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Abstract17

In addition to clinical signs of infection (e.g. inflammation, purulence and pain), a microbial18

ĐŽƵŶƚ ŽĨ шϭϬϱ ĐŽůŽŶǇͲĨŽƌŵŝŶŐ ƵŶŝƚƐͬŐ ŚĂƐ ŚŝƐƚŽƌŝĐĂůůǇ ďĞĞŶ ƵƐĞĚ ƚŽ ĚĞĨŝŶĞ ǁŽƵŶĚ ŝŶĨĞĐƚŝŽŶ͘ 19

However, it is increasingly recognised that, rather than a high bioburden level alone being20

detrimental to wound healing, it is the virulence of the invading microorganism and the host's21

immune status that can affect clinical outcomes. Bacteria, such as Pseudomonas aeruginosa,22

Staphylococcus aureus and Staphylococcus epidermidis, have developed a range of virulence23

factors to help themovercome host defences and proliferatewithin the underlying soft tissue.24

More specifically, bacterial proteases are one such virulence factor that has been implicated25

in promoting the invasion and destruction of the host tissue. Because of the complexities of26

microorganisms, the proteases can negatively impact the wound environment, leading to27

delayed wound healing. The aim of the present paper is to describe various extracellular28

bacterial proteases; review the impact they have on the wound environment, the host29

immune response and biofilms; and discuss potential wound management strategies against30

them. The evidence discussed suggests that proteases may play a profound role in wound31

infections, contribute to the development of an inflammatory response and impede wound32

healing.33

34
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Introduction35

The wound-healing process consists of four highly integrated and overlapping phases:36

haemostasis, inflammation, proliferation and tissue remodelling [1]. Multiple factors can lead37

to impaired wound healing. Some are systemic factors, whereby the overall health or disease38

state of the individual affects his or her ability to heal [2]. Examples of systemic factors known39

to impact wound healing are patient age, ischaemia and pre-existing medical conditions such40

as diabetes [2]. Local factors that directly influence the characteristics of the wound itself may41

also contribute to delayed healing. Local factors include oxygenation, venous insufficiency42

and infection [2]. When skin is injured, it allows microorganisms to access the underlying43

tissues, leading to wound infection.Wound infection has various stages of increasing severity,44

from contamination to colonisation, local infection/critical colonisation and/or spreading45

invasive infection [2]. This is known as the continuum of infection [3].46

47

Many of the causative organisms of wound infections are opportunistic pathogens; these48

microorganisms may be part of the body's normal flora (e.g. Staphylococcus spp.,49

Streptococcus pyogenes) or be commonly found in the environment (e.g. Pseudomonas50

aeruginosa). These organisms can exploit an ecological advantage, such as an51

immunocompromised host or a breech in the skin, to cause disease. The ability of such52

bacteria to cause disease is influenced by a variety of factors, including the number of bacteria53

present (known as the �bioburden�), the site of infection and the �virulence factors� of the54

microorganism. Virulence factors are produced by microorganisms and contribute to their55

pathogenicity [4-6].56

57

Occasionally, the physical presence of bacteria may cause disease in the host; for example,58

high levels of bacteria may obstruct heart valves in endocarditis [7]. More commonly,59

however, virulence factors, such as enzymes or toxins produced by the microorganism, are60

the primary cause of detriment to the host [4, 6]. Examples of virulence factors contributing61

to disease can be found in conditions such as toxic shock syndrome [8] and Clostridium62

difficile-associated diarrhoea, where the symptoms of pseudomembranous colitis are caused63

by the effects of bacterial exotoxins [9, 10]. The same trend can be observed in sequelae such64

as wound infections [4].65

66

Historically, a swab or biopsy sample returning a microbial count of >105/g tissue has been67

associated with wound infection and delayed wound healing [11, 12]. For some bacteria, such68

as S. pyogenes ;ɴͲŚĂĞŵŽůǇƚŝĐ SƚƌĞƉƚŽĐŽĐĐŝ͖ GƌŽƵƉ A SƚƌĞƉƚŽĐŽĐĐŝͿ͕ ůĞǀĞůƐ ĨĂƌ ďĞůŽǁ фϭϬϱͬŐ 69

tissue have been reported as leading to infection [13, 14]. Conversely, some wounds70

containing less pathogenic organisms, such as enterococci or diphtheroids, have been71

reported to heal with bioburden levels above 105/g tissue [4, 15]. Whilst the quantity of72

pathogenic bacteria in a wound has been shown to influence healing, this quantitative73

threshold and healing rate is also affected by endogenous host factors, such as the status of74

the immune system, underlying aetiologies and comorbidities, compounded by the type of75
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microbial species present and their associated virulence factors [15, 16]. The complexity of76

