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Post-transcriptional exon shuffling events in humans
can be evolutionarily conserved and abundant
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In silico analyses have established that transcripts from some genes can be processed into RNAs with rearranged exon
order relative to genomic structure (post-transcriptional exon shuffling, or PTES). Although known to contribute to
transcriptome diversity in some species, to date the structure, distribution, abundance, and functional significance of
human PTES transcripts remains largely unknown. Here, using high-throughput transcriptome sequencing, we identify
205 putative human PTES products from 176 genes. We validate 72 out of 112 products analyzed using RT-PCR, and
identify additional PTES products structurally related to 61% of validated targets. Sequencing of these additional
products reveals GT-AG dinucleotides at >95% of the splice junctions, confirming that they are processed by the
spliceosome. We show that most PTES transcripts are expressed in a wide variety of human tissues, that they can be
polyadenylated, and that some are conserved in mouse. We also show that they can extend into 59 and 39 UTRs,
consistent with formation via trans-splicing of independent pre-mRNA molecules. Finally, we use real-time PCR to
compare the abundance of PTES exon junctions relative to canonical exon junctions within the transcripts from seven
genes. PTES exon junctions are present at <0.01% to >90% of the levels of canonical junctions, with transcripts from
MAN1A2, PHC3, TLE4, and CDK13 exhibiting the highest levels. This is the first systematic experimental analysis of PTES in
human, and it suggests both that the phenomenon is much more widespread than previously thought and that some PTES
transcripts could be functional.

[Supplemental material is available for this article.]

The pre-mRNAs of multi-exon eukaryotic genes undergo splicing

during maturation, with introns being precisely removed by the

spliceosomal complex (Rino and Carmo-Fonseca 2009; Hallegger

et al. 2010). The vast majority of mammalian genes are also subject

to alternative splicing (Johnson et al. 2003; Kampa et al. 2004),

which can generate multiple mRNAs and protein isoforms from

individual loci. Exons present in mature mRNAs exhibit co-linearity

with genomic DNA. However, a growing number of mammalian

genes have been shown to also generate transcripts with altered

exon order relative to genomic DNA in the absence of underlying

genomic rearrangements (Horiuchi and Aigaki 2006). Depending

on the context or specific transcript structure, this form of RNA

processing has been referred to as exon scrambling (Nigro et al.

1991), mis-splicing (Cocquerelle et al. 1993), exon repetition (Frantz

et al. 1999), rearrangement or repetition of exon order (RREO)

(Dixon et al. 2005), trans-splicing (Caudevilla et al. 1998; Akopian

et al. 1999; Flouriot et al. 2002), alternative trans-splicing (Horiuchi

and Aigaki 2006), or homotypic trans-splicing (Takahara et al. 2000).

Here, we use the term post-transcriptional exon shuffling (PTES)

to specifically refer to rearranged transcripts from a single gene

where the defining features are rearrangement at the RNA level and

the presence of intact exon junctions at the point where co-linearity

with genomic DNA is disrupted. This term effectively excludes

transcripts where changes in exon order are due to genomic struc-

tural alterations (Patthy 1999; Zhang et al. 2009), excludes tran-

scripts where splice junctions do not coincide with intron/exon

boundaries, and excludes fusion transcripts that involve two loci

(Li et al. 2009). This term also avoids possible confusion with splice

leader (SL) trans-splicing, which is common in some eukaryotes

(Blumenthal 1995; Hastings 2005).

PTES transcripts have been interpreted as rare by-products of

an error-prone alternative splicing mechanism or as the processed

products of lariat intermediates generated during exon skipping

(Nigro et al. 1991; Cocquerelle et al. 1993; Zaphiropoulos 1997).

Evidence that some transcripts are unpolyadenylated and circular,

together with a correlation between the structure of PTES tran-

scripts and exon skipping products in some genes (Zaphiropoulos

1997; Surono et al. 1999), is consistent with this interpretation.

Splicing between independent pre-mRNAs has also been proposed

as a possible mechanism as some PTES transcripts are both full

length and polyadenlyated (Flouriot et al. 2002); some consist of

single exon duplications that cannot be generated from lariats

produced by exon skipping (Dixon et al. 2005); and the protein

product associated with a rearranged transcript from the rat Crot

(also known as COT1) gene has been identified (Caudevilla et al.

