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Abstract: Most neurodegenerative diseases (NDD) are a result of changes in the chemical composition
of neurons. For example, Alzheimer’s disease (AD) is the product of Aβ peptide deposition which
results in changes in the ion concentration. These changes in ion concentration affect the responses
of the neuron to stimuli and often result in inducing excessive excitation or inhibition. This paper
investigates the dynamics of a single neuron as ion changes occur. These changes are incorporated
using the Nernst equation. Within the central and peripheral nervous system, signals and hence
rhythms, are propagated through the coupling of the neurons. It was found that under certain
conditions the coupling strength between two neurons could mitigate changes in ion concentration.
By defining the state of perfect synchrony, it was shown that the effect of ion imbalance in coupled
neurons was reduced while in uncoupled neurons these changes had a more significant impact on
the neuronal behavior.
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1. Introduction

In the nervous system, neuronal cells (neurons) communicate with each other via electrical events.
These neurophysiological electrical events are called action potentials. Action potentials within a
neuron are generated because of both an external stimulus and chemical diffusion of ions [1]. This has
been extensively studied in different models [2–7]. The common feature in all these studies is the close
relationship between the ions within a neuron and the external stimulus. Neurons have three essential
components: the soma, the axon, and the dendrites (see Figure 1). The external stimulus, when applied
to a neuron, results in changes within the neuron which generate an action potential. This action
potential, which is transmitted from one neuron to another, is characterized by the magnitude of the
spikes and the interval between the spikes. These characters follow a principle in neurophysiology
called all-or-none. All-or-none is a principle whereby the strength by which an excitable cell response
to any stimulus is not dependent on the strength of that stimulus, given that the stimulus is of an
adequate strength [8].

Although the effects of chemical imbalances on neuronal signals have been studied [9,10],
these have not included the effects of chemical imbalances over a network of neurons. In coupled
neurons, it is important to understand the manner in which the neurons work synchronously and
the nature of the resultant spike train as an output. A chemical imbalance in one neuron changes the
dynamics of other neurons connected to it. As a result, there are two kinds of effects in a chain of
neurons, one is the loss of synchronicity and the other is a change in the inter-spike interval and the
magnitude of the spikes. A change in the chemical balance results in a change in the action potential.
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1. Introduction 

In the nervous system, neuronal cells (neurons) communicate with each other via electrical 

events. These neurophysiological electrical events are called action potentials. Action potentials 

within a neuron are generated because of both an external stimulus and chemical diffusion of ions 

[22]. This has been extensively studied in different models [1,2,6,11,16,19]. The common feature in all 

these studies is the close relationship between the ions within a neuron and the external stimulus. 

Neurons have three essential components: the soma, the axon, and the dendrites (see Figure 1). The 

external stimulus, when applied to a neuron, results in changes within the neuron which generate an 

action potential. This action potential, which is transmitted from one neuron to another, is 

characterized by the magnitude of the spikes and the interval between the spikes. These characters 

follow a principle in neurophysiology called all-or-none. All-or-none is a principle whereby the 

strength by which an excitable cell response to any stimulus is not dependent on the strength of that 

stimulus, given that the stimulus is of an adequate strength [21]. 

 

Figure 1. The structure of a neuron. Most neurons in the vertebrate nervous system have the
same structure.

Synchronization is the mechanism that maintains vital rhythms, like that of respiration.
The firing of many neurons, if they are synchronized, gives rise to measurable fluctuations of the
electroencephalographical (EEG) signal. Synchronization is also responsible for the generation of
pathological tremors and plays a significant role in several neurological diseases, like epilepsy [11].
Spectral analysis of EEG signal shows that neurons can oscillate synchronously in various frequency
bands, from less than 2 Hz to greater than 60 Hz [12]. Numerical experiments suggest that when
two sets of equations are coupled, their solutions seem to synchronize. Experimental findings of
synchronization in excitable tissue provide these results. However, mathematical models for these
systems are typically very complicated. For couplings between oscillators, two types of couplings can
be found in the real nervous system: a) the chemical synapse and b) the electrical synapse. Chemical
synapses contain nonlinear couplings, whereas electrical synapses have linear membrane potentials.

In recent years, several studies have been performed investigating the various effects of coupling
and synchronization in neuronal systems. These works included studies of the effects of the spike
plasticity on synchronization [13], synchronization in clustered networks [14], synchronization in
the different type of networks [15,16], and the dynamics of coupled neurons [17,18]. Studies have
been carried out investigating responses to different classes of stimuli, e.g., visual [19], odorous [20],
tactile [21] or synchronization of neurons, as reported by Stern et al. [22]. However, the majority of
these studies concentrated on either the theoretical or the practical concepts of synchrony and most of
them separated computational applications from the clinical point in their investigations.

In this paper, electrolyte imbalances were investigated from a coupling and synchronization
phenomenon point of view. The remainder of this manuscript is organized in the following way.
Section 2 describes voltage-gated ion channels. Section 3 describes membrane potential dynamics.
Simulation and results are presented in Section 4. Finally, the results of the experiments and simulation
are discussed in Section 5.

2. Voltage-Gated Ion Channels

The schematic neuron, shown in Figure 1, is an electrically excitable cell which is found in the
nervous system. Neurons have three essential functions: (a) to receive signals, (b) to integrate incoming
signals, and (c) to transfer signals to target cells, which can be other neurons, muscles, or glands.
In a neuron, signals are generated by a variety of membrane-spanning ion channels that allow ions,
mainly sodium (Na+), potassium (K+), and chloride (Cl−), to move in and out of the cell. These ion
channels control the flow of ions by opening and closing in response to voltage changes. The voltage
changes are a result of both external stimuli and internally generated signals [8]. The electrical signals
of relevance to the nervous system are the difference in electrical potential between the interior of a
neuron and the enclosing extracellular medium.

