extension of the SMC technique to a varying number of tar-
gets is introduced in [141] and [73]. In [73,109] sequential Markov
Chain Monte Carlo (MCMC) techniques are developed for track-
ing varying numbers of interacting objects. The MCMC approach
has advantages over the conventional particle filter (PF) due to
its efficient sampling mechanism [24,22,109]. Interacting popula-
tion MCMC algorithms are presented in [16,15,14]. The approach
proposed in [36] represents an extension of the MCMC method
proposed in [73]. However, in [36] measurement clustering is com-
bined with nonparametric prior information and the variational
Bayes approach.

1.2.1. Methods for small groups
The methods for tracking small groups can be further divided

into: (1) methods that take into account the interactions between
group components and (2) methods that ignore such interactions.
The latter class of methods are the standard Bayesian techniques
that track each object separately (e.g., generic particle filters, Ex-
tended Kalman filters, Unscented Kalman Filters, Multiple Hypoth-
esis Tracking (MHT) filters [6] and others). These methods have
been extensively studied in the literature [114,89].

The former class of methods which consider object’ interactions
is much more compelling (see e.g. [71,72,7,73]). Although it has
received attention in recent years, there is still a wealth of chal-
lenges most of which concern the group structure evolution and
transitions [89,55].

The predominant strategy consists in incorporating local inter-
action rules into the object state dynamics. Normally, individual
objects are labeled [109] and tracked along with the group struc-
ture [51]. For a small number of objects, one obtains only a few
likely group structures. The object states are updated at every
time step using models for appearance (birth) of an object, or dis-
appearance (death) of an object and spawning objects [89,29,108,
94,93]. Analogously, the group structure is updated taking into
account only a few admissible transitions which are determined
from physical constraints such as groups’ spatial extent and prox-
imity. Interactions at the group level are subject to transitions in
addition to the aforementioned ones. Thus, apart from birth and
Fig. 3. Dynamics of a small group structure over time. Splitting takes place from
time t1 to t2, resulting with a new group (white). From time t2, the white group
splits again and merges with the red and blue groups, giving rise to entirely new
(green and grey) configurations. The arrows represent the entities movement direc-
tion. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

disappearance, two additional moves that are commonly attributed
to groups are splitting and merging.

Alternatively, group structure dynamics can be modeled by
means of graph-theoretic approaches and evolving networks [51].
In this approach, group components take the role of vertices in a
graph where edges embody interrelations among objects. As the
group evolves over time, the graph is adapted to reflect the in-
stantaneous structure. This essentially involves removing or adding
nodes and updating edges accordingly. Markov random fields can
be used in a similar fashion for modeling group interactions [71,
72,7,73]. Other works use the multi-goal social force model [100,
110] for pedestrian tracking which extends the social force model
proposed in [62] or macroscopic models [28].

Fig. 3 illustrates the time evolution of a few groups depicted
with distinct colors. The event of one group creating another group
is called spawning or splitting. The opposite event when multi-
ple groups are combined into a single group is called merging. At
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time step t1 there are two groups: group 1 with three compo-
nents (the upper group, indicated in red) and group 2, with three
components (the lower group, indicated in blue). The empty cir-
cles correspond to noisy measurements (e.g. clutter1). Splitting and
merging is demonstrated in the 2nd and 3rd time-steps, respec-
tively. For clarity, objects’ interrelations are mostly omitted in this
depiction. They are, nevertheless, suggested for the last time-step
in the right-hand-side ellipses.

1.2.2. Methods for large groups and extended objects
When the number of entities becomes excessively large it is

impractical to track them all individually. Thus, instead of track-
ing separate components, large group techniques identify and track
concentrations, e.g. the center of the group and its extent parame-
ter. In this respect groups and extended object tracking are similar
problems. The entities forming the concentrations may be objects,
measurements or features. This strategy is applied in practice by
utilizing extent variables which represent the spatial shape and
dynamics of a group. In typical scenarios, groups are characterized
by the location and velocity of the group center, their shape and
shape deformation [9].

Another promising approach for modeling large groups is based
on the social force model [101,2].

For large groups (and extended objects), the group density and
shape are closely related. The posterior pdf of the joint state and
extent parameter vector can, for example, be considered as a mix-
ture of Gaussians [22]. This is primarily due to the convenient
parametric representation which involves the first two statistical
moments of the Gaussians, but other representations are possible.
Here, the mean and covariance of the Gaussian mixture are, re-
spectively, the center and shape of the group or extended object.
Normally, the extent parameters are considered as both random
and dynamic, and as such are governed by appropriate transition
kernels. These approaches are capable of simulating complex dy-
namically evolving shape boundaries, and even compete with so-
phisticated contour tracking methodologies (see for example [69,
122]).

The measurement origin uncertainty in group and extended ob-
jects can be dealt with in an efficient way [48,49,120,22] if the
numbers of received target and clutter measurements are consid-
ered Poisson distributed (implying that several measurements may
originate from each target).

A different, albeit related, modeling approach is considered in
[5,8,75,74,46] where the group extent represents a parameter, es-
timated as part of an augmented state vector, jointly with the
position coordinates of the group center. Except for [5], all other
works in this group employ either Kalman filtering techniques [6]
or random finite set approaches [89]. In general, the extent is con-
sidered as a random process and hence is normally assigned a
respective prior (e.g., Wishart distribution [75,74,46]) and a transi-
tion kernel.

The random finite set approach is a powerful tool that has been
widely used in recent years [89]. Random finite sets are mathemat-
ical objects that can elegantly capture the subtleties involved in
multiple object tracking and data fusion. It was not until recently
that these methods have been employed for group and extended
object tracking. The works [94,143,136,137] demonstrate the vi-
ability of the well-known Probability Hypothesis Density (PHD)
filter in solving group tracking problems. These approaches are dis-
cussed extensively in the methodological part of this paper.

Fluid dynamic models have also been shown to capture well
aggregated vehicular traffic phenomena, in combination with SMC

1 In radar applications clutter signifies signal reflected from the environment, in-
stead of from the objects of interest.
methods [103], for the purposes of freeway traffic tracking. A large
body of work is devoted for modeling pedestrians flows in open
and enclosed regions, e.g. [67,81,153] and weather forecasts [138].

In what follows, we present the generic SMC framework fol-
lowed by more sophisticated approaches.

2. Background knowledge

Consider the discrete-time nonlinear non-Gaussian motion
model

xk = f (xk−1,vk−1), (1)

zk = h(xk,nk), (2)

where xk is the system state vector which has to be estimated
in time k = 1,2, . . .; zk represents the measurement obtained at
time k; f (.) and h(.) are nonlinear system and measurement func-
tions, respectively; vk and nk are mutually independent noise vec-
tors, respectively, the system noise and the measurement noise.
The state vector xk characterizes the objects of interest and jointly
with f (.) describe the motion interactions of the objects.