ƚŚĞ ĞƐƚĂďůŝƐŚŵĞŶƚ ŽĨ ŝŶĨĞĐƚŝŽŶ ĐĂŶ ďĞ ĞǆƉƌĞƐƐĞĚ ĂƐ͗ IŶĨĞĐƚŝŽŶരсരŵŝĐƌŽďŝĂů ďŝŽďƵƌĚĞŶ ǆ 77

virulence/host resistance [17].78

79

Overview of bacterial virulence factors80

Virulence factors are molecules produced by microorganisms that contribute to the81

pathogenicity of the organism. There are many types of virulence factors, including adhesins,82

capsules, endotoxins, exotoxins, flagella, lipases, pilli and proteases. They can have a myriad83

of functional roles, including the capacity to facilitate microbial attachment, invasion or both84

as well as the promotion of the growth of a microbe in a host through avoidance of host85

detection, inhibition of phagocytosis and regulation of the capacity for intracellular survival86

[18]. Of these, proteases are discussed further in the following sections.87

88

Bacterial proteases89

Proteases are produced by a variety of microorganisms including both Gram-negative and90

Gram-positive bacteria, fungi and viruses [19-22]. Many pathogenic bacteria produce a range91

of proteases [23, 24], of which a number of the bacteria characterised as producing proteases92

are known wound pathogens and include Staphyloccocus spp., Streptococcus spp.,93

Enterococcus spp. and P. aeruginosa [19, 20]. Table 1 lists common organisms and the94

proteases they produce. It is important to note, however, that despite the importance of95

bacterial proteases in delayed healing, the majority of proteases in non-healing wounds are96

endogenous; that is, they are produced by the host themselves as a result of prolonged97

inflammation [25].98

99

Proteases can be broadly classified according to the location at which they cleave the target100

protein. Exoproteases cleave at or near the carboxi or amino terminals, whereas101

endopeptidases can cleave at up to five residues from these terminals [26]. This broad102

classification is not inclusive of all proteases as some, such as ADP-dependent proteases, do103

not fit this definition [27]. Proteases can be further categorised according to their catalytic104

activity and include aspartic proteases, cysteine proteases, glutamic proteases,105

metalloproteases, serine proteases and threonine proteases [28, 29].106

107

Bacterial proteases can act either extracellularly or intracellularly. Processes such as108

sporulation and protein maturation within the microbial cell involve/require intracellular109

proteases [25], whilst extracellular protease are active outside of the microbial cell where110

they interact with the host environment to aid in the survival and proliferation of the111

microbial cell. The physiological function of extracellular bacterial proteases is to provide112

peptidic nutrients for the bacteria by hydrolysing (degrading) proteins in their surrounding113

environment [20, 28]. However, a fortuitous by-product of protease production for the114

microorganism is the degradation of host proteins, growth factors and receptors, which can115

impede the immune response and contribute towards tissue degradation, enabling further116

microbial dissemination into the underlying soft tissue [19, 23, 30-33]. Arguably, microbial117

proteases are considered to be among the most important type of microbial virulence factor118

influencing wound healing [20, 34, 35].119
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Impact of wound environment on production of bacterial proteases120

As with other virulence factors, production and release of bacterial proteases may be121

mediated by regulatory factors, which govern the transcription of protease genes in response122

to the local environment of the bacteria [36]. Production may be influenced by a variety of123

factors, including nutrient availability, quorum sensing (a cell density-dependent signalling124

mechanism), growth phase, osmolarity, pH and temperature [37-43]. Such factors may be125

encountered during infection of the soft tissue [36].126

127

Research conducted in vitro on protease production by 95 clinical strains of Enterococcus128

faecalis, specifically looking at Gelatinase (GelE), indicated that production of this protease is129

influenced by carbon source availability, pH, presence of divalent cations and temperature,130

suggesting that such conditions could affect the virulence of E. faecalis clinically [43]. A131

notable observation from this study was the effect of pH on GelE production, whereby132

ƉƌŽƚĞĂƐĞ ĂĐƚŝǀŝƚǇ ƉĞĂŬĞĚ Ăƚ ĂƌŽƵŶĚ ƉHരϴ ďƵƚ ĚĞĐƌĞĂƐĞĚ ĂƐ ƚŚĞ ƉH ŽĨ ƚŚĞ ĐƵůƚƵƌĞ ŵĞĚŝƵŵ ǁĂƐ 133

lowered [43]. Additionally, it was also observed that the addition of iron, copper or zinc to the134

culture media either completely eliminated, or dramatically reduced, GelE activity [43].135