Under resting conditions the cell is said to be polarized. Ion pumps located in the cell membrane
maintain concentration gradients that support the membrane’s potential difference. Sodium is much
more concentrated outside a neuron than inside and the concentration of potassium is significantly
higher inside the neuron than in the extracellular medium. Therefore, ions flow into and out of a cell
due to concentration gradients as well as voltage. The process by which positively charged ions flow
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out of the cell and negatively charged ions flow into the cell through open channels creates a current.
This current makes the membrane potential more negative and this process is called hyperpolarization.
Current flowing into the cell changes the membrane potential to less negative or even positive values
and this process is called depolarization (see Figure 2).
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Figure 2. Recording a transmembrane potential during depolarization and repolarization of a nerve
fiber. The different phases of the action potential are presented as follows: Vm is transmembrane
voltage, PNa is membrane permeability to sodium, and PK is membrane permeability to potassium.
The relative membrane permeability relationships between potassium and sodium ions associated with
each of the phases are shown. For instance, PNa >> PK means that permeability for Na is greater than
permeability for K, where > means greater and >> means much greater.

By depolarizing a neuron and bringing the membrane potential above a threshold level, a positive
feedback process is initiated, and the firing neuron, as shown in Figure 2, generates a spike or action
potential. The generation of the action potential is very dependent on the recent history of cell firing.
So that, a few milliseconds after a spike, it may be impossible to initiate a next action potential; this is
the refractory period. Action potentials then regenerate actively along axon processes. Those can travel
rapidly over long distances without any attenuation. According to the given description, the role
of ions in neural communication is critical; any imbalances can have harmful effects on the nervous
system. Section 2.1 describes ionic imbalances in the nervous system. Biologists such as Alan Hodgkin
and Andrew Huxley [23] have mathematically modelled the electrical process of the nervous system
with a set of differential equations, as discussed in Section 3.

2.1. Ionic Imbalances

Ionic imbalances strongly affect neuronal activity and are implicated in cell death in both the
central and peripheral nervous systems and in other tissues like myocardium or skeletal muscles.
An excess of sodium ion concentration is known as hypernatremia and the converse is called
hyponatremia. Similarly, excessive potassium ion concentration is known as hyperkalemia, and the
opposite is defined as hypokalemia. An imbalance in sodium and potassium, especially hyponatremia
and hypokalemia, are a common challenge in clinical practice [24]. These are common electrolyte
disorders in the context of central nervous system (CNS) disease [25]. Ionic imbalances have
a broad range of neurological effects in disorders such as epileptiform seizures, muscle rigidity,
and tremor. Imbalances depress the central nervous system and produce lethargy that progresses to
coma. Permanent brain damage may result from severe imbalances.
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3. Membrane Potential Dynamics

A number of different types of neurons have been studied and modelled, for example,
squid axons [5], frog [4], dog [6], rabbit [2], cat [3], and the Purkinje cell [7]. The common feature
of these models is that they are based on the membrane potentials of the cells and the ion channel
dynamics. In general, these models take the form:

Cm
dV
dt

= I − f
(
θ, V

)
(1)

where Cm is the membrane capacitance, I is the current, V is the membrane potential in mV, and t is
time. The various forms of the mathematical models are based on the structure and form of f

(
θ, V

)
.

This term is a function of (a) the probabilities of the opening and closing of an ion channel, (b) the
conductivity of the ion channel, and (c) the potential difference between the membrane and the ion
channel (given by V). In general, f

(
θ, V

)
is an algebraic sum of the currents associated with the various

ion channels, and, thus, a specific ion, i, would take the form:

fi(θi, Vi) = gi
(
V −Vi

)
(2)

and f
(
θ, V

)
= ∑

i
fi = ∑

i
gi(V −Vi) (3)

where the variable gi is a function of the probabilities of the opening and closing of channels, and the
conductance of that particular channel. The membrane potential dynamics activate and deactivate
the channels (see Section 2). If the neuron dynamics are restricted to sodium and potassium channels,
these become:

dn
dt

= αn(V)(1− n)− βn(V)n (4)

dm
dt

= αm(V)(1−m)− βm(V)m (5)

dh
dt

= αh(V)(1− h)− βh(V)h (6)

where n, m, and h are representations of the fractions of the open and closed channels for the different
ions. Thus, the membrane potential based model takes the form:

dV
dt

= Iinj +
N

∑
i=1

giψi(yi)(V −Vi) (7)

where ψ are given by n, m, and h. This model describes the time behavior of the intracellular membrane
potential and the currents through the channels. It is possible to explain observed phenomena
accurately, and the change of voltages and currents on the nerve cell membrane can be analyzed
quantitatively [26]. For the channels under consideration, the parameters given in Equations (4)–(6)
are defined as follows:

αn(V) =
0.01(V + 55)

1− exp
[
−V+55

10

] (8)

βn(V) = 1.125 exp
[
−V + 65

80

]
(9)

αm(V) =
0.01(V + 40)

1− exp[−(V + 40)/10]
(10)

βm(V) = 4 exp[−(V + 65)/18] (11)