2.1. Generic particle filters

The aim of SMC methods, known also as particle filters [54,
41,43,61,119,39,27] is to represent with “particles” the posterior
state probability density function given the sensor measurements,
p(xk|Z0:k), where Z0:k = {z0, . . . , zk} is the observation history up
to time k. Two major stages can be distinguished: prediction and
update. During prediction, each particle (point mass representa-
tion of the probability density) is modified according to the state
model, including the addition of random noise in order to simulate
the effect of the noise on the state. In the measurement update
stage, each particle’s weight is re-evaluated based on the new data.
Hence, during the prediction step the “cloud of particles” is usu-
ally spread/expanded due to the system noise, whereas the mea-
surement update step contributes particles to concentrate around
the system states. Hence, the weighted particles {xi

k, wi
k}N

i=1 are
propagated through the motion model (1) and updated next upon
the measurement arrival, based on the measurement equation (2).
An inherent problem with particle filters (PFs) is degeneracy, the
case when only one particle has a significant weight and the oth-
ers are close to zero. The sampling importance resampling (SIR)
SMC avoids the degeneracy by adding an extra resampling step.
An estimate of the measure of degeneracy at time k is given as
Neff = 1/

∑N
�=1(wi

k)
2 [41]. If the number Neff of efficient particles

is below a user defined threshold Nthreshold , the resampling pro-
cedure introduces variety in the particles, and can help to avoid
degeneracy by eliminating particles with small weights and repli-
cating particles with larger weights.

The algorithm of the generic PF is summarized in Table 1. The
estimate of the variable of interest is obtained by a weighted sum
of particles.

Table 1
Generic particle filter algorithm.

[{xi
k, wi

k}N
i=1] = PF[{xi

k−1, wi
k−1}N

i=1, zk]
for i = 1 : N (for each particle) do

– Draw xi
k samples based on the motion model (1)

– Determine the weight update factors based on the likelihood function
calculated from the measurement model (2).
– Normalize weights, wi

k = wi
k/

∑N
i=1 wi

k
if Neff < Nthreshold then

– Resample particles.
end
– Calculate the expected state: E[xk|zk] = ∑N

i=1 wi
kxi

k .
end
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Different proposal distributions have been used in the SMC
framework – the most common transition prior or more advanced
priors using the latest measurements, MCMC steps and others such
as conjugate priors (e.g. inverse Wishart distribution [75,74,46]).

Section 2.2 considers Markov Chain Monte Carlo (MCMC) meth-
ods.

2.2. Sequential Bayesian inference using Markov Chain Monte Carlo
methods

The Bayesian framework provides efficient ways of computing
the desired posterior distribution. Unfortunately, in many appli-
cations, this distribution is analytically intractable. SMC methods
such as particle filtering can be used to carry out the infer-
ence by sequentially approximating this posterior distribution as
in [51]. MCMC methods are generally more effective than PFs in
high-dimensional spaces. Their traditional formulation, however,
allows sampling from probability distributions in a non-sequential
fashion. Recently, advanced sequential MCMC schemes were pro-
posed in [12,73,109,123]. These approaches are distinct from the
Resample-Move scheme [50] where the MCMC algorithm is used
to rejuvenate degenerate samples following importance sampling
resampling. These methods [109,73,12] use neither resampling nor
importance sampling.

In attempting to circumvent the degeneracy problems that can
possibly arise in PFs in high dimensions (e.g. with more than 20
states), the Markov Chain Monte Carlo (MCMC) framework [22,71,
72,7,73] is investigated and is shown to be effective. The MCMC
technique arise first in statistical physics [83,118]. The underlying
principle consists in constructing a Markov chain whose long-term
equilibrium is close to a desired probability distribution. The addi-
tion of the MCMC steps affords moving the “cloud of particles” into
more likely regions which improves significantly the performance
of the obtained sequential filters. The MCMC step also allows sim-
ulation of complicated systems that are difficult to deal with di-
rectly, including interactions between group components. Another
advantage is that the MCMC step leads to flexibility and one can
sample only a part of the state conditional upon the rest, thus fa-
cilitating efficient samples.

There are many different ways to perform the MCMC steps. One
of the most common MCMC algorithms is the Metropolis–Hastings
(MH) move step, where first a likelihood ratio test is calculated
(based on particles from two subsequent iterations) and the par-
ticle is selected if the likelihood exceeds a certain threshold. For
small groups tracking the MH step was proposed in [109] and
in [51] and shows efficient results. The method from [109] aims
at sequentially approximating the following joint posterior distri-
bution

p(Xk,Xk−1|Z0:k) ∝ p(Zk|Xk)p(Xk|Xk−1)p(Xk−1|Z0:k−1), (3)

where the state vector Xk
2 comprises the objects’ instantaneous

position, velocity and extent parameters at time k.
Since the closed form expression of the distribution p(Xk−1|

Z0:k−1) is generally unknown, the proposed scheme approximates
it by using Np unweighted particles

p(Xk−1|Z0:k−1) ≈ 1

N

N∑
j=1

δ
(
Xk−1 − X( j)

k−1

)
, (4)

where δ(.) is the Dirac delta function and ( j) is the particle index.
Then, by applying this particle approximation to (3), an appropri-
ate MCMC scheme can draw samples from the joint posterior pdf
p(Xk,Xk−1|Z0:k). The converged MCMC outputs are then extracted

2 Note that we will denote the state vector in the reminder of the paper with a
capital letter to emphasize that it contains both states and extent parameters.
Table 2
Sequential MCMC algorithm.

Initialize particle set {X( j)
−1}N

j=1 for k = 1, . . . , T do
for m = 1, . . . , NMCMC do

Joint Draw

– Propose {X∗
k ,X∗

k−1} ∼ q1(Xk,Xk−1|Xm−1
k ,Xm−1

k−1 )

– Compute the MH acceptance probability

ρ1 = min
(

1,
p(X∗

k ,X∗
k−1 |Z0:k)

q1(X∗
k ,X∗

k−1 |Xm−1
k ,Xm−1

k−1 )

q1(Xm−1
k ,Xm−1

k−1 |X∗
k ,X∗

k−1)

p(Xm−1
k ,Xm−1

k−1 |Z0:k)

)
– Accept {Xm

k ,Xm
k−1} = {X∗

k ,X∗
k−1} with probability ρ1

Block Refinement
– Randomly divide Xk into P blocks {Ωp}P

p=1
for p = 1, . . . , P do

– Propose {X∗
k,Ωp

} ∼ q(Xk,Ωp |Xm
k,\Ωp

,Xm
k−1)

– Compute the MH acceptance probability

ρp = min
(

1,
p(X∗

k,Ωp
|Xm

k,\Ωp
,Xm

k−1,Z0:k)

q(X∗
k,Ωp

|Xm
k,\Ωp

,Xm
k−1)

q(Xm
k,Ωp

|Xm
k,\Ωp

,Xm
k−1)

p(Xm
k,Ωp

|Xm
k,\Ωp

,Xm
k−1,Z0:k)

)
– Accept {Xm

k,Ωp
} = {X∗

k,Ωp
} with probability ρp

end
end

end

to give an empirical approximation of the posterior distribution
of interest at time k, thus seeding the next filtering step at time
k + 1.