Interestingly, iron availability has also been shown to affect protease production in other136

bacteria, with P. aeruginosa protease IV expression found to be enhanced upon iron limitation137

[42].138

139

Impact of bacterial proteases on the wound environment140

The impact of bacterial proteases has been documented in a range of acute and chronic141

medical conditions, including impairment of lungs in the cystic fibrosis patient [44], eye142

infections [45-47], gastroenteritis [48] and wound infections [19, 21]. Themajority of bacterial143

proteases research has focussed on the Gram-negative bacterium P. aeruginosa, where a144

strong correlation between the severity of an infection and P. aeruginosa protease levels has145

been reported, with higher levels of the P. aeruginosa elastase linked to increased146

inflammation and tissue damage [49, 50],whilst protease-deficient P. aeruginosa strains have147

been found to be less virulent than their protease-producing counterparts in burn wound148

mouse models [51, 52].149

150

P. aeruginosa produces a number of proteases, with 155 of 5568 predicted genes of the151

commonly studied type strain PAO1 strain estimated to encode proteases [53, 54]. Elastase B152

(pseudolysin; LasB), a major metalloproteinase expressed by P. aeruginosa, has been153

demonstrated to degrade collagen and is thought to play a key role in cystic fibrosis lung154

infections [55]. This role is supported by several studies that have detected P. aeruginosa155

proteases in the lungs of cystic fibrosis patients [56-58]. Such collagen-degrading activity of156

P. aeruginosamay also occur in wound infections and may contribute to tissue damage [59].157

158

Impact of bacterial proteases on the host immune response159

If the protective barrier of the epidermis is breached due to a cut, abrasion or bite for160

example, it allows bacteria access to the underlying tissue where they may colonise, migrate161

and proliferate, leading to localised infection. During these initial phases, it is of benefit to the162

organisms to impede the immune response and so ensure the best possibility of its survival.163

Bacterial proteases play a significant role in the inhibition of the hosts' immune response164

through a range of mechanisms including induction of an inflammatory reaction, reduction in165
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phagocytosis, inactivation of the complement system, cytokine degradation, immunoglobulin166

degradation and inactivation of antimicrobial peptides (AMPs).167

168

Induction of inflammatory reaction169

Wound healing is a complex series of overlapping phases (inflammation, proliferation and170

tissue remodelling) that involves amyriad cells andmediators [60]. An inflammatory response171

is a typical and necessary part of normal wound healing and occurs as blood vessels dilate,172

which allows antibodies, white blood cells, enzymes and other beneficial elements into the173

affected area [61]. In some instances, bacterial proteases can also induce a host inflammatory174

response. For example, P. aeruginosa elastase A (LasA) protease enhances activity of several175

host elastolytic proteases, including human leukocyte elastase and human neutrophil elastase176

[62]. Whilst this may appear counterintuitive for the survival of the organism as it aids the177

removal of bacterial organisms from the site, if this inflammatory phase is prolonged, this can178

result in a prolonged elevation of the host's immune response, including host proteases,179

leading to wound chronicity [19, 63]. In these cases, the host's own immune components180

actively degrade the surrounding tissue without resolving the infection, facilitating the further181

dissemination of the infection into the surrounding and deeper-seated tissues.182

183

One of the most notorious examples of a host immune component providing a dual role in184

wound healing are the matrix metalloproteinases (MMPs), which function in the extracellular185

environment of cells and degrade both matrix and non-matrix proteins. They play central186

roles in morphogenesis, wound healing, tissue repair and remodelling in response to injury,187

with several studies indicating that bacterial proteases may up-regulate host MMP188

production [64, 65]. MMPs play an important role in wound healing, facilitating several189

important processes including angiogenesis; removal of damaged extracellular matrix (ECM);190

transition of epithelial cells, fibroblasts and vascular endothelial cells across the ECM;191

contraction of scar ECM; and scar remodelling [66-71]. However, some chronic wounds192

become �stalled� in the inflammatory phase of wound healing. In these instances, components193

pivotal in wound healing, such as growth factors, are degraded, and host proteases are194

abnormally elevated [72]. A direct consequence of abnormally elevatedMMP activity includes195

a reduction in wound closure rates [73-75].196

197

A further example of bacterial proteases contributing to induction of an inflammatory198

reaction in the host is through the proteases of S. pyogenes and Staphylococcus aureus.199