αh(V) = 0.07 exp[−(V + 65)/20] (12)
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βh(V) =
1

1 + exp[−(V + 35)/10]
(13)

Based on the relationships between permeability, and conductance within the neuron [5], Equation
(2) can be obtained for the current generated within a particular ion channel. So, the three states, for
sodium, potassium, and leakage are given by the following algebraic equations:

INa = gNam3h(V −VNa) (14)

IK = gKn4(V −VK) (15)

IL = gL(V −VL) (16)

In these equations, V is the trans-membrane potential. Iinj is the sum of external and synaptic
currents. INa is the current in the sodium channel and Ik in the potassium. IL is the leakage current.
The gating variables indicating activation and inactivation of the sodium ion current are 0 ≤ m ≤ 1
and 0 ≤ h ≤ 1, respectively. The gating variable showing activation of potassium ion current is 0 ≤ n
≤ 1. The membrane capacitance is Cm = 1.0 µF/cm2. VNa and VK are the equilibrium potentials for the
sodium and potassium ions. For channels that conduct a single type of ion, the equilibrium potential
can be easily determined. This equilibrium potential point has a direct relation with the each ion and
can give via the Nernst equation. This equation can be used to predict the membrane voltage of a cell
in which the plasma membrane is permeable to one ion only.

Vion =
RT
zF

ln
[C]out
[C]in

(17)

In Equation (17), V is the potential for both sodium and potassium measured in volts. R is the
universal gas constant, which is 8.314 J·K−1·mol−1. T is the temperature measured in degrees Kelvin,
K = 273.16 + ◦C. F is the Faraday constant, which is 96,485·mol−1 or J·V−1·mol−1. z is the valence of the
ion, i.e., sodium is z = 1 and potassium is z = −1. The parameters [C]in and [C]out are concentrations of
the ions inside and outside the cell, respectively. In equilibrium, the Nernst potentials of Equation (17)
of all the diffusing ionic species are the same and equal to the membrane potential.

3.1. Generalized Form of Neurons

In this section, a generalized form of a neuron is presented for the N channels and m gates.
The reason is to rewrite a mathematically pure form. First, consider Equations (1) and (4)–(7). In these
equations the part gi(V −Vi) is common for all channels and, when i = 0, we get a leakage current.
For ion currents the activation and deactivation gates can be rewritten as follows:

m3h = uNa(m, h) = γ3
m(v)γh(v) = ψNa(y) (18)

n4 = uK(n) = γ4
n(v) = ψK(y) (19)

These equations calculate the probability of the opening/closing channel for sodium and
potassium, respectively. Using this information, the generalized form of a neuron with N channels and
m ionic gates is in the form:

dV
dt

= I + g0(V −V0) +
N

∑
i=1

giψi(y)(V −Vi) (20)

where each part of giψi(y)(V −Vi) models a specific ion channel. The channel status is denoted by
variable y. In the original Hodgkin–Huxley model, with two channels and three gates, the variable
y = (y1,y2, y3) and the functions of ψ are ψ1 = y3

1y3 and ψ2 = y4
2. These functions are defined as

probabilities and are in the range [0–1]. For this model, y1 = n, y2 = m, and y3 = h.
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From Equation (4) we get:

dn
dt

= αn(v)(1− n)− βn(v)n = αn(v)− n(αn(v) + βn(v)) (21)

By dividing and multiplying the right side of Equation (21) with αn(v) + βn(v), we get:(
αn(v)

αn(v) + βn(v)
− n

)
(αn(v) + βn(v)) (22)

If yi = n, σi(v) =
αn(v)

αn(v)+βn(v)
and δi(v) = αn(v) + βn(v), Equation (21) is rewritten as follows:

dyi
dt

= (σi(v)− yi)δi(v) (23)

Finally, the generalized form of a neuron model with N channels and m gates can be rewritten as
follows [27]:

dV
dt = I + g0(V −V0) +

N
∑

i=1
giψi(yi)(V −Vi) = L(v, y, p), ψi : Km → K

dyj
dt = T(σj(v)− yj)δj(v) = Kj

(
v, yj, T

)
, δj, σj : K→ Kδj, σj(v) 6= 0

(24)

where the parameters p = (g0, . . . , gN , V0, . . . , VN , I) and the constant T > 0 are dependent on
temperature. The dynamic of each gate variable yj depends only on itself, the voltage, V, by smooth
function σi and the diagonal matrix δi(v) for all values of V. Each of the terms of gi ψi

(
yj
)
(V −Vi) in

Equation (24), with a constant gi, refer to an ionic channel. This adjusts the voltage, V, across the nerve
cell’s membrane and makes the dynamics of the ith channel. So, the generalized form of the neuron
model in Equation (24) represents N channels and m gates where N and m are not necessarily equal.
The model in Equation (24) is suitable for shaping a single neuron’s behavior. However, when two or
more neurons in a network work together they are coupled by synapse spaces, which are not referred
to in Equation (24). The missing link here is the coupling phenomenon, which is discussed in the
next section.

3.2. Coupled Type Equations

Coupling in the neurons is done via synapses. A live neuron is an oscillator that can be coupled
with the chain of neurons (see Figure 3). A synapse can be explained as a site where a neuron makes a
communicating connection with the next neuron. On one side of the synapse is a neuron that transmits
the signal via the axon terminal, which is called the presynaptic cell and on the other side is another
neuron, or a surface of an effector, that receives the signal and is called the postsynaptic cell. In nervous
systems, there are three general types of synaptic connections among neurons.
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Figure 3. The schemes of coupling in neural networks. (a) Full connectivity: a network of nine neurons
with all-to-all coupling. The input links are shown for two representative neurons. Self-couplings
are not indicated. (b) Random coupling with fixed connection probability. The input links are larger
than in a network with the population of nine. (c) Random coupling with a fixed number of inputs.
The number of connections from input links to two representative neurons does not change when the
size of the network is increased.