As shown in [109] and in [22], in high dimensional spaces
the combination of Metropolis–Hastings with Gibbs sampling gives
efficient results and can overcome possible degeneracy problems
of PFs. The derived sequential MCMC algorithm has two steps, for
drawing samples from p(Xk,Xk−1|Z0:k):

1. Make a joint draw for the pair {Xk,Xk−1} using a Metropolis–
Hastings step,

2. Divide Xk into P sub-blocks, Xk = [Xk,Ω1 , . . . ,Xk,ΩP ]. Then
each sub-block can be updated either via a random scan or
a deterministic scan using a series of MH-within-Gibbs steps.

The script for the MCMC algorithm is given in Table 2.
Other methods such as the particle MCMC methods proposed

in [4] have potential but still have not been studied in the light of
the group and extended object tracking problems mainly because
these algorithms are used to solve off-line problems.

The next section presents methods for tracking small groups.

3. Methods for tracking small groups

Methods for small group tracking are part of surveillance and
monitoring systems and are often meant to provide both state esti-
mates and knowledge about their interactions and group behavior.
We firstly describe the Bayesian formulation of the problem with
a discussion on the group structure. Then, biologically inspired in-
teraction models capturing interdependencies among objects are
presented.

3.1. Bayesian problem formulation

The problem of tracking groups with a small number of com-
ponents consists in estimating an augmented state vector Xk con-
taining the states of all groups, at discrete time k, with their com-
ponents, given a parameter vector Gk characterizing the structure
of all groups. At time k when a measurement vector zk is received,
the measurement likelihood function p(zk|Xk) can be calculated,
and hence the state pdf for each group of objects.

Under the Markovian assumption for the state transition, the
Bayesian prediction and filtering steps can be written as follows:
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Fig. 4. Boids system and virtual leader local interaction rules. The blue and red arrows represent object velocities and restoring forces, respectively. The position of the virtual
leader is illustrated by a yellow circle in each group. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
p(Xk,Gk|Z0:k−1) = p(Gk|Xk,Z0:k−1)p(Xk|Z0:k−1)

=
∫

p(Gk|Xk,Gk−1)p(Xk|Xk−1,Gk−1)

× p(Xk−1,Gk−1|Z0:k−1)dXk−1 dGk−1, (5)

p(Xk,Gk|Z0:k) = p(zk|Xk,Gk)p(Xk,Gk|Z0:k−1)

p(zk|Z0:k−1)
, (6)

where zk and Z0:k denote the measurement at time k and the mea-
surement history up to time k, respectively.

The transition pdf p(Gk|Xk,Gk−1) of the group structure can
be calculated in two ways. In [109] a prior transition matrix be-
tween the discrete possible group structures while in [51] the
group structure model based on graphical network models is used.
In this second approach the nodes of the graph correspond to the
components of the group. The presence of an edge between two
nodes reflects a link between these two objects. Merging, split-
ting, spawning and birth of groups are all modeled within the
framework of evolving graphs and by taking into account geo-
metrical distances between groups and within group components.
Prediction is performed by an evolution model for the group/graph
structure [51].

Next, the transition pdf p(Xk|Xk−1,Gk−1) of the state of all
targets is calculated knowing the previous time target states and
group structure. With the assumption of independence between
group motions, the pdf p(Xk|Xk−1,Gk−1) can be decomposed as

p(Xk|Xk−1,Gk−1) =
∏

g∈Gk−1

p
(
Xg

k

∣∣Xg
k−1

)
, (7)

where p(Xg
k |Xg

k−1) is the transition density of the set of targets
from the g-th group.

The group structure can be represented in different ways. In
[108], Gk represents a set of group’s labels for each target. For ex-
ample, with five targets, Gk = [1 1 2 2 2] means that targets 1 and
2 are in group 1 and targets 3, 4 and 5 are in group 2.

The group structure can be represented also as a random graph
as shown in [51]. Consider N targets constituting the set of ver-
tices {v1, . . . ,vN }. Each vertex vi is associated with the target state
and with the target state’s corresponding variance. The set of edges
linking the set of vertices is denoted by E . The graph structure can
then be denoted by G = ({v1, . . . ,vN }, E). One edge, in E , between
two nodes vi and v j is denoted by (vi,v j). In order to characterize
the presence or absence of a link (edge) between two nodes, the
distance between these two considered nodes is calculated, e.g., by
the Mahalanobis distance criterion. In the previous example dis-
cussed, with the graphical representation, one group structure is:
Gk = ({v1,v2,v3,v4,v5}, {(v1,v2), (v3,v4), (v3,v5)}) and the groups
correspond to the connected components of the graph Gk . The Ma-
halanobis distance is computed from the estimated positions and
from the velocities of the separate objects. This estimated distance
is thresholded and a decision is made about the connections. In
this representation a group corresponds to a connected component
of the graph structure. Note that, two nodes are in the same con-
nected component if and only if a path between them exists. The
Matlab code for the algorithm presented in this section is available
on Matlab Central [98].

Algorithms for group birth, death, splitting and merging are
proposed in [51] by taking into account geometric distances and
velocity distances between the groups and between the separate
group components.

The next subsection presents interaction models and results in-
spired by biological systems.

3.2. Biologically inspired and social interaction models

Many of the group object tracking approaches are developed
by seeking similarities with emerging behaviors in complex bio-
logical systems, such as flocking, swarming, herding and schooling.
In such models [63,148,26], local interaction rules maintain coor-
dination among individuals. This in turn gives rise to a collective
behavior which may be qualitatively different from the superposi-
tion of the separate components. A common modeling conception,
known as Boids, embodies the following set of local interaction
rules [112]: separation, alignment and cohesion. For instance, a flock
of birds tends to move in a way to avoid crowding local flockmates
and keeps a certain distance between each other, which is an ex-
ample of separation. The group constituents tend to steer towards
the average heading of local flockmates and hence achieves align-
ment. Lastly, cohesion sustains a certain amount of coherence of the
flock motion as individuals tend to move towards the average po-
sition of local flockmates. The flocks of birds usually have a leader.
This has inspired the development of the so called leader–follower
models. The leader–follower model describes a behavior in which
each member of a group interacts with an aggregative, yet virtual
object. In [109], this concept has been conveniently formulated
in continuous time through a multivariate stochastic differential
equation and then derived in discrete time without approxima-
tion errors, owing to the assumed linear and Gaussian form of
the model. In particular, two different models are proposed. In the
first, the basic group model and the group parameter are repre-
sented as a deterministic function of the objects. The second is a
group model with a virtual leader. An additional state variable is
introduced to characterize the group or bulk parameter. This sec-
ond approach is closer in spirit to the bulk velocity model and
virtual leader–follower model [89]. Such model provides a more
flexible behavior since the virtual leader is no longer a determinis-
tic function of the individual object states. Fig. 4 gives a graphical
illustration of the restoring forces towards the virtual leader for a
flock of four birds.