Proteases produced by these bacteria have been found to activate the kinin system and200

degrade kininogens, which subsequently induce an inflammatory reaction of oedema,201

redness and pain [34]. In addition, release of bacteria into the circulation may be promoted202

by kinin-enhanced vascular leakage, which will potentially allow for the spread of infection203

and may further perpetuate the pathophysiology of infectious diseases [34].204

Reduction in phagocytosis205

206

Similar to other immunological factors, phagocytosis can also be hindered by bacterial207

proteases [76]. The P. aeruginosa proteases alkaline protease (aeruginolysin; AprA) and LasB208

have been found to reduce leucocyte activity [77], inhibit the function of neutrophils and209

interfere with their chemotaxis [78]. The S. aureus cysteine protease staphopain B (SspB) can210

inhibit neutrophil phagocytosis and can also reduce neutrophil chemotactic activity [79, 80].211

The intracellular survival of S. pyogenes in macrophages has been shown to be enhanced by212
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the streptopain (SpeB) cysteine protease in vivo [81], while Chiang-Hi and colleagues reported213

that SpeB can also prevent immune clearance of S. pyogenes by causing mitochondrial214

damage in polymorphonuclear neutrophils (PMN) [82].215

Inactivation of the complement system216

217

Complement involves a group of proteins that provide enzymatic activity and produce218

effector molecules, facilitating a range of immunological functions such as cell lysis (C5b-9),219

inflammation (C3a, C5a) and phagocytosis (C3b) [83]. Proteins C3 and C5 are involved in the220

initiation of an immune response and, as such, present as targets for bacterial proteases [84].221

P. aeruginosa protease IV (lysyl endopeptidase; iron-regulated protein PrpL) can degrade a222

range of biologically important host proteins, such as the complement components C3 and223

C1q [85], whereas the S. pyogenes protease SpeB can prevent formation of C5 by degrading224

C3 [86, 87]. Consequently, as coating of bacteria with C3 is prevented, opsonisation and225

neutrophil phagocytosis is hindered or even prevented [84]. A further role of SpeB with226

respect to disarming the complement system is to cleave properdin. Properdin stabilises the227

formation of the C5 [88]. As such, cleavage of properdin can make the bacteria less228

susceptible to opsonophagocytosis by neutrophils [84]. Other bacterial species, such as the229

Gram-positive enteric bacterium E. faecalis, are also capable of inactivating complement. The230

protease gelatinase (coccolysin; GelE) of this microorganism is able to inactivate the host231

complement system by degrading C3 [89].232

Cytokine degradation233

234

CǇƚŽŬŝŶĞƐ ĂƌĞ ƐŵĂůů ƉƌŽƚĞŝŶƐ ;ϴʹϭϱരŬDĂͿ ƚŚĂƚ ŝŶĐůƵĚĞ ĐŚĞŵŽŬŝŶĞƐ͕ ĐŽůŽŶǇͲƐƚŝŵƵůĂƚŝŶŐ ĨĂĐƚŽƌƐ 235

(CSF), interferons (IFN), interleukins (IL) and tumour necrosis factors (TNF) and are released236

in response to tissue damage. The many functions performed by cytokines include activation237

of phagocytic cells, antiviral and anti-parasitic activity, chemotaxis of neutrophils and T-cells,238

growth of macrophage colonies and proliferation of B- and T-cells. As such, cytokines239

represent an ideal target for bacteria in overcoming the host immune system, and a range of240

bacterial proteases have been found to be able to degrade cytokines and their receptors [84].241

P. aeruginosa proteases hinder a range of cytokine activities and are also able to induce242

degradation of cytokines [59]. Examples include AprA degradation and inactivation of human243

ŝŶƚĞƌĨĞƌŽŶ ɶ ;INFͲɶͿ ΀ϵϬ΁͕ ĂŶĚ ŝŶĂĐƚŝǀĂƚŝŽŶ ŽĨ ŚƵŵĂŶ ƚƵŵŽƵƌ ŶĞĐƌŽƐŝƐ ĨĂĐƚŽƌͲɲ ;TNFͲ ɲͿ ďǇ LĂƐB 244

΀ϵϬ͕ ϵϭ΁͘ BŽƚŚ INFͲɶ ĂŶĚ TNFͲɲ ƉůĂǇ ĂŶ ŝŵƉŽƌƚĂŶƚ ƌŽůĞ ŝŶ ƚŚĞ ŚŽƐƚ ŝŵŵƵŶĞ ƌĞƐƉŽŶƐĞ͕ ǁŝƚŚ Ă 245