All kinds of synapses are shown in Figure 4. Electrical connections are also known as gap
junctions. Other forms of synapses are two types of chemical connections, excitatory and inhibitory.
This study constructed neuron pair models by electrical synapse. The electrical connections are usually
axon-to-axon, or dendrite-to-dendrite and are shaped by channel proteins that span the membranes
of both connected neurons. Electrical coupling is ubiquitous in the brain, in particular among the
dendritic trees of inhibitory interneurons. This kind of direct non-synaptic interaction allows for
electrical communication between neurons. All models with electrical coupling necessarily involve a
single neuron model that can represent the shape of an action potential.
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Figure 4. Neuronal circuitry with electrical and chemical synapses. (a) A model of electrically coupled
neurons and (b) a model of chemically connected neurons.

The experiments in this study show that when two equations of neuron models are coupled, their
solutions seem to synchronize. This paper investigates two of the same action potential equations,
coupled only with the electrical potential of each neuron.

Choosing a large enough coupling strength forces the neuron to have the same behavior regardless
of the initial condition. Mathematical models for such systems are frequently very complicated.
Consider a pair of equations for a neuron model with partial coupling and coupling constants, p1 and
p2 ≥ 0, using Equation (24) [28]:

(HHC)

{
dv
dt = −p1(v− u) + L(v, y, p) du

dt = −p2(u− v) + L(v, y, p)
dyj
dt = Kj

(
v, yj, T

) dzj
dt = Kj

(
v, yj, T

) (25)
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Later, we will show that for sufficiently large p1 and p2 the solutions of the above equation always
synchronize. Synchronicity is tackled in Section 3.3.

3.3. Synchronization in Coupled Neurons

In this section, the mathematical background for the synchronization of coupled neurons is
presented. Synchronization is a phenomenon that can be seen in two or more coupled neurons.
It is achieved by an adjustment of rhythms and their oscillations. Synchronization is one of the
important features of nonlinear systems. Nonlinear systems can show behaviors that are impossible
in linear systems [29]. Synchronization analysis is a principle to discover interactions between
nonlinear oscillators [29]. In the synchronization between two neurons, their action potentials
have relatively equal frequencies. This closeness relies on the strength of the coupling. Therefore,
spike synchronization is crucially dependent on the inter spike frequency. The general case of two
coupled neurons can be characterized as follows:

.
v1 = L(v1, v2, λ1)

.
v2 = L(v2, v1, λ2), v1, v2 ∈ Rn (26)

where λi = (g0, . . . , gN, V0, . . . , VN, I), which are dependent on parameter λ. Perfect synchronization
happens when v1(t) = v2(t) for all times t (Labouriau & Rodrigues, 2003). This coupled system is
symmetric if λ1 = λ2 and asymmetric if λ1 6= λ2. Perfect synchrony usually does not happen in
asymmetric systems. Consider Equation (25), in this equation, when p1 = p2, the coupled system is
symmetric [28]. The solution of Equation (26) is synchronized if v1(t) and v2(t) remain close to each
other in the next periods of action potentials. This means that, if there is a constant γ > 0 and a
continuous function like f (t) ≥ 0 defined for t ≥ t0 in which lim

t→∞
f (t) = 0 in a way that for all t ≥ t0,

the following are true [28]:
|∆v(t)| ≤ γ· f (t)·|∆λ| (27)

After a short interaction between the two neurons the synchronicity between them becomes
higher. Generally, for the symmetric case, there is an exponential decay to perfect synchronization [28].

3.4. The Region of Synchronicity

Coupled neurons often possess symmetries; these behaviors are important for understanding
dynamic effects in systems. The simplest symmetric system contains two coupled neurons. Figure 5
presents two coupled neurons.
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Figure 5. Couplings between neurons. Schematic representation of the signaling of electrical coupling
in neurons.

When the input current Iinj1 is applied it integrates into the axon hillock of the first neuron.
These synaptic inputs cause the membrane to depolarize; that is, they cause the membrane potential to
rise. If this polarization causes the membrane potential to rise to the threshold, an action potential
V1 can be raised. When an action potential is triggered, it abruptly generates a dendritic current that
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flows through the axon Ic in the output of the first neuron. By considering Equations (1)–(3) and
Equations (14)–(16), the output of the first neuron for original Hodgkin–Huxley model is:

.
V1 =

1
Cm

[
Iinj2 − INa − IK − IL + Ic

]
→ Cm

.
V1 = Iinj1 − INa − IK − IL + Ic (28)

Similarly, for the second neuron, the output is:

.
V2 =

1
Cm

[
Iinj2 − INa − IK − IL + Ic

]
→ Cm

.
V2 = Iinj2 − INa − IK − IL + Ic (29)

In entirely normal conditions, if neuron number two is stimulated only by neuron number one
and does not get any other stimuli from other neurons, the outputs of Equations (28) and (29) should
be equal.

Ic ≥
Iinj1

2
(30)

Equation (30) means to make synchronization between two neurons the minimum condition and
should be respected.