1998). Consistent with this latter mechanism, short regions of
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high sequence identity are enriched both within introns down-

stream from PTES donor exons and within introns upstream of

PTES acceptor exons (Dixon et al. 2007). These could influence

splice donor and acceptor choice by inducing ectopic base pairing

between pre-mRNAs.

In silico analyses of expressed sequence data suggest that PTES

transcripts are generated by >1% of human genes (Dixon et al.

2005). However, they only account for ;20% of all human chi-

meric ESTs present in public databases as the fusion points of most

chimeric ESTs do not correspond to known splice junctions (Li

et al. 2009). Although chimeric transcripts generated from two

independent loci or from two nonoverlapping transcripts from the

same locus have been shown to be of functional importance in

Drosophila (Mongelard et al. 2002; Horiuchi et al. 2003) and hu-

man (Li et al. 2008; Rickman et al. 2009), very few human PTES

events have been verified experimentally or analyzed in detail. To

our knowledge, the only human PTES transcripts that have been

shown to be both full length and polyadenlyated are derived from

the estrogen receptor-a gene, ESR1 (Flouriot et al. 2002). Further-

more only one PTES transcript, from the DCC gene, has been ac-

curately quantified, and it is expressed at about 1/1000th of the

level of primary transcripts, consistent with rare errors of the

splicing machinery (Nigro et al. 1991). As a result, the contribution

of PTES to the human RNA landscape remains poorly defined.

Here, we describe 205 putative human PTES products discov-

ered using high-throughput transcriptome

sequencing, and present the first large-

scale experimental analysis of such tran-

scripts in human. We confirm their RNA

origin and show that they can extend into

59 and 39 UTRs, be polyadenylated, and be

conserved in mouse. We also show that,

within transcripts, PTES exon junctions

can be present at levels comparable to

un-rearranged (canonical) exon junctions

from the same loci. These results suggest

that human PTES transcripts may be more

abundant than previously thought and

appear incompatible with such transcripts

being due solely to an error-prone RNA

processing system.

Results

Identification of novel human PTES
transcripts

As part of a pilot screen for novel splice

variants and fusion genes within cancer

genomes, a total of 9.7 Gb of Illumina and

454 Life Sciences (Roche) FLX sequence

data was generated from seven human

pediatric tumor samples and one cell line

and was mapped to the RefSeq gene set

(see Methods). The data were then filtered

to identify reads with two contiguous but

independent high-quality hits to RefSeq

genes where the junctions between hits

terminate at exon boundaries. The reads

identified fell into three distinct structural

classes: putative splice variants, where the

two independent hits were to the same

RefSeq entry and in the same order as in RefSeq; putative fusion

genes, where the hits were to two RefSeq entries from different genes;

and putative PTES events, where the hits were to the same RefSeq

entry but in an inverted order with respect to RefSeq (see Methods).

After further screening to remove repetitive or suboptimal matches,

a total of 205 putative PTES transcripts were identified. The PTES

transcripts, including the sequence reads that define them, are pre-

sented in Supplemental Table S1. The putative fusion genes and novel

splice variants identified by this pipeline are not presented here.

The 205 PTES structures, represented by 378 reads, are derived

from 176 different genes. Of these structures, 64 retain an open

reading frame and 93 possess frame shifts, and in 48 cases, the

donor or acceptor exon is within a 59 UTR. The number of in-frame

structures is not significantly enriched compared to random as-

sortment of coding exons within the sample (data not shown).

More than one putative PTES transcript was identified for 17 genes,

often involving the same acceptor exon, and these are listed in

Table 1A. For example, all four of the structures identified for MIB1

involve exon 2 as the acceptor. In addition, 12 structures from nine

genes were identified in more than one sample (Table 1B), with

exon 2 or 3 being the acceptor exon in 11 of 12 cases. When the

positions of all donor and acceptor exons within genes were

plotted, it was found that ;45% of PTES structures possess exon 2

as acceptor (Supplemental Fig. S1). This accounts for the large

number of PTES splices involving UTRs. Furthermore, the first and

Table 1. Genes with multiple PTES transcripts (A) and transcripts in multiple samples (B)