Hierarchical learning models for activities with multiple inter-
acting objects are proposed in [95] and their potential is illustrated
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by experiments in sea navigation. A broad range of models for
pedestrians and crowds tracking are proposed in [2].

The spatio-temporal structure for the ith object in a group, as
defined in [109], is given by:

dẋt,i/dt = {−α[xt,i − vt] − γ1ẋt,i − β[ẋt,i − v̇t] + ri
}

+ dWt,i/dt, (8)

dv̇t/dt = −γ2 v̇t + dLt/dt. (9)

Here xt,i is the Cartesian position in the x direction of the ith
object of the group at continuous time t , with ẋt,i is the corre-
sponding velocity; vt and v̇t represent respectively the Cartesian
position and the velocity both in the X direction of the unob-
served virtual leader of the group; W x

t,i and Lx
t are two indepen-

dent Brownian motion processes, with Wt,i being assumed to be
independently generated for each object i in the group, whereas Lt

is a noise component common to all members of a group. The pa-
rameters α and β are positive, and reflect the strength of the pull
towards the group center. The terms γ1 ẋt,i and γ2 v̇t simply pre-
vent the velocities of the object and the virtual leader drifting up
to very large values with time. Finally, to avoid colocation or spa-
tial collision of group components, an additional repulsive force ri
is introduced in (8) when objects become too close. The positive
constants γ1 and γ2 give different weights of the two terms in (8)
and (9), respectively. The spatio-temporal model (8) and (9) can be
used to define the prior transition of the objects in (6).

The likelihood model for small groups is constructed in a way
to deal with the measurement origin uncertainty. Since the like-
lihood calculation methods are similar to those for large groups
and extended objects, efficient likelihood functions are presented
in Section 4.1.

Section 4 presents the key methodologies for large groups
tracking and how the state pdf can capture group configurations.
The Poisson likelihood model [48] is reviewed. The approach in
which the extent of the group is considered as a random matrix
is summarized next. The last part of Section 4 is devoted to the
random finite set approach.

4. Methodologies for tracking large groups and extended objects

4.1. Tracking via Poisson likelihoods

Groups and extended objects give rise to multiple measure-
ments. These can be useful for determining the shape, size, ori-
entation and other characteristics of the groups/extended targets.
However, multiple measurements require associating them, with
the objects on the scene, a problem known as data association. In
general, data association is an intractable combinatorial problem.
The presence of environmental interferences, including unwanted
returned echoes, called clutter (e.g. from ground, sea, rain) adds an
extra level of difficulty. This, in turn, implies that the amount of
observations per time step may be very large, and hence care must
be taken for regulating these potentially massive data sets. Addi-
tionally, in a typical scenario, measurements often originate from
closely spaced3 objects, and in such cases standard data associa-
tion techniques fail to disambiguate individual groups and group
constituents.

One of the most appealing solutions [48,49,120] allowing to
avoid the data association problem are based on the assumptions:
(i) the numbers of received target and clutter measurements in a
time step are Poisson distributed (so several measurements may

3 In general this should be perceived as any well-defined mathematical metric
rather than the mere physical meaning.
originate from the target), (ii) target extent is modeled by a spa-
tial probability distribution and each target-related measurement is
an independent ‘random draw’ from this spatial distribution (con-
volved with a sensor model).

At each time step a set of sensor measurements is recorded.
These measurements could come from either targets or clutter. The
basic idea is to figure out how to assigns each measurements to
the right target or identify it as a false alarm. The likelihood can
then be calculated as derived in [48,49,120]:

p(Zk|Xk) ∝
mk∏
i=1

(
ρ + λT p

(
zk(i)

∣∣Xk
))

, (10)

where ρ is the clutter density and λT is the mean value of the
number of measurements originated from the targets, mk is the
overall number of measurements received at time k and Xk is
the state of interest. The clutter distribution is typically assumed
to be uniform, although non-uniform clutter can be incorporated
(see [140]).

This Poisson likelihood model (10) was further extended in [22]
and below we describe this approach.

Assume that at time k there are lk groups, or extended objects
at unknown locations. Each group may produce more than one
observation yielding the measurement set Zk = {zk(i)}mk

i=1, where
typically mk � lk . At this point we assume that the observation
concentrations can be adequately represented by a parametric sta-
tistical model.

Letting Z0:k = {Z0, . . . ,Zk} be the measurement history up to
time k, the group tracking problem can be defined as follows. We
are concerned with estimating the posterior distribution of the
random set of unknown θk , i.e. p(θk|Z0:k), from which point esti-
mates for θk and posterior confidence intervals can be extracted. If
we restrict ourselves to groups in which the shape can be modeled
via a Gaussian pdf, then only the first two moments (the mean
and covariance) need to be specified for each group. Under these
assumptions, the group tracking problem is equivalent to that of
estimating an evolving Gaussian mixture model with a variable
number of components. Thus the unknown vector θk = {θ j

k}n
j=1 to

be estimated is in the form

θ
j
k = {

μ j
k, μ̇

j
k,Σ

j
k, w j

k, B j
k

}
, (11)

where μ j
k , μ̇ j

k , Σ
j
k and w j

k denote the jth group’s mean position
vector (in x and y coordinates) and velocity of the group center,
covariance and associated unnormalized mixture weight at time k,
respectively. The additional set B j

k consists of any other motion
parameters affecting the groups’ behavior.