4. Simulation and Results

4.1. Ion Imbalances in Neural Networks

Two sets of experiments were carried out. The first set of experiments compared the behavior of
the output of action potentials in the hyper/hyponatremia and hyper/hypokalemia conditions for a
single neuron and the second set of experiments was done for coupled neurons. All the experiments
were carried out at simulation time of 1000.0 s. The injected current varied from 0 nA, between 0.0 to
50.0 s, and between 51.0 to 1000.0 s for 10 nA. The reason for considering two different injection currents
was to have the behavior of the system under both stimulation and non-stimulation. A key element of
this study was to investigate the effects of changing ion concentrations. These concentrations affected
both the currents and the voltages in the model. The effects of the concentration of the ions are given
by the Nernst equation [30], Equation (17), and rewritten as follow:

VNa+ =
RT
zF

ln
[Na+]o
[Na+]i

(31)

VK+ =
RT
zF

ln
[K+]o
[K+]i

(32)

where [K+]o is the extracellular concentration of potassium, [K+]i is the intracellular concentration
of potassium, [Na+]i is the intracellular concentration of sodium, and [Na+]o is the extracellular
concentration of sodium. Therefore, increasing/decreasing the V, has a direct relation with
increasing/decreasing [Na+]o and [K+]o. Hypernatremia (hyponatremia) and hyperkalemia
(hypokalemia) are high (low) serum sodium and potassium levels, respectively, so changing the
potential of the sodium and potassium means changing the [Na+]o and [K+]o. As in Equations (31)
and (32), [Na+]o and [K+]o have a direct relation to VNa+ and VK+ . For this reason, in the experiments,
by increasing or decreasing Vion, the specific ion imbalances were simulated.

Figure 6 shows the responses of the neuron for the nominal set of values. It can be seen that the
response is a series of spikes, which have two characteristics. One is the magnitude of the spike and
the other is the time between spikes, known as an inter-spike interval. This response was taken to be
the ideal response and all comparisons are made in relation to this response. The comparison was
carried out for four different electrolyte diseases, i.e., hypernatremia, hyponatremia, hyperkaliemia,
and hypokalemia and combinations thereof.
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Figure 6. The running of experiments for three single neurons without any changes. All three graphs
have been overlapped. VNa

+ = 50 mV, VK
+ = −71 mV.

4.1.1. Sodium Ion Concentration Changes in a Single Neuron

The first set of results show the responses of the neuron to different levels of sodium ion
concentrations in the neuron. The values were changed so that both hyper and hyponatremia were
present. These are shown in Figure 7. The sodium potential was changed in stages from 20 mV to 80 mV.
It can be seen that as the sodium ion concentration increased from its nominal value, the magnitudes
of the spikes increased, while the inter-spike interval was reduced. In other words, the neurons
responded with larger spikes at a more rapid rate. As the sodium concentration decreased, it can be
seen that the magnitude of the spikes was suppressed to a point where there was no response from
the neuron.J 2019, 2 FOR PEER REVIEW  10 

 

Figure 7. Sodium changes and the responses of a neuron in the course of hypernatremia and 

hyponatremia. The potassium value for all of these experiments remained normal, VK+ = −71. 

4.1.2. Changes in Potassium Concentration in a Single Neuron 

We obtained results for the potassium ion concentration in the same way. These are shown in 

Figure 8. In the experiments, the effect of the changes in the potassium ion concentrations was more 

pronounced. Both an increase and decrease in potassium ion concentration lead to no response from 

the neuron. Thus, when VK+ was −51 mV, the magnitude of the spikes was zero and there was no 

distinguishable inter-spike interval. A similar situation arose when VK+ was below −76 mV. It should 

also be noted that these values are not that far from the nominal value of potassium which is −71 mV. 
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4.1.2. Changes in Potassium Concentration in a Single Neuron

We obtained results for the potassium ion concentration in the same way. These are shown in
Figure 8. In the experiments, the effect of the changes in the potassium ion concentrations was more
pronounced. Both an increase and decrease in potassium ion concentration lead to no response from
the neuron. Thus, when VK

+ was −51 mV, the magnitude of the spikes was zero and there was no
distinguishable inter-spike interval. A similar situation arose when VK

+ was below −76 mV. It should
also be noted that these values are not that far from the nominal value of potassium which is −71 mV.
This outcome indicates that the neuron is more sensitive to potassium ion changes than to sodium ion
changes. The limits of these ranges can change if the parameters of the neuron are modified.J 2019, 2 FOR PEER REVIEW  11 

 

Figure 8. Potassium changes and the responses of neurons in the course of hyperkalemia and 

hypokalemia. The sodium value for all of these experiments remained normal, VNa+ = 50. 

4.1.3. Combination of Changes in a Single Neuron 

The next set of results relates to changes in the combination of sodium and potassium in a single 

neuron. Two different comparisons (a combination of both sodium and potassium changes) were 

carried out in order to investigate this particular situation. In the first part, the sodium potential was 

changed at various stages, from 61 mV to 41 mV, and the potassium potential was decreased from 

−61 mV to −81 mV, level by level. These results are shown in Figures 9 and 10, below. From the results, 

it is clear that both sodium and potassium changes occurring at the same time affected almost every 

element of the action potentials, i.e., the inter-spike interval and the magnitude of the spikes. Results 

from these two figures can be compared with the results in Figure 8, which show that when combined 

ion changes occur in the neuron, the response is similar to the response when there is an imbalance 

in the potassium ion. 