ůĂĐŬ ŽĨ INFͲɶ ƌĞƐƵůƚŝŶŐ ŝŶ ĂƵƚŽͲŝŶĨůĂŵŵĂƚŽƌǇ ĚŝƐĞĂƐĞƐ ΀ϵϮ͕ ϵϯ΁ ĂŶĚ TNFͲɲ ŝŶǀŽůǀĞĚ ŝŶ ƐǇƐƚĞŵŝĐ 246

inflammation and apoptosis [77]. The P. aeruginosa large extracellular protease (LepA) also247

increases IL-8 production and secretion [50, 94], which may have a detrimental effect on the248

host by elevating and prolonging an inflammatory response [95]. Another putative serine249

protease of P. aeruginosa (PA0328, also designated AaaA) has been shown to provide the250

bacterium with a selective advantage at establishing infection and long-term survival in a251

ĐŚƌŽŶŝĐ ŵŽƵƐĞ ǁŽƵŶĚ ŵŽĚĞů͘ TŚĞ ĂƵƚŚŽƌƐ ĂůƐŽ ŶŽƚĞĚ ƚŚĂƚ ŚŝŐŚĞƌ ůĞǀĞůƐ ŽĨ TNFͲɲ ĂŶĚ ILͲϭɲ 252

expression was detected in response to the wild-type P. aeruginosa strain compared with an253

AaaA deletion mutant [96]. Bacterial proteases from other organisms such as L. monocytes,254

Serratia marcescens and S. aureus have also been shown to elevate interleukin levels [22].255

256

Proteases of the Gram-positive skin pathogen S. pyogenes can also affect cytokine activity.257

The S. pyogenes protease SpeB can cleave the IL-1 precursor to produce biologically active IL-258

1, a principle mediator of inflammation [97]. An additional protease of S. pyogenes,259
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Streptococcal chemokine protease (ScpC), has been found to degrade IL-8 [34]. Given that IL-260

8 mediates neutrophil migration and activation, expression of ScpC can be detrimental to the261

host immune response. Proteases produced by other bacteria � for example, the Gram-262

positive skin pathogen S. aureus � can also interfere with IL-8 function. The serine proteases263

of this bacterium can modulate IL-8 synthesis [98].264

Degradation of immunoglobulins265

266

A further function of bacterial proteases in overcoming the host immune system is in the267

degradation of host immunoglobulin [59]. This can be particularly detrimental to the host268

given the role of immunoglobulins in recognising and contributing to the neutralisation of269

invading microorganisms. Various groups have reported the impact of P. aeruginosa270

proteases on the degradation of immunoglobulins and include the degradation of271

immunoglobulin A (IgA) and immunoglobulin G (IgG) by P. aeruginosa protease LasB and272

protease IV [47], respectively [99]. The Proteus mirabilismetalloprotease ZapA has also been273

implicated in degrading IgA [100, 101].274

275

Inactivation of antimicrobial peptides276

AMPs are antimicrobial agents produced by eukaryotic organisms to prevent microbial277

invasion. In humans, specific roles of antimicrobial peptides include killing invading bacteria278

primarily by disrupting the membrane integrity of the bacterial cell wall [84]. In general, AMPs279

are relatively resistant to proteolytic degradation, although there are some bacteria that are280

capable of producing proteases effective at cleaving and inactivating AMPs [84].281

282

The strict anaerobe and opportunistic bacterium Finegoldia magna associated with skin283

infections produces a subtilisin-like serine protease SufA, which targets the human284

cathelicidin AMP LL-37 [102]. AMP LL-37 is also targeted by other bacterial proteases285

including SpeB of S. pyogenes, elastases of P. aeruginosa, GelE of E. faecalis and ZapA of P.286

mirabilis [102]. Proteolytic degradation of AMP LL-37 prevents binding of this antimicrobial287

peptide to the invading bacteria and, as such, destroys the bactericidal activity of the peptide288

[84]. Interestingly, recent data indicate that inactivation of LL-37 by the S. pyogenes protease289

SpeB can be found in patients with severe S. pyogenes soft tissue infections [103].290