The random set vector θk can be replaced by a fixed dimension
vector coupled to a set of indicator variables ek = {e j

k}n
j=1 show-

ing the activity status of elements (i.e., e j
k = 1, j ∈ [1,n] indicates

the existence of the jth element where n stands for the maxi-
mum number of elements). The indicator variables reflect different
group moves which generally account for birth, death, splitting and
merging, i.e.,

(Birth) ei
k−1 = 0 −→ ei

k = 1,

(Death) ei
k−1 = 1 −→ ei

k = 0,

(Split) ei
k−1 = 1, e j

k−1 = 0 −→ ei
k = 1, e j

k = 1,

(Merge) ei
k−1 = 1, e j

k−1 = 1 −→ ei
k = 1, e j

k = 0. (12)

Under the assumption that a single observation zk(i) is condi-
tionally independent on the extent vector parameters (θk,ek), the
likelihood can be represented in the form

p(Zk|θk,ek,mk) ∝
mk∏

p
(
zk(i)

∣∣θk,ek
)
, (13)
i=0
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Fig. 5. DBN representation of the jth group evolution in time (assuming no inter-
actions between groups). Showing the state transition and emission probabilities
(arrows), and the latent and observed variables (circles and rectangles, respectively).
Indicator transitions obey a Markov chain with probability γs of staying at state
s ∈ {0,1}.

where the pdf p(zk(i)|θk,ek) describes the statistical relation be-
tween a single observation and the cluster parameters. An explicit
expression of (13) is derived in [48] assuming a spatial Poisson
distribution for the expected number of observations.

Following [48], the number of observations within the jth
group can be assumed with Poisson distribution while the likeli-
hoods for each of the measurement zk(i) are modeled via Gaussian
pdfs N (zk(i)|μ j

k,Σ
j
k), the likelihood (13) acquires the following

form

p(Zk|θk,ek,mk) ∝
mk∏ n∑

e j
k w̃ j

kN
(
zk(i)

∣∣μ j
k,Σ

j
k

)
, (14)
i=0 j=0
where w̃ j
k = w j

k/(
∑n

l=0 el
k wl

k) is the jth normalized weight. The
formulation (14) explicitly accounts for the clutter noise (known
also as the bulk or null group [48]) for which the shape parameters
are w0

k ,μ0
k ,Σ0

k and e0
k = 1.

4.2. Group’s evolution modeled by a dynamic Bayesian network

The underlying models governing the time evolution of the un-
known (θk,ek) and observed variables Zk , respectively, can be rep-
resented using a dynamic Bayesian network (DBN). Thus, the state
transitions are specified by the pdf

p(θk,ek|θk−1,ek−1) (15)

while the observations are related to the unknown states via the
likelihood (14). The DBN corresponding to this process is depicted
in Fig. 5 where it is assumed that the DBN lacks the splitting
and merging moves. The indicator transitions e j

k−1 → e j
k → e j

k+1

and state transitions θ
j
k−1 → θ

j
k → θ

j
k+1 are shown in the top and

bottom rows of Fig. 5, respectively and these are linked to the
observation sequence Zk−1,Zk,Zk+1 shown in the middle of this
figure.

In [22], the filtering pdf p(θk|Z1:k) is approximated by a vari-
ant of the sequential MCMC scheme described in Section 2.2. The
respective Matlab code for [22] is available on Matlab Central por-
tal [99].

This algorithm presented in Section 2.2 and with a likelihood
(14) as described above is called a Gaussian mixture MCMC algo-
rithm. Its performance in tracking 4 groups using no more than
5000 particles is illustrated in Fig. 6. The top left panel shows
the data (measured x coordinates, as a function of time). Four tra-
jectories are merely distinguished on the background of the noise
Fig. 6. Tracking four clusters using a Gaussian mixture MCMC algorithm. The top left panel shows the data (measured x coordinates, as a function of time), containing clutter.
The panel in the middle shows the estimated group center x coordinates (in red) and actual group centers (depicted in black), over time. The upper right panel shows contour
map plots for the group trajectories, from the point of view of the sensor. The estimated y coordinates and measured y coordinates (in the presence of clutter) are shown in
the last two rows, on the right-hand side. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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(depicted with dots). The upper middle figure shows the estimated
x coordinates (of centers of the groups), obtained with the MCMC-
PF. The actual trajectories are depicted via red squares whereas
the corresponding estimates are shown as black crosses. The up-
per right panel provides contour map plots of the trajectories of
the four groups, from the point of view of the sensor. The last
two right rows of Fig. 6 present, respectively, the estimates of y
coordinates for the centers of the four groups and the respective
measurements containing a high level of clutter noise.

4.3. Illustrative example on contaminant cloud tracking

The presented Gaussian mixture sequential MCMC technique
has been also successfully applied to pollutant cloud tracking
in [122]. The tracking of contaminant clouds can also be seen as an
extended object tracking problem. The capability to monitor and
track contaminant clouds is indeed a problem of great importance.
Nowadays, the threat of pollution due to the release, either ac-
cidentally or deliberately, of Chemical, Biological, Radiological or
Nuclear (CBRN) agents is high. Indeed, many rogue nations and
terror groups seek to employ asymmetric warfare and some groups
will be attracted by the use of chemical weapons to achieve ma-
jor impact. As a consequence, rapid detection and early response
to a release of a CBRN agent could dramatically reduce the extent
of human exposure.

In [122], the authors propose an inference algorithm within a
Bayesian framework to track directly the contaminant concentra-
tion, instead of some contaminant boundary as in [69], thus pro-
viding more information about the actual situation. More precisely,
the concentration of pollutant is expressed in this work using the
following parametric function:

C (x, y, tk) =
Ntk∑
i=1

wtk,i

2π |Σ tk,i |1/2
e
− 1

2 ([ x
y ]−μtk ,i)

T Σ−1
tk ,i([ x

y ]−μtk ,i). (16)

This formulation of the concentration field of interest is moti-
vated by two widely used dispersion models: the Gaussian Puff
Model and the Gaussian Puff Particle Model. The parameters of
each Gaussian shape, involved in Eq. (16) evolve independently
over time as follows:

p(wtk,i|wtk−1,i) = φ
(

wtk,i
∣∣wtk−1,i,σ

2
w

)
, (17)

p(μtk,i|μtk−1,i) = N
(
μtk,i

∣∣μtk−1,i + vτ ,σ 2
μI2

)
, (18)

p(Σ tk,i |Σ tk−1,i) = W

(
Σ tk−1,i + 2Dτ

n
,n

)
, (19)

where φ(.|ν,σ 2) is the truncated normal distribution with mean
ν and variance σ 2 defined on [0,+∞) to ensure the positivity
of the weight variable. The mean vector transition probability is a
random walk with a linear drift depending on the wind velocity v
and the covariance matrix is assumed to be a Wishart random ma-
trix with a scaling matrix Dτ (D is the pollutant diffusion matrix)
and a number of degrees of freedom n. τ = tk − tk−1 corresponds
to the sampling interval between tk and tk−1. As in the previous
example of large group tracking, the problem consists in estimat-
ing sequentially the evolution of a sum of dynamic multivariate
Gaussian components. The only difference is in the likelihood func-
tion.