Figure 8. Potassium changes and the responses of neurons in the course of hyperkalemia and
hypokalemia. The sodium value for all of these experiments remained normal, VNa

+ = 50.

4.1.3. Combination of Changes in a Single Neuron

The next set of results relates to changes in the combination of sodium and potassium in a single
neuron. Two different comparisons (a combination of both sodium and potassium changes) were
carried out in order to investigate this particular situation. In the first part, the sodium potential was
changed at various stages, from 61 mV to 41 mV, and the potassium potential was decreased from
−61 mV to −81 mV, level by level. These results are shown in Figures 9 and 10, below. From the
results, it is clear that both sodium and potassium changes occurring at the same time affected almost
every element of the action potentials, i.e., the inter-spike interval and the magnitude of the spikes.
Results from these two figures can be compared with the results in Figure 8, which show that when
combined ion changes occur in the neuron, the response is similar to the response when there is an
imbalance in the potassium ion.



J 2019, 2 28

J 2019, 2 FOR PEER REVIEW  12 

 

Figure 9. Sodium and potassium changes and the responses of neurons in the course of 

hypernatremia-hyperkalemia and hyponatremia-hypokalemia. 

Figure 9. Sodium and potassium changes and the responses of neurons in the course of
hypernatremia-hyperkalemia and hyponatremia-hypokalemia.

J 2019, 2 FOR PEER REVIEW  13 

 

Figure 10. Sodium and potassium changes and the responses of neurons in the course of 

hyponatremia-hyperkalemia hypernatremia-hypokalemia. 

4.2. Ion Imbalances in Coupled Neurons 

Neural populations in the nervous system consist of millions of individual neurons linked 

together through direct synaptic space. The action potential sent through the synaptic connections 

instructs the connected neurons to change their behavior, which effectively alters the phase of the 

connected neurons and brings them closer or further away from firing their signals [21]. It should be 

emphasized here that to simulate large-scale networks of spiking neurons the simple models are 

useful. Different level of ions and the structure of how neurons are connected in a network have a 

large impact on a multitude of synchronized behaviors. This set of experiments describes the nature 

of how ion imbalances affect the electrical dynamics of the connected neurons using the modelling of 

two conductance-based neurons. The two neurons had the same properties but the first neuron was 

suffering different kinds of electrolyte imbalance in each round of the experiment. The second neuron 

was in a healthy condition. From the experiments, it can be said that the timing between the firing of 

coupled neurons with a high value of coupling conductance is fixed, while this varies between 

uncoupled neurons and very weakly coupled neurons. 

In the first experiment, the first neuron had sodium imbalances. In the second round, it had 

potassium imbalances. In the third round, it experienced both sodium and potassium imbalances, 

and, finally, the fourth round was the same as the third round but in reverse order for sodium and 

potassium imbalances (See Figures 11). Some of the critical characteristics of the action potential, like 

the average time intervals, the average peak intervals, and the average resting potential were 

investigated. For this reason, a train of action potentials for each round was run on the model in the 

1000 s. The results for the various values of potassium and sodium and their combinations are shown 

in Tables 1–4 and Figures 12–15. The tables consist of three sections. The first part represents the 

results for changes in the single neuron. The second section lists the results of the first neuron in the 

Figure 10. Sodium and potassium changes and the responses of neurons in the course of
hyponatremia-hyperkalemia hypernatremia-hypokalemia.



J 2019, 2 29

4.2. Ion Imbalances in Coupled Neurons

Neural populations in the nervous system consist of millions of individual neurons linked together
through direct synaptic space. The action potential sent through the synaptic connections instructs the
connected neurons to change their behavior, which effectively alters the phase of the connected neurons
and brings them closer or further away from firing their signals [8]. It should be emphasized here that
to simulate large-scale networks of spiking neurons the simple models are useful. Different level of
ions and the structure of how neurons are connected in a network have a large impact on a multitude
of synchronized behaviors. This set of experiments describes the nature of how ion imbalances affect
the electrical dynamics of the connected neurons using the modelling of two conductance-based
neurons. The two neurons had the same properties but the first neuron was suffering different kinds of
electrolyte imbalance in each round of the experiment. The second neuron was in a healthy condition.
From the experiments, it can be said that the timing between the firing of coupled neurons with a high
value of coupling conductance is fixed, while this varies between uncoupled neurons and very weakly
coupled neurons.

In the first experiment, the first neuron had sodium imbalances. In the second round, it had
potassium imbalances. In the third round, it experienced both sodium and potassium imbalances, and,
finally, the fourth round was the same as the third round but in reverse order for sodium and potassium
imbalances (See Figure 11). Some of the critical characteristics of the action potential, like the average
time intervals, the average peak intervals, and the average resting potential were investigated. For this
reason, a train of action potentials for each round was run on the model in the 1000 s. The results
for the various values of potassium and sodium and their combinations are shown in Tables 1–4 and
Figures 12–15. The tables consist of three sections. The first part represents the results for changes in
the single neuron. The second section lists the results of the first neuron in the coupling condition.
Finally, the third part of the table reveals the functions of the second neuron and the outputs of the
system in the coupling state.
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Figure 11. In some neurological diseases, the neuron’s entire neural network in the nervous system
does not work properly. The affected nerve cells have a problem transmitting signals from one area of
the brain to another or, even, can no longer do it. Here, this problem here is simulated on a very small
scale. The first neuron works as a faulty neuron and the second one works as a healthy neuron’s entire
neural network.