Bacterial proteases contributing to invasion291

292

Once the innate barrier of the skin has been compromised and bacteria have gained entry to293

the underlying soft tissue, bacterial proteases can help the microorganism spread from the294

initial site of infection and invade the surrounding tissue [19, 20, 77, 104]. The presence of295

bacterial proteases and additional disruption of the epithelial barrier by these enzymes296

further compromises the protective barrier of the skin, which may allow other microbial297

species access to the location [34]. Specific examples of potential wound pathogens using298

proteases to contribute to invasion are discussed below.299

300

Pseudomonas aeruginosa301

P. aeruginosa proteases, including AprA, LasA, LasB and protease IV, can cause tissue damage302

during P. aeruginosa infections [59]. These proteases cause the proteolytic inactivation of the303

pathogen's adhesive molecules, which aids in the dissemination of bacteria from the initial304

site of infection [34]. Components of connective tissue, including collagen and elastin, have305

been demonstrated as being degraded by P. aeruginosa proteases in vitro [105, 106]. This306



9

may have a detrimental effect on wound healing because collagen controls cellular functions307

(e.g. cell differentiation and cell migration) that are important during the phases of wound308

healing [107]. P. aeruginosa elastase B and alkaline proteases have also been found to309

ĚĞŐƌĂĚĞ ůĂŵŝŶŝŶ ɲϯ LGϰͲϱ͕ Ă ĐŽŵƉŽŶĞŶƚ ŽĨ ƚŚĞ ďĂƐĞŵĞŶƚ ŵĞŵďƌĂŶĞ ŝŶ ŚƵŵĂŶ ƐŬŝŶ ΀ϭϬϴ΁͘ 310

Additionally, P. aeruginosa proteases may have a role in invasion and haemorrhagic tissue311

necrosis in infections [77], whilst protease IV can degrade fibrinogen [109].312

313

LasA and LasB are among the most researched P. aeruginosa proteases and are thought to314

play a role in the pathogenesis of some P. aeruginosa strains [77, 110-113]. P. aeruginosa315

elastases have been found in clinical wound fluid samples [59] and are capable of degrading316

proteins on the surface of fibroblasts and inhibiting fibroblast growth [34]. Moreover, the P.317

aeruginosa protease LasA is involved in host ectodomain shedding whereby cell surface318

proteins are cleaved [114, 115], leading to epithelial disruption, tissue penetration and319

endothelial damage [116, 117]. P. aeruginosa strains producing LasB have also been found to320

inhibit fibroblast growth and degrade proteins from human wound fluid and skin biopsies [21,321

59]. These observations suggest that P. aeruginosa proteases may be detrimental to wound322

healing [59].323

324

Quorum sensing has been shown to contribute to the virulence of P. aeruginosa. For example,325

quorum sensing can regulate the expression of various virulence factors in P. aeruginosa,326

including pyocyanin, rhamnolipids and proteases such as the elastases LasA and LasB [77,327

118]. The role of quorum sensing in infection has been demonstrated using quorum sensing-328

deficient P. aeruginosa strains in a range of in vivo models designed to mimic various329

conditions, including acute and chronic lung infections, burn wound infection and microbial330

keratitis. In these studies, the inability of quorum sensing-deficient strains to induce infection331

was thought to be due to decreased production of proteases and rhamnolipid [119-122].332

These observations would appear to suggest that protease production in wound infections333

with P. aeruginosa increases as the density of the P. aeruginosa reaches a critical threshold.334

335

Staphylococcus aureus336

S. aureus proteases, such as Ssp (V8, a serine protease), can mediate a phenotypic change in337

the bacterium from adhesive to invasive by degrading its surface-associated adhesins [34].338

The proteolysis of fibronectin-binding proteins by V8 decreases the adhesive phenotype of S.339

aureus, allowing for the diffusion of the pathogen. Such proteases (e.g. staphopain A) can also340

degrade host tissue, including collagen and elastin [34]. For example, the Staphopain A (ScpA)341

protease of S. aureus has comparable elastinolytic activity to host neutrophil elastase. This342

may contribute to the degradation of connective tissue in staphylococcal infections [123].343

Additionally, similar to P. aeruginosa proteases, metalloprotease aureolysin and the serine344

proteinase V8 of S. aureus ĐĂŶ ĂůƐŽ ĐůĞĂǀĞ ůĂŵŝŶŝŶ ɲϯ LGϰͲϱ ΀ϭϬϴ΁͘ 345

346

Staphylococcus epidermidis347

Staphylococcus epidermidis, a Gram-positive bacterium associated with the normal flora of348

healthy skin, may be pathogenic in immunocompromised patients and has been found to be349

responsible for surgical wound infections. Research indicates that the S. epidermidis cysteine350

protease (Ecp) has a similar sequence to ScpA and SspB proteases of S. aureus [124].351