A

Accession Gene N Structures R

NM_001030055 ARHGAP5 2 E2-E2, E3-E2 7
NM_001083625 ANKRD12 2 E8-E2, E8-E3 4
NM_004318 ASPH 2 E3-E2, E13-E4 2
NM_004459 BPTF 3 E20-E6, E22-E13, E28-E23 4
NM_005751 AKAP9 3 E8-E4, E8-E5, E8-E6 4
NM_006699 MAN1A2 3 E4-E2, E5-E2, E6-E2 44
NM_015542 UPF2 2 E8-E4, E8-E5 4
NM_015902 UBR5 2 E5-E2, E28-E27 2
NM_016073 HDGFRP3 2 E5-E2, E5-E3 3
NM_017738 CNTLN 2 E5-E3, E12-E9 3
NM_018078 LARP1B 2 E4-E2, E7-E2 2
NM_018449 UBAP2 5 E6-E2, E6-E3, E8-E2, E8-E7, E10-E5 11
NM_018682 MLL5 2 E9-E8, E10-E6 2
NM_018996 TNRC6C 2 E4-E3, 17-E11 6
NM_020774 MIB1 4 E6-E2, E9-E2, E12-E2, E5-E2 4
NM_024947 PHC3 4 E6-E5, E11-E7, E5-E2, E7-E5 7
NM_172058 EYA1 3 E8-E3, E10-E3, E11-E3 9

B

Accession Gene Structures Samples R

NM_001007157 PHF14 E4-E3 NB19, L547, L731 6
NM_001030055 ARHGAP5 E3-E2 NB5, L466 4
NM_001030055 ARHGAP5 E2-E2 L612, L466, L731 3
NM_003262 SEC62 E7-E3 L547, L731 2
NM_005134 PPP4R1 E9-E3 NB5, L547 4
NM_006699 MAN1A2 E4-E2 NB19, NB5, IMR32, L466, L547 9
NM_006699 MAN1A2 E5-E2 NB19, NB3, NB5, L547, L466, L731, NB6 28
NM_006699 MAN1A2 E6-E2 NB19, L547 7
NM_018449 UBAP2 E10-E5 NB3, L547 3
NM_025134 CHD9 E2-E2 NB19, NB5 5
NM_053043 RBM33 E5-E2 NB19, NB5, L612 3
NM_152617 RNF168 E3-E2 NB3, NB5, IMR32, L547 7

(N) Number of structures; (R) number of reads; and (Structures) exon junction defining transcript.
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last exons of genes are not used as donor or acceptor exons. Both

these results are consistent with a previous in silico analysis of exon

rearrangements identified within EST data (Dixon et al. 2005). In

addition, a PTES product from the TLE4 gene was identified seren-

dipitously during RT-PCR analysis of this gene (Liu 2009), and this

was included in all subsequent analyses.

PTES transcripts are widely expressed and polyadenylated

To validate the high-throughput sequence data, the first 112 of the

205 PTES structures identified were analyzed by RT-PCR using the

original cDNA sequencing template, independent cDNA templates

generated from the same RNAs, and templates from three normal

human tissues. Of these 112 structures, 72 were successfully am-

plified in independent cDNA preparations of the original sequenc-

ing templates (listed in Supplemental Table S2), suggesting that

approximately two-thirds of the PTES structures represent bona fide

transcripts. All 72 also generated amplicons of the expected size in

one or more normal human tissue, indicating that none were spe-

cific to neoplastic tissue. However in one case (RNF168 E3-E2), the

expected product was also amplified from genomic DNA, even un-

der stringent annealing and amplification conditions, suggesting

that this transcript may be derived from genomic structures not

represented within the current human genome build. Furthermore,

in 44 of the 72 validated cases (61%), multiple cDNA-specific

amplicons were observed. As examples, results for PHC3 E6-E5,

UBAP2 E10-E5, and RERE E3-E3 are shown in Figure 1A. In all three

cases, cDNA-specific amplicons of the expected size are generated

together with additional products (450 bp for PHC3; 270 bp for

UBAP2; and 260 bp, 300 bp, and 750bp for RERE), suggesting that

further PTES transcripts from these genes may exist. Results for the

GUSB control is also shown, with the expected spliced and unspliced

products being observed in cDNAs and genomic DNA samples, re-

spectively.