The results for the coupled model for both hyper and hyponatremia are presented in Table 1 and
Figure 12, below.
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Table 1. The average inter-spike intervals, spike amplitude and resting potential for sodium changes.

Ions Single Faulty Neuron Faulty Neuron in the Chain Output of the Coupled Neuron

VNa VK

Avg.
Inter-Spike

Intervals

Avg. Spike
Amplitude

Avg.
Resting

Potential

Avg.
Inter-Spike

Intervals

Avg. Spike
Amplitude

Avg.
Resting

Potential

Avg.
Inter-Spike

Intervals

Avg. Spike
Amplitude

Avg.
Resting

Potential

37 −71 14.8758 10.5017 −63.147 17.9775 19.8064 −60.4662 17.9775 21.6552 −60.4557
47 −71 13.9576 21.0912 −62.7366 16.9507 26.3103 −59.9166 16.9468 26.7907 −59.9224
50 −71 13.7303 24.9737 −62.5314 16.7455 28.1351 −55.0608 16.7455 28.1554 −55.0897
61 −71 13.316 34.3568 −61.8532 16.1699 34.5527 −59.3163 16.1699 32.7097 −59.3666
67 −71 13.1332 39.8285 −61.3425 15.9336 38.0282 −59.0507 15.9336 35.1541 −59.1272

Table 2. The average inter-spike intervals, spike amplitude and resting potential for potassium changes.

Ions Single Faulty Neuron Faulty Neuron in the Chain Output of the Coupled Neuron

VNa VK

Avg.
Inter-Spike

Intervals

Avg. Spike
Amplitude

Avg.
Resting

Potential

Avg.
Inter-Spike

Intervals

Avg. Spike
Amplitude

Avg.
Resting

Potential

Avg.
Inter-Spike

Intervals

Avg. Spike
Amplitude

Avg.
Resting

Potential

51 −60 10.7669 −2.0199 −50.6534 14.8411 21.2079 −52.9945 14.8411 20.8429 −53.3918
51 −66 12.7091 16.7945 −57.5069 15.7142 25.6603 −58.0945 15.7142 25.4610 −58.2092
50 −71 13.7303 24.9737 −62.5314 16.7455 28.1351 −55.0608 16.7455 28.1554 −55.0897
51 −75 14.3446 28.8061 −66.1146 17.8316 28.8506 −61.0727 17.8316 28.9676 −61.0148
51 −79 14.8463 31.0643 −69.3698 20.0183 31.2381 −61.9963 20.0183 31.4256 −61.9135

Table 3. The average inter-spike intervals, spike amplitude and resting potential for comparing hypernatremia with hyperkalemia and hyponatremia with hypokalemia.

Ions Single Faulty Neuron Faulty Neuron in the Chain Output of the Coupled Neuron

VNa VK

Avg.
Inter-Spike

Intervals

Avg. Spike
Amplitude

Avg.
Resting

Potential

Avg.
Inter-Spike

Intervals

Avg. Spike
Amplitude

Avg.
Resting

Potential

Avg.
Inter-Spike

Intervals

Avg. Spike
Amplitude

Avg.
Resting

Potential

59 −63 11.5193 15.0944 −53.3364 15.1529 28.2043 −53.3745 15.1529 26.7059 −53.7817
55 −67 12.7956 22.3954 −58.2245 15.7045 29.0433 −58.2096 15.7045 29.0433 −58.2096
50 −71 13.7303 24.9737 −62.5314 16.7455 28.1351 −55.0608 16.7455 28.1554 −55.0897
47 −75 14.655 24.6221 −66.2517 18.2881 26.6333 −61.1840 18.2881 27.1293 −61.1367
43 −79 17.1933 22.2911 −69.5016 - 32.8146 −62.5148 - 34.3358 −62.4243
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Table 4. The average inter-spike intervals, spike amplitude and resting potential for comparing hypernatremia with hypokalemia and hyponatremia with hyperkalemia.

Ions Single Faulty Neuron Faulty Neuron in the Chain Output of the Coupled Neuron

VNa VK

Avg.
Inter-Spike

Intervals

Avg. Spike
Amplitude

Avg.
Resting

Potential

Avg.
Inter-Spike

Intervals

Avg. Spike
Amplitude

Avg.
Resting

Potential

Avg.
Inter-Spike

Intervals

Avg. Spike
Amplitude

Avg.
Resting

Potential

59 −79 14.2584 39.5384 −69.0874 18.1669 34.9578 −61.8693 18.1669 33.5213 −61.8110

55 −75 14.109 32.8513 −65.9258 17.3166 32.2044 −60.6708 17.3166 31.4881 −60.6250

50 −71 13.7303 24.9737 −62.5314 16.7455 28.1351 −55.0608 16.7455 28.1554 −55.0897

47 −67 13.0706 15.0905 −58.852 16.0560 24.5569 −58.7456 16.0560 24.8891 −58.8273

43 −63 12.2359 2.2251 −54.8835 15.3754 19.6940 −57.1269 15.3791 20.3892 −57.2454
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The results for both hyper and hypokalemia are presented in Table 2 and Figure 13, below.
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Finally, the results for hyper and hyponatremia plus hyper and hypokalemia at the same time are
represented in Tables 3 and 4.
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Figure 15. Sodium and potassium changes and the responses of coupled neurons in the course of
hyponatremia-hyperkalemia and hypernatremia-hypokalemia.