Moreover, Ecp mode of action is similar to ScpA and SspB in that it has elastinolytic activity.352
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Consequently, this may contribute to the invasiveness and pathogenicity of S. epidermidis in353

wounds [124].354

355

Streptococcus pyogenes356

Proteases play a pivotal role in the invasiveness of S. pyogenes, as indicated by S. pyogenes357

protease deletionmutants that were found to be two- to threefold less invasive than the wild-358

type strains when assessed in vitro on epithelial cells [125]. Additionally, numerous authors359

report that SpeB (streptopain) may affect the severity andmigration of S. pyogenes infections360

[126-131]. SpeB has also been shown to be produced in vivo during infection in mouse and361

primate models [132-134] and can degrade fibronectin (1993) [135]. Other S. pyogenes362

proteases include Streptolysin S, which is involved in skin penetration [34], and IdeS363

(immunoglobulin G-degrading enzyme), which inhibits opsonophagocytosis [136].364

365

Finegoldia magna366

Finegoldia magna is a Gram-positive anaerobic bacterium associated with the normal367

microbiota of the skin. In immunocompromised hosts or when the normal microflora of the368

skin is disrupted, however, F. magna may act as an opportunistic pathogen [137]. In such369

circumstances, F. magna has been commonly isolated from chronic wounds including diabetic370

and pressure ulcers [138-143].371

372

Contributing to tissue invasion by F. magna is the serine protease SufA [102, 137, 144]. Using373

F. magna SufA deletion mutants and electron microscopy, Murphy and colleagues eloquently374

demonstrated that SufA can degrade collagen IV and collagen V, potentially enabling this375

opportunistic pathogen to establish a deep-seated infection [137].376

377

A further example of the influence of environmental conditions on the production of378

proteases can be found with S. pyogenes [36, 145]. Using a mouse soft tissue model,379

Loughman and Caparon identified a number of environmental factors, including growth380

phase, pH and NaCl concentration, which altered the activity of the SpeB protease [36].381

Consistent with other publications, the authors also found that SpeB protease activity was382

associated with low pH [109, 146, 147]. The authors noted that as S. pyogenes entered383

ƐƚĂƚŝŽŶĂƌǇ ƉŚĂƐĞ͕ ƚŚĞ ĐƵůƚƵƌĞ ŵĞĚŝƵŵ ĨĞůů ĨƌŽŵ ĂŶ ŝŶŝƚŝĂů ƉHരϳͼϱ ƚŽ ƉHരϲ͕ ǁŝƚŚ SƉĞB ĂĐƚŝǀŝƚǇ 384

peaking in stationary phase. When a culture medium was buffered to maintain a constant pH385

ŽĨ ĂƌŽƵŶĚ ƉHരϲ͕ SƉĞB ĂĐƚŝǀŝƚǇ ǁĂƐ ŝŶĚĞƉĞŶĚĞŶƚ ŽĨ ŐƌŽǁƚŚ ƉŚĂƐĞ͕ ŵĞĂŶŝŶŐ ƚŚĂƚ ƉƌŽƚĞĂƐĞ 386

activity could be induced in exponential phase. NaCl concentration was also shown to affect387

the activity of SpeB, with limited protease expression detected at physiological levels of NaCl388

;ϭϱϬരŵMͿ ĂŶĚ ŝŶĐƌĞĂƐŝŶŐ ƉƌŽƚĞĂƐĞ ĂĐƚŝǀŝƚǇ ĚĞƚĞĐƚĞĚ ĂƐ ƚŚĞ NĂCů ĐŽŶĐĞŶƚƌĂƚŝŽŶ ǁĂƐ ŝŶĐƌĞĂƐĞĚ 389

[36]. Such conditions may be encountered in a clinical setting, and variations in the wound390

environment could impact bacterial protease production.391

Protease activity in biofilms392

393

It is increasingly acknowledged that many microorganisms have a predisposition to attach to394

surfaces, aggregate and form biofilms [148]. Biofilms are complex microbial communities395

containing bacteria and fungi. The microorganisms synthesise and secrete a protective matrix396

that attaches the biofilm firmly to a living or non-living surface [149].397

398
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Given the frequent isolation of biofilms from a wide range of environments, it is perhaps399

unsurprising that they have been detected in chronic wounds, which provide ideal conditions400

for bacterial attachment and proliferation [150]. The wound bed often contains necrotic401

tissue and debris, aiding bacterial adherence, while exudate provides nutrients to support402

bacterial growth [151, 152]. Additionally, chronic wounds are often associated with an403

impaired host immune response, increasing susceptibility to infection [151-153].404

405

A study by James et al. using microscopy techniques reported that 60% of chronic wound406

specimens contained a biofilm, compared with only 6% of acute wound samples examined407