As these transcripts were initially identified in RNA derived

from neoplastic tissues, we then used a panel of tissue-specific

human cDNA templates generated from both total RNA and

polyA+ RNA to investigate expression patterns in normal tissues in

more detail by RT-PCR (Fig. 1B; Supplemental Table S2). The results

indicate that most PTES transcripts are ubiquitously expressed and

that most are polyadenylated to some degree, consistent with the

oligo dT primed/purified nature of the sequencing libraries (see

Methods). However, significant variation in the extent of poly-

adenylation is observed, suggesting that the structure of PTES

transcripts may be heterogeneous. For example, the LARP1B E4-E2

and CNTLN E5-E3 products are enriched within cDNAs derived

from polyA+ RNA, whereas the PHC3 E6-E5 transcript is more

abundant within cDNA derived from the total RNA fraction of all

the tissues analyzed (Fig. 1B). A minority of transcripts also exhibit

tissue-specific expression. For example, PTPRR expression is only

observed in kidney and neuronal tissues (bottom panel). Inter-

estingly, the E13-E8 PTPRR transcript is enriched within neuronal

PolyA+ samples, whereas the larger transcript (;320 bp) is not,

suggesting that PTES products from the same gene can exhibit

different levels of polyadenylation. Canonical transcripts were also

analyzed for all genes shown, with the exception of RERE, and were

expressed in all cDNAs (data not shown).

Most genes that exhibit PTES produce multiple products

The high-throughput sequencing identified 17 genes with multi-

ple PTES transcripts (Table 1A), and during the RT-PCR validation,

Figure 1. Expression of human PTES transcripts. PTES structures, approximate primer location, and expected amplicon size are indicated for each
panel. (A) Validation of human PTES transcripts. Amplification of products from the PHC3, UBAP2, and RERE genes are shown. TR14 is a neuroblastoma cell
line (Rupniak et al. 1984), and L731 is one of the templates used for HTG sequencing (see Methods). GUSB is a control for template quality (see text). (-ive)
No template negative control; (Marker) 100-bp ladder. (B) Polyadenylation and tissue specificity of transcripts. Amplification products from the LARP1B,
CNTLN, PHC3, and PTPRR genes are shown. All templates are cDNAs generated from total or PolyA+ RNAs extracted from human fetal tissues (see
Methods). (-ive) No template negative control; (M) 50-bp ladder (panels 1–3) and 100-bp ladder (panel 4).
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44 primer pairs produced multiple cDNA-specific amplicons (Fig. 1;

Supplemental Table S2). This suggests that many genes that generate

PTES transcripts may produce multiple products. To confirm this,

multiple amplification products recovered from 12 genes were sub-

jected to FLX amplicon sequencing or were gel extracted and Sanger

sequenced (see Methods). In total, 23 novel products were se-

quenced, 22 of which proved to be additional PTES transcripts with

exon combinations distinct from those targeted by the original RT-

PCR assays. These results are summarized in Table 2. In 18 cases, one

or both exons present at the PTES junctions are RefSeq exons distinct

from those targeted (e.g., MLL5 E11-E5 recovered as an E10-E11-E5-

E6 amplicon using primers designed to amplify the E10-E6 junction).

One, HDGFRP3 E6-E2, has a junction that falls within exon 6 and

utilizes a novel splice site. A further five have intronic or nongenic

flanking DNA at their junctions. Despite this, the dinucleotides

flanking all of these additional sequence tracts within genomic DNA

are AG and GT, consistent with spliceosomal processing.

As examples, the additional PTES products sequenced from

two genes are shown in Figure 2. RT-PCR of C19orf2 E10-E3 and

HDGFRP3 E5-E2 generates the expected amplicons (110 bp and

105 bp, respectively) in addition to several larger products that are

only observed in cDNA templates (left-hand panels). The sequence

corresponding to each of these is spliced relative to genomic DNA

(center panels); putative GT-AG splice donor and acceptor sites are

present at the termini of all introns (shown in red, center panels);

and the sequence traces spanning inferred splice junctions show

no evidence of sequence heterogeneity (right-hand panels).