The Effect of Coupling Conductance on Synchronization

How big should coupling conductance be? Previously, in Section 3.4, the minimum current
for synchronization was suggested. As is shown in Equation (30), the minimum current Ic for the

second neuron has to be at least
Iinj1

2 . As Ic = ∆V·gc, the value f gc is crucial for synchronization.
The experiments showed that, by increasing gc, the synchronicity in coupling became stronger.
Figure 16 shows the results. As the results show, increasing the coupling parameters or coupling
conductance further leads to a globally synchronous regime.
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Figure 16. Increasing the coupling conductance. The results were obtained from a coupled
Hodgkin–Huxley neural model in which the coupling conductance was progressively increased in the
steps. The current injection for this experiment was 20 mA.

As coupling conductance increased, synchronization was triggered. After further coupling,
conductance, increasing both action potentials, coincided, with some slight defects. As the results
show, by picking sufficiently large coupling conductance, cell synchronization occurred. The reason
behind increasing the synchronicity of coupled neurons was to increase the coupling conductance
of gc and relate it to the nature of gc. By considering the relation of gc with its resistance, which is
gc =

1
R , we concluded that increasing the coupling conductance causes a decrease in the resistance

between two neurons; and that by decreasing the resistance between two neurons, the neurons become
more synchronized.

5. Discussion

The computational models applied in this paper are simple circuits which integrate differential
equations representing abnormalities in the different levels of electrolyte potential for single and
coupled neurons. The model easily sits in a regime that reproduces the same action potential as
the firing patterns observed in biological neurons. The preliminary results showed that the fast and
slow action potentials were related to the properties of internal settings of the neuron. The range of
observations summarized in Figures 6–10 show the response and complexity of configurations for a
single neuron. However, coupled neurons show more complex behaviors (See Figures 12–16).

Responses to the combined effect of the concentrations of the sodium and potassium ions in the
neuron for single or coupled neurons are presented in Figure 9, Figure 10, Figure 14, and Figure 15.
This understanding can help, in the understanding of neurodegenerative diseases, e.g., tremors,
motor neuron diseases, Parkinson’s, and Alzheimer’s disease. The reason for this is that intracellular
and extracellular potassium and sodium concentrations play a vital role in the electrophysiological
function of the body and the neurons that control it. These two ions are essential in maintaining cellular
homeostasis and most metabolic processes are dependent on or affected by these electrolytes. There is
a significant relationship between sodium and potassium changes and the level of the action potential
and resting potential. As in the results of earlier experiments carried out on the model, it could be
seen that increasing the concentration of potassium raises resting potential toward threshold and,
in contrast, decreasing the concentration of potassium lowers resting potential away from threshold.
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In the same way, increasing the concentration of sodium raises the level of action potential more
positive. Inversely, decreasing the concentration of sodium reduces the level of action potential more
negative. Figures 17 and 18 summarize the behavior of neurons in the course of sodium and potassium
changes in the experiments.
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Figure 18. The effects of changes in the plasma Na+ concentration on the action potential. Increasing
the extracellular level of sodium causes the nerve action potential to have a higher peak and to occur
faster. Conversely, decreasing the extracellular concentration of Na+ will have the inverse effect.
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During the combination of sodium and potassium imbalances, the conditions led to the properties
of potassium concentration (see Figures 7 and 8 and Tables 3 and 4). This means that the important
features of an action potential, like the rate of rising of the action potential, its peak amplitude, and its
duration, are more dependent on the properties of potassium. By pointing out this biological fact,
a possible explanation for these observations could be related to the concentrations of sodium and
potassium. The normal concentration of sodium in the blood serum is 136–146 mMol/L and the
normal potassium level is 3.5–5 mMol/L [31]. Therefore, it can be interpreted that, as the amount of
sodium is much more than the amount of potassium (around 39 times), changing only a small amount
of potassium can have a significant impact on the volume of its total amount, while the reduction of
small volumes of sodium does not have a large impact on the total volume [32]. For this reason, it can
be seen that during the combination of sodium and potassium imbalances the impact of potassium on
neuronal functions was much stronger than sodium.

Another interesting characteristic was the impact of coupling conductance on the synchronicity
of coupled neurons. The results indicate that any changes in the coupling conductance can drive the
neurons to different degrees of synchronization. These results are displayed in Figure 16. In general,
the experiments with the coupling conductance contribute directly to our understanding of the origin
of synchronization in a network of neurons through regularization of the conductance.

Some characteristics of action potentials displayed considerable changes during the experiments
for coupled neurons in comparison to firing the single neuron. This model study has shown that
electrical coupling can either increase or decrease the frequency of action potentials. The results in
Figure 16 demonstrate that coupling conductance, gc, and properties of the postsynaptic signal of
membranes can greatly influence the frequency changes in the coupled neurons. The coupling between
two neurons is variable; it increases any time the two neurons are simultaneously active. From a
computational point of view, this can be interpreted through Equation (25), where two neurons are
simultaneously active, p1 = p2. The results demonstrated that coupling effected the average spike
amplitudes and the average resting potentials as well. Tables 1–4 show that, after applying coupling
parameters on the model, the average spike amplitudes and the average resting potential became
greater than the same condition in the single neuron. On the other hand, comparing the experiments of
the single neuron, presented in Figures 6–10, with coupled neurons, Tables 1–4, revealed that coupled
neurons could shape the frequency and waveform of the action potential. The experiments also
revealed coupling maxima between neurons when both neurons had the same settings (i.e., the same
level of sodium and potassium ions).
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