For chemical, biological or radiological source term estimation,
several sensors allow to measure the concentration in the atmo-
sphere like the LCAD (Lightweight Chemical Agent Detector) and the
MCAD (Mobile Chemical Agent Detector) but one of the most data
rich sensors currently available is the LIght Distance And Ranging
(LIDAR) sensor. The observations from sensors can be generally
written as a nonlinear function of the concentration field and
noises that take into account both the dispersion model uncer-
tainty and the measurement error:

Zk = f
(
C (x, y, tk), vtk

)
. (20)

In a Bayesian framework, the aim is thus to compute the poste-

rior distribution p({wk,i,μk,i,Σk,i}Ntk
i=1, Ntk |Z1:k) where z1:k is the

observation set from time 1 to tk in order to give estimate of
the parameters involved in the concentration field. The main chal-
lenging difficulty in this problem is the fact that we have to deal
with unknown and time-varying number of Gaussian shapes for
the concentration as well as nonlinearity and non-Gaussianity in
the model. In [122], the authors propose algorithm to identify and
track these multiple contaminant clouds based on a sequential
Monte Carlo Markov Chain (MCMC) mechanization which approxi-
mates the filtering distribution of interest.

To illustrate the results obtained by this sequential MCMC in
this context, the scenario studied in this section consists of one
cloud modeled by 3 Gaussian shapes then at time t = 150 s, an
other cloud modeled by one Gaussian puff appears in the obser-
vation scene. The synthetic data are generated using the stochastic
Gaussian puff model described by Eqs. (17)–(19).

In the sequential MCMC algorithm used to track the contami-
nant clouds, all Gaussian shapes are initialized as inactive in order
to allow the algorithm to identify all the Gaussian shapes neces-
sary to model the actual contaminant clouds. The maximum num-
ber of Gaussian shapes in the algorithm is set to Nmax = 5. For
each complete LIDAR scan, 4000 MCMC iterations are performed
with burn-in of 1000 iterations. All 4000 MCMC output are kept as
particle approximation to posterior distribution.

Fig. 7 illustrates true concentration of the cloud (on the left
column), the results from the Gaussian mixture sequential MCMC
technique (in the middle column) in time steps respectively 108,
307 and 557 and the measurements obtained with an LIDAR (in
the rightmost column).

From this figure it can be recognized that the filtering algorithm
is able to adequately identify and track the contaminant clouds in
a difficult scenario with heavy clutter.

4.4. The approach with random matrices

A common approach consists in decomposing the joint filtering
pdf of groups’ state and extent. Group extent has been modeled
by means of symmetric positive definite (SPD) random matrices in
[8,75,74,46,45,150]. Attributed to [74,75] it is called the random
matrix approach as it considers an augmented state containing the
kinematic states and the extent parameters, where the extent is
modeled as a random matrix.

In [22] the extent parameters are merely the covariance ma-
trices in a Gaussian mixture representation of the groups’ forma-
tion. In [8,75,74,46,45] the positive definiteness of the extent is
preserved between consecutive time steps by sampling from the
inverse Wishart distribution for which the mean is prescribed by
the preceding covariance matrix.

In particular, the propagated pdf of the jth group center, μ j
k ,

and extent (SPD matrix), Σ
j
k , is expressed as

p
(
μ j

k,Σ
j
k

∣∣Z0:k−1
) = p

(
μ j

k

∣∣Σ j
k,Z0:k−1

)
p
(
Σ

j
k

∣∣Z0:k−1
)

= N
(
μ j

k

∣∣μ̂ j
k,Pk ⊗ Σ

j
k

)
I W

(
Σ

j
k

∣∣νk, Σ̂
j
k

)
, (21)

where I W denotes the inverse Wishart density with parame-

ters νk and Σ̂
j
k . Here, μ̂ j

k , Σ̂
j
k and Pk ⊗ Σ

j
k are, respectively, the

propagated group’s mean and extent estimates, and an appropri-
ate measure of state uncertainty. Eq. (21) can be shown to be a
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Fig. 7. The true average concentration of the cloud is shown in log scale (left panel). The estimated average concentration is given in log scale (middle panel). Fluorescences
above the threshold in red obtained from a complete LIDAR scan are presented in the right panel. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
conjugate prior for the likelihood p(Zk|μ j
k,Σ

j
k) which thereby al-

lows deriving a rather elegant filtering recursion for both cluster
mean and extent [74,75]. Hence, (21) is known as Gaussian inverse
Wishart (GIW) distribution [74,75].

A combination of the random matrices approach [74,46,45]
for the group extent and the PHD filter is reported in [58,59,55,
60]. Considering also the Poisson clutter rate unknown, the likeli-
hood of the filter proposed in [59,55] is gamma Gaussian inverse
Wishart (GGIW) distributed. The gamma distribution is for the
clutter term,4 and similarly to [74,75], the Gaussian term is for
the kinematic state and the inverse Wishart for the extent. In [85]
Cardinality PHD filter for extended targets is proposed which re-
laxes the Poisson assumptions of the extended target PHD filter in
target and measurement numbers. A GGIW mixture filter is im-
plemented and its efficiency in estimating the target extent and
measurement rates together with the kinematic state of the target,
is demonstrated.

Apart from conjugate priors, other distributions have been
recently used in few Bayesian nonparametric tracking methods.
A promising trend is to avoid the often restrictive assumptions
of parametric models by designing nonparametric models on
infinite-dimensional spaces of functions (e.g. with Gaussian pro-
cesses [105]) and/or probability distributions (e.g. Dirichlet pro-
cesses [47]). In [78,79,134] irregular extended and group targets is
considered by the random matrices approach.

A different approach called Histogram Probabilistic Multi-
Hypothesis Tracker with Random Matrices (H-PMHT-RM) is sur-
veyed in [35,151]. A Wishart prior is applied to the inverse of the
appearance covariance matrix. The initially proposed H-PMHT ap-
proach deals with Gaussian shaped targets and fixed or known
extent.

In the next subsection, we present the Random Finite Set Statis-
tics approach which has been shown to be very powerful for the
considered problems.

4 Remind that in Bayesian inference, the conjugate prior for the rate parameter of
the Poisson distribution is the gamma distribution.
4.5. Group tracking using random finite sets

In the Bayesian estimation framework the states and mea-
surements are treated as realizations of random variables. In the
random sets statistics (RSS), known also as Finite Set Statistics
(FISST) [86] the targets states and the measurements are con-
sidered as random sets with unknown numbers. The number of
elements in a random finite set is called the set cardinality. The
FISST provides an elegant framework for statistical solutions to the
group tracking problems. The FISST affords to detect, identify, track
and classify groups of targets. It is a natural framework to deal
with interval, stochastic and data association uncertainties. The
FISST avoids the direct data association and hence the combina-
torial problems due to data association which is one of its major
advantages.

For group tracking a hierarchical layer of objects is envisaged,
with the lowest layer being the individual target. Such a random-
set filtering approach for tracking groups of targets was proposed
in [86]. In conventional tracking, the target state space is treated
as a hidden layer, where the observation space is visible. For group
tracking, the group targets are further treated as a doubly or twice-
hidden layer, and each group target is a random collection of some
of the targets in the first hidden layer.