One of the 23 sequences, however, has a structure in-

consistent with spliceosomal processing. CCDC66 I10-I4, co-am-

plified during the validation of the CCDC66 E10-E5 transcript,

comprises the sequence from intron 10 of CCDC66 upstream of

sequence from intron 4. However, the junction between I10 and I4

sequence lies within an 18- to 21-bp region of high sequence

identity between two AluY elements (Supplemental Fig. S2). Short

regions of sequence identity have been shown to promote tem-

plate switching during reverse transcription (Cocquet et al. 2006;

Houseley and Tollervey 2010), suggesting that this product may be

an artifact created during cDNA generation. Consistent with this

interpretation, no canonical splice sites are present at the I10-I4

junction. Despite this apparent artifact, >95% of the additional RT-

PCR amplicons sequenced (22 out of 23) possess novel rearrange-

ments defined by canonical splice junctions, providing indepen-

dent evidence that PTES transcripts are processed and suggesting

that ;50% of genes that exhibit this phenomenon generate mul-

tiple PTES transcripts.

PTES products can extend into 59 and 39 UTRs

Previous analyses have provided evidence that some PTES tran-

scripts are not polyadenylated and may be circular (Nigro et al.

1991; Cocquerelle et al. 1993; Zaphiropoulos 1997), while others

are linear, resembling two mRNAs fused at the PTES junction

(Caudevilla et al. 1998; Flouriot et al. 2002). The transcripts iden-

tified here were originally sequenced from PolyA+ purified or oligo

dT primed templates, and some are enriched within polyA+ puri-

fied material (see Methods; Fig. 1B; Supplemental Table S2). We

therefore used primers spanning the PTES junctions of four genes

(C19orf2 E10-E2, UBAP2 E10-E5, LARP1B E4-E2, and PHC3 E6-E5)

to try to amplify in the 59 and 39 directions, to establish if these

PTES exon junctions can be present in RNAs that contain the

known 59 or 39 UTRs. In each case, the PTES junction primers

produced amplicons in combination with primers from both the 59

and 39 UTRs. Furthermore, the amplicon expected if all inter-

vening exons were present was recovered in each case. This exon

organization is inconsistent with formation by lariat processing

during alternative splicing. Critically, in three cases (C19orf2,

Table 2. Additional PTES products identified by Sanger or FLX amplicon sequencing

Accession Gene Structure Size
Additional
products Size (bp) PTES accession no.

NM_006699 MAN1A2 E5-E2 144 E6-E2 239 HQ234305
NM_003796 C19orf2 E10-E2 148 E10-E3 113 HQ234306

E10-39-E3 355 HQ234307
NM_001012506 CCDC66 E10-E5 172 E10-E4 617 HQ234309

I10-I4 957 HQ234308
NM_016073 HDGFRP3 E5-E2 106 E6*-E2 220 HQ234314
NM_015693 INTU E4-E2 146 E6-E2 255 HQ234310

E8-E2 523 HQ234311
NM_018449 UBAP2 E10-E5 158 E10-E4 269 SRA023629

E11-E4 337 SRA023629
E11-E12-E4 600 SRA023629
E10-E5 320 SRA023629
E10-E12-E4 517 SRA023629

NM_020774 MIB1 E5-E2 124 E6-E2 350 HQ234313
NM_018682 MLL5 E10-E6 240 E11-E5 450 SRA023629

E11-E6 380 SRA023629
E10-I5-E6 320 SRA023629
E12-E6 500 SRA023629
E12-E5 588 SRA023629

NM_004784 NDST3 E4-E3 143 E6-E3 450 HQ234312
NM_025134 CHD9 E2-E2 232 E2-I1A-E2 430 SRA023629

E2-I1A-I1B-E2 510 SRA023629
NM_024947 PHC3 E6-E5 200 E6-E2-E3-E5 450 SRA023629

The accession number, gene name, and target PTES structure amplified by RT-PCR are shown. The structure, approximate amplicon size, and accession
number of Sanger sequence reads that define additional products are shown. Products from UBAP2, MLL5, CHD9, and PHC3 were sequenced as FLX
amplicons. (E) Exon number; (I) intron number; (39) sequence 39 of annotated RefSeq gene; and (*) novel splice site within exon used. I1A and I1B indicate
spliced sequence tracts from intron 1.
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UBAP2, and LARP1B) template specificity of the PTES junction

primers could be confirmed using publicly available cDNA clones

as control templates.