[150]. Other research groups reported biofilms in 47�59% of chronic wounds tested,408

correlating well with James' data [154, 155]. A further study suggests the figure could even409

be as high as 90% [156].410

411

Upon the transition from planktonic or �free-floating� bacteria to the establishment of a412

biofilm, bacteria undergo a general reduction in growth rates and metabolic activity, possibly413

contributing to a reduced susceptibility to antimicrobials [157]. Such reductions in metabolic414

activity and the establishment of the biofilm phenotype are associated with down-regulation415

of a number of genes [157]. Work by Evans et al. on S. epidermidis biofilms in vitro, however,416

suggests that protease-encoding genes are not down-regulated in this way [158]. In this study,417

total protease activity was analysed using a casein assay and showed that protease activity418

was detected in S. epidermidis biofilms at levels over and above S. epidermidis planktonic419

populations. Moreover, protease activity increased as the growth rates of the biofilm and420

planktonic populations were increased, with protease activity of the biofilm always exceeding421

that detected for planktonic cultures [158]. Another study using an in vitro and in vivo C.422

elegans infection model demonstrated that secretion of S. epidermidis proteases inhibited423

the development of S. aureus biofilms, which wasmainly due to serine protease activity [159].424

It has also been reported that S. aureus proteases (e.g. metalloprotease aureolysin and Sp1425

protease) are involved in detaching established biofilms (i.e. targeting the surface adhesions)426

[34].427

428

Novel wound management strategies429

Due to the detrimental impact of bacterial proteases on the host and the ubiquitous nature430

of these enzymes, they could be exploited for the development of a point-of-care diagnostic.431

It is now increasingly recognised that bioburden alone does not necessarily correlate with432

infection, particularly in the early stages, where clinical signs of infection may be difficult to433

define [160]. In addition, the clinical signs of infection (pain, swelling, heat, redness, exudate)434

may not be present in patients with comorbidities that suppress the immune response, such435

as diabetes [161]. Under such circumstances, a bacterial protease point-of-care diagnostic436

may help clinicians decide when bacteria present in a wound are problematic [162]. This437

would help guide clinicians as to when it would be most appropriate to administer438

prophylactic treatment.439

440

Serena and coworkers have described a novel point-of-care diagnostic test capable of441

identifying a wound in a �state of pathogenesis� even before the clinical signs of infection442

become apparent [163]. Using wound fluid swab samples collected from 366 chronic wounds,443

the authors noted that elevated levels of bacterial protease activity (BPA) was detected in444

49% of wound fluid samples despite only 18% of this cohort of patients demonstrating three445
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or more signs of clinical infection. Using elevated BPA as a marker, early identification of446

wounds in a state of pathogenesis, but where infection is not obvious to the clinician, could447

lead to a rapid response to reduce bacterial bioburden [161]. Such prompt action could448

improve the clinical outcome and could have potential economic benefits [164, 165].449

Identification of elevated BPA in chronic wounds also provides a novel target for the future450

development of bacterial protease inhibitors.451

452

Conclusions453

Although the pathogenicity of a bacterium is the combined activity of the multiple virulence454

factors present in its portfolio, proteases remain a central means in enabling the455

microorganism to overcome the host defences and proliferate. Indeed, some authors even456

regard proteases as the most effective virulence factor in the establishment of infection [20,457

35, 84], with functions including overcoming the host immune system, tissue degradation and458

promoting the up-regulation of additional virulence factors. Taken together, the evidence459

discussed in the present review suggests that proteases play a central role in the460

establishment of wound infections, contribute to the development of an inflammatory461

response and can impede wound healing.462

463

464
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TABLES.1082

1083

Table 1. Proteases from common organisms [adapted from Koziel and Potempa (2012) [34]]1084

1085

Organism Bacterial protease
Pseudomonas aeruginosa Las A (elastase A)

Las B (elastase B)
AprA (alkaline protease)
Protease IV

Staphylococcus aureus Aureolysin

ScpA (staphopain A)

SspB (staphopain B)

SspA (staphylococcal serine protease)

Streptococcus pyogenes SpeB (streptopain; cysteine proteinase)

Streptlysin S

IdeS (cysteine proteinase)

ScpC

Enterococcus faecalis GelE (gelatinase)

SprE (serine protease)

Staphylococcus epidermidis Esp (serine protease)
Finegoldia magna SufA (subtilisin-like serine protease)
Proteus mirabilis ZapA (metalloprotease)
Aeromonas sobria ASP (serine protease)
Vibrio vulnificus metalloprotease

1086

1087