In FISST the PHD has the same meaning as the intensity func-
tion of a Poisson point process. It is the first moment in point
process theory [89,87,146,142,113,116]. The PHD is also regarded
as the first-order statistical moment, or expectation, of the multi-
target posterior density. Similarly to the Kalman filter where the
mean and variance of the posterior state are recursively propa-
gated, the PHD filter propagates the PHD function by using similar
steps prediction and update, however by means of a different and
more complicated procedure. The integral over the PHD in a region
gives the expected number of targets in that region. Hence, the es-
timated states of the targets can be inferred from the peaks of the
PHD.

The number of objects belonging to groups varies in time and
the number of measurements at each time step does not neces-
sarily match the number of targets due to missed detections and
clutter. This is the rationale behind considering the states and the
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Fig. 8. Large groups, their extents and intensity functions. The top left and middle figures show the intensity functions of two and three groups, respectively. The figures on
the second row show groups represented by ellipses. The groups’ extent is characterized by the centers and axes of the ellipses. The last row illustrates the peaks of the
intensity functions. Typical splitting and merging moves are illustrated in the rightmost panels.
measurements as random finite sets. A random finite set [146] is
simply a random variable which values are unordered random sets.
The multi-target evolution and observation models are considered
under the following assumptions: (i) Each target evolves and gen-
erates observations independently of one another; (ii) The birth
random finite set and the surviving random finite sets are indepen-
dent of each other; (iii) The clutter random finite set is of Poisson
type and independent of target originated measurements; (iv) The
prior and predicted multi-target sets are with a Poisson distribu-
tion.

Instead of working with pdfs, the PHD filter updates recursively
the intensities for the prediction and measurement update, respec-
tively vk|k−1 and vk|k:

vk|k−1(X) =
∫

pS,k(ζ ) fk|k−1(X|ζ )vk−1(ζ )dζ + γk(X), (22)

where fk|k−1(X|ζ ) is the group transition density at time k, pS,k(ζ )

is the group survival probability and γk(X) is the intensity of spon-
taneous birth. The update equation is given by

vk|k(X) = [
1 − pD,k(X)

]
vk|k−1(X)︸ ︷︷ ︸

Non-detected targets

+
∑

zk∈Zk

pD,k(X)gk(zk|Xk)vk|k−1(X)

κk(zk) + ∫
pD,k(ξ)gk(zk|ξ)vk|k−1(ξ)dξ︸ ︷︷ ︸
Detected targets

, (23)

where gk(zk|Xk) is the group measurement likelihood, pD,k is the
probability of group detection, and κk(zk) is the intensity of clutter
measurements. The first part of (23) corresponds to non-detected
targets and the second term of (23) to the detected targets. Practi-
cal implementations of the PHD filter include two main implemen-
tations: the SMC solutions [142] and Gaussian mixtures [144,86,
57,30,29]. The SMC implementation of the PHD filter approximates
the set integrals by propagating a large set of weighted particles
over time. The sum of the weights of the particles represents the
expected number of targets since the integral over the PHD is the
expected number of targets. An improved SMC PHD approach is
proposed in [115] which adapts the target birth intensity at each
processing step using the received measurements.

The alternative GM PHD implementation approximates the PHD
with a mixture of Gaussian distributions and uses Kalman filters
or their nonlinear variants such as Unscented Kalman filters [70].

Various approaches are proposed to deal with the unknown
number of targets within each group, such as using the birth–
death model [109] and estimate the unknown number of targets
within each group or the Cardinality PHD (CPHD) filter which es-
timates the number of targets jointly with the kinematic states.
In [93] a step further is done where the cardinality number is
estimated with the states, together with the clutter noise param-
eters and probability of detection. This is a general formulation
affording to resolve state and parameter estimation problems si-
multaneously.

The relation between the underlying group shape and entity
concentrations is represented via intensity functions [89]. The in-
tensity function indicates how entities are situated in the state
space (i.e., the peaks correspond to the most dense regions in the
state space). This is illustrated in Fig. 8. The top left and middle
figures show the intensity functions of two and three groups, re-
spectively, depending on x and y coordinates of the group center.
The middle row figures show the groups, represented by ellipses.
The last row shows the intensity function in which each peak cor-
responds to a group. Group splitting and merging are illustrated in
the right panels. These are reflected in the changes of the number
of peaks of the intensity functions.

In [132,133,124,126] a different approach is proposed based
on the Poisson Point Processes (PPPs). However, the algorithm in
essence is similar to the PHD filter.

FISST [89,143] and cluster point processes [33,131] are natural
mathematical frameworks for analyzing group target motions and
extended targets. In general, a cluster process is described as a su-
perposition of point processes. The cluster centers can form parent
point processes and their associated component points can form
daughter point processes. This layering process can continue up-
wards, forming groups of groups. In principle such a formulation
is general enough to deal with multiple layers of interactions. The
multi-group multi-target multi-sensor density can then incorporate
group dynamics and group likelihoods. While this is general, it will
be a challenge to model the actual interactions between groups of
groups.

In [136] a first-moment approximation of group PHD filter is
derived for group object tracking, which is similar to the origi-
nal PHD filter for single targets. The target group is represented
as a spatial cluster process, with the daughter process as an in-
dependent cluster process with a fixed distribution. In this group
PHD filter, instead of using a typical Poisson observation process
for the targets in a group, a more standard observation model of
at most one measurement from a target is utilized. An analytical
solution to a single group PHD filter is presented in [137], under
linear Gaussian assumptions.



12 L. Mihaylova et al. / Digital Signal Processing 25 (2014) 1–16
Fig. 9. Comparison of three cluster tracking approaches. Actual (black) and estimated (red) cluster means are individually shown for each method, left to right: a Gaussian
mixture MCMC (employing a Poisson likelihood model), an extended object PHD filter, and independent SIR PFs. The upper and lower rows correspond to x and y components,
respectively. The cluttered observations in this example are shown in the rightmost panels. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
The RSS approach for extended objects [89,90] and group tar-
gets modeling remains attractive due to the mathematical rigor
offered by the framework. In [125] a box-PHD filter is developed
and its computational efficiency shown compared with the PHD fil-
ter. However, producing suitable first-moment approximations for
complex group target interactions and scenarios still continues to
be a challenge [89,55,59].

The parameters of the PHD filter such as probability of detec-
tion, survival probabilities and measurement noise parameters, can
be estimated jointly with the object states as it is recently shown
in [93,82]. The work [93] is an important step in dealing with pa-
rameter uncertainties which are commonly subject to tuning in
each application.