As an example, the results for C19orf2 E10-E2 are presented in

Figure 3. Primers specific for the E10-E2 exon junction used in

conjunction with primers from the 59 and 39 UTRs (primers 1 + 2

and 3 + 4) yield products of ;1.3 kb and ;1.8 kb from the NB3

cDNA template (left-hand panel). These are the sizes expected from

transcripts containing all intervening exons; that is, E1-E10 fol-

lowed by E2 for the 59 amplicon and E10 followed by E2-E11 for the

39 amplicon (shown schematically in right-hand panel). Addi-

tional, smaller products are also observed in the 39 amplification,

which may represent splice variants. No products were generated

using these primer pairs with the un-rearranged, sequence vali-

dated, positive control C19orf2 cDNA template (AK292170). This

confirms that the E10-E2 junction primers

do not anneal to the canonical transcript

and are PTES specific. In contrast, when

the 59 UTR and 39 UTR primers are used

together (primers 1 + 4) a product of 1.85

kb is obtained from both NB3 and

AK292170 templates, corresponding to

the full-length, un-rearranged, C19orf2

transcript. Comparable results were ob-

tained for both LARP1B and UBAP2

(Supplemental Fig. S3). While these ex-

periments indicate that PTES splice junc-

tions are connected in some molecules to

either the 59 or 39 ends of transcripts, no

full-length PTES structures were co-am-

plified with canonical structures from

cDNA templates using the 59 and 39 UTR

primers (primers 1 and 4). This means

that the entirely full-length molecules

are present at a low frequency relative to

the canonical transcript, are outcompeted

by the smaller product during PCR am-

plification, or are entirely absent.

Conservation of PTES structures
in mouse

The conservation of exonic structures in

diverse species is routinely used to infer

possible function, and although several

PTES structures analyzed previously have

been shown to be present in both human

and mouse (Nigro et al. 1991; Dixon et al.

2005), it is not clear if these results are

representative. To establish the extent of

conservation, we designed murine primers

to search for orthologs of 41 randomly

chosen validated human PTES structures

in a panel of adult mouse tissues. Ampli-

cons of the expected size were observed

in one or more tissues for orthologs of

seven human genes (MAN1A2, TLE4,

ICA1, MLL5, CDK13, VRK1, and ZNF236),

and results for three murine genes are

shown in Figure 4. Man1a2 and TLE4

show similar expression patterns to that

found in human, with the Man1a2 E5-E2

PTES junction being found in all tissues

analyzed, and Tle4 E8-E5 being expressed in the brain and, to

a lesser extent, testis. In contrast, Cdk13 E5-E2, which is widely

expressed in human, is only found in the bladder and lung in the

mouse. As in human, additional amplicons are observed in many

cases, including an amplicon of the size expected for Man1a2

E4-E2. These results suggest that orthologs of ;17% of human

PTES events are conserved in the mouse (90% CI 7.4%–26.7%),

although tissue distribution can differ between the two species.

PTES transcripts can be highly expressed relative
to canonical transcripts

To date, very few human PTES transcripts have been quantified

due, partly, to the lack of unique priming sites relative to canonical

transcripts (e.g., Fig. 3). We therefore used both bioinformatic and

Figure 2. Additional PTES products identified from RT-PCR amplicons. Amplification products from
the C19orf2 E10-E3 and HDGFRP3 E5-E2 RT-PCR validation are shown. Structures, genomic splice
junctions, and associated cDNA sequence traces are shown. Splice junctions are indicated using dotted
lines in both DNA and cDNA sequences. Terminal gt-ag dinucleotides of inferred introns within genomic
sequence are shown in red. Sequence internal to RefSeq exons is shown in upper case. (E) Exonic; (I)
intronic; and (39) novel exonic sequence derived from 39 of the annotated C19orf2 gene.

Figure 3. Identification of extended PTES products using junction-specific primers. Amplicons gen-
erated using primers specific for C19orf2 PTES E10-E2 splice junction are shown. Primers 1 and 2 amplify
from the 59 UTR to the E10-E2 breakpoint. Primers 3 and 4 amplify from the E10-E2 breakpoint to the 39

UTR. Templates are as follows: (NB3) cDNA where the E10-E2 PTES product was originally identified;
(+ive) unrearranged (canonical) C19orf2 cDNA clone (AK292170); and (-ive) no template. The exon
organization of the inferred E10-E2 spliced PTES RNAs, the full-length C19orf2 gene from RefSeq (ca-
nonical), and the AK292170 +ive control is also shown, together with the position of primers used and
the expected amplicon sizes. Individual exons are shown as boxes, with coding regions shown in gray
and UTRs in white. The sizes of the PTES amplicons are given relative to the E10-E2 junction. Additional
products of ;0.4–0.65 kb and ;1.2 kb are seen when the NB3 template is amplified using primers 1 and
2, suggesting that shorter C19orf2 PTES isoforms also exist. For all primers, see Supplemental Table S6.
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experimental approaches to investigate the frequency of PTES and

canonical junctions within cDNA as a measure of relative tran-

script abundance. It is important to note that while the structure

(and heterogeneity) of PTES transcripts remains to be fully in-

vestigated, it is clear that some can contain both PTES junctions

and related canonical splice junctions (e.g., transcript structures in

Figs. 3, 4). As a result, the relative frequency of PTES to canonical

junctions provides a conservative estimate of the proportion of

PTES transcripts relative to canonical transcripts for each gene.

Within our HTGS data we compared the frequency of reads

that spanned the PTES junctions (defined here as E(X) � E(N)), with

the frequency of reads spanning the two associated canonical splice

junctions (E(X)� E(X+1) and E(N�1)� E(N)). As FLX sequencing has not

been validated for mRNA quantitation, we confined this analysis to

Illumina reads from the acute lymphoblastic leukemia (ALL) sam-

ples, and to minimize ascertainment bias, we only analyzed PTES

structures identified in neuroblastomas (NBs; see Methods). The

results of this analysis are summarized in Table 3 and presented in

full in Supplemental Table S3. Of 52 PTES transcripts analyzed, 41

were expressed at a high enough level in one or more ALL samples to

be informative, with an average read depth of over 30 and an average

coverage of over 90% (Supplemental Table S3). Of these, 25 gave no

reads spanning PTES junctions, suggesting that they are not present

in these samples or they occur at a low frequency relative to the

canonical junctions in polyA+ RNA (Supplemental Table S3). From

the remaining 16 genes, a total of 64 E(X) � E(N) PTES reads were

recovered compared to 2011 reads from all proximal canonical

junctions (E(N�1) � E(N)) and 3456 reads from distal canonical

junctions (E(X)� E(X+1)). The higher number of reads recovered from

distal canonical junctions is consistent with more efficient recovery

of 39 sequence from oligo-dT captured RNA (Edery et al. 1995).

Taking the average of these values suggests that in the PolyA+

transcripts of genes that exhibit this phenomenon, PTES exon

junctions are present at an average frequency of 2.3% compared

with the levels of related canonical junctions. However, the fre-

quency of E(X) � E(N) junctions varied extensively, ranging from

;0.5% of the average number of canonical junctions (LUC7L2) to

over 50% (MAN1A2 E5-E2), with reads containing all three MAN1A2

PTES junctions being observed at high frequency. These results

suggest that for most genes PTES junctions are present at low levels

but that transcripts from a small number of genes can contain a high

frequency of PTES junctions.

This in silico analysis is limited by the modest number of se-

quence reads that span canonical splice junctions in many genes

(Supplemental Table S3). To analyze junction frequencies in more

detail, PTES and canonical junction real-time PCR assays were

designed for 10 genes, including MAN1A2, PHC3, UBAP2, and

LARP2 (Table 3) and those conserved in mouse (Fig. 4). Five genes

(RTN4, CDK13, PHC3, TLE4, and KTN1) gave comparable ampli-

fication efficiencies in both their PTES and canonical junction

assays so were used to assess relative junction levels within cDNAs

generated from a variety of adult and fetal human tissues using the

D� Ct method. (Supplemental Fig. S4). Threshold values obtained

for canonical junctions from all five genes were five to 10 cycles

lower than the average of the three control genes used for nor-

malization (GAPDH, ACTB, and PPIA; see Methods), indicating

modest levels of expression for all genes analyzed. For RTN4 and

KTN1, PTES junctions were much rarer than canonical in virtually

all tissues tested with PTES thresholds appearing three to five cycles

later than canonical. However, for PHC3, TLE4, and CDK13, the

PTES thresholds were only zero to two cycles later than the ca-

nonical thresholds in some tissues, suggesting that PTES junctions

in these three genes could be present at anything from 20%–100%

of canonical levels (Supplemental Fig. S4).

To confirm the results obtained using the D� Ct method