Another important class of the FISS framework is represented
by the multi-target multi-Bernoulli filters [88,89,116,92,145,147].
Unlike the PHD and CPHD filters which propagate moments and
cardinality distributions, the multi-Bernoulli filter propagates the
parameters of a multi-Bernoulli distribution that approximate the
posterior multi-target density [147]. An advantage of the multi-
Bernoulli filter over the SMC PHD filter is that it does not re-
quire the additional clustering step for multi-target state estima-
tion which the PHD filter has.

4.6. Comparative study

We provide a performance comparison of three cluster tracking
techniques. These refer to: (a) independent Sampling Importance
Resampling (SIR) PFs, (b) an extended object PHD filter [136], and
(c) a Gaussian mixture MCMC [22]. The first tracking approach is
suggested in [73] for reducing the complexity associated with the
joint filtering pdf of the multi-object state. It essentially involves
employing an SIR-PF filtering algorithm individually for each target
rather than a single joint tracker.

The second tracking method considered here amends the PHD
filter for extended objects. In virtue of its semi-analytical form, the
extended target PHD filter, and in particular its Gaussian mixture
implementation, requires significantly less computational resources
than any MCMC-based tracking scheme.

We have compared the performance of the above mentioned
methods in a heavily cluttered environment similar to that in [22].
Their performance is illustrated in a typical run in Fig. 9. This fig-
ure shows the actual (black crosses) and estimated (red squares)
cluster mean trajectories for the 3 different tracking methods. The
MCMC approach exhibits the best tracking accuracy, essentially
yielding the least number of false detections.

In order to avoid the sensitivity of the PHD filter to parameters
such as probability of detection, survival probabilities and mea-
surement noise parameters, these can be estimated jointly with
the object states as it is recently shown in [93]. The work [93] is
an important step in dealing with parameter uncertainties which
are commonly subject to tuning in each application.

In the original formulation of the CPHD filter appearing objects
are modeled by spontaneous birth only. Recently, in [84] condi-
tions are derived for the CPHD filter when the process model also
includes target spawning. Two types of birth models are consid-
ered: Bernoulli and Poisson distributions and it is demonstrated
that this filter is computationally efficient.

The next section summarizes concisely efficient SMC implemen-
tations, making them suitable for high-dimensional problems and
real time.

5. Efficient real-time implementations of SMC algorithms:
in distributed and parallel ways

SMC algorithms become computationally excessive when ap-
plied to large-scale systems. One can identify two major directions
for speeding up the algorithms: by hardware implementations [64,
106,65,80], or algorithmically, with improved distributed and par-
allelized methods [135,104], including by carrying out the resam-
pling step in a distributed fashion [19,102]. The [65] sequential
MCMC is implemented on high performance Graphics Processing
Unit (GPU) cards in an appropriate parallel fashion.

Various approaches for parallelized and distributed particle fil-
tering are proposed in the literature [96,128,31,68,128]. There are
two main types of algorithms: (1) algorithms in which entire par-
ticle populations are exchanged amongst multiple processing units
(PUs) and (2) others that communicate only statistical character-
istics of the populations of particles (e.g. exchange the first and
second order moments of the posterior state pdf). The methods
exchanging statistical moments are more computationally efficient
than the methods exchanging populations of particles and their
weights. Most of these implementations have also the tendency to
reduce the associated communication loads. Studies with a differ-
ent number of particles are presented in [104] and marginalized
particle filters in [130,129].

In [31] two methodologies for distributed particle filtering in
sensor networks are presented. The first algorithm relies on like-
lihood factorization and training of parametric models for approx-
imating likelihood factors. The second algorithm adds a training
step into a more standard particle filtering framework, allowing
adaptive encoding of the measurements. Distributed initialization
of the state probability distribution of multiple targets is consid-
ered in [20]. The decomposition of the state space into separate
subspaces can lead to efficient representations of the complex state
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pdf as shown in [40,104] which reduces the computational com-
plexity, with a different level of communications.

6. Future trends

We consider five potential future avenues which are based on
synthesizing results from different fields:

• A promising avenue is the combination of SMC methods with
compressed sensing [44,34] and sparse representations [25]
for online group and extended object tracking, with sensor
scheduling and model determination. Models for objects with
and without interactions can lead to different proposal distri-
butions in the SMC and MCMC methods. These can be com-
bined with the sparse data representation and bring novel
techniques.

• Interval particle filtering and extensions to high dimensions: The
recently emerged box particle filtering approach [1,52,53,97]
relies on the concept of a box particle, which occupies a small
and controllable rectangular region having a non-zero volume
in the state space. Key advantages of the box particle filter
(Box-PF) against the standard PF are in its reduced computa-
tional complexity and its suitability for solving high dimen-
sional problems such as those emerging in tracking of groups
of hundreds of targets. The Box-PF has a potential to solve
group and extended object tracking problems with reduced
computational complexity.

• Selective/attentive tracking and perception: Future tracking sys-
tems would have to cope with possibly a large number of
moving objects, each of which is prone to produce more than
a single measurement. The raw data from the scene would po-
tentially be acquired simultaneously from many sensors. This
amounts to massive data sets that would have to be processed
efficiently. One direction for alleviating this problem relies on
selective attention – a concept from neuropsychology and cog-
nitive sciences [13]. Selective attention has long been studied
in psychological research [32] and cognitive sciences [13]. This
refers to the ability of a human observer to selectively track
a specific visual information in puzzling scenarios. Selective
attention comes into being via the identification of myriad
traits, many of which are abstract and are extracted as part
of cognitive and perceptual processes. Such particularities ac-
count for behavioral characteristics, motion as well as other
visual and spatial features (e.g., color, shape deformations, tra-
jectories). The application of selective attention to tracking of
information (not necessarily visual) is referred to as selective
or attentive tracking [32].
SMC and MCMC methods have the potential of handling se-
vere nonlinearities and complex dynamic network structures,
which make them adequate for carrying out inference in selec-
tive tracking paradigms. In a recent study it has been shown
how an MCMC-based scheme is capable of identifying and
tracking dominant agents in highly complex scenarios involv-
ing many moving objects [23]. Causal networks can model
interrelations between moving agents and then be used for
identifying those agents which are prominent in shaping the
collective group behavior. This information can be further used
for selectively track only a small, however dominant, part of
the object population. SMC samplers [37] could also provide
better proposal distributions, especially between the interact-
ing objects of groups.

• Intentionality prediction: Having the perceptual capabilities de-
scribed above allows predicting the intentionality of either in-
dividual entities or the whole group.

• Joint decision making and tracking: Traditional inference schemes
decouple these two tasks, namely, decision making and track-
ing. A performance gain is expected by integrating decision
variables into tracking systems. Here one can consider inte-
grated Bayesian decision making on the identity of the objects
being tracked, including cost functions expressing the relative
importance of different error types.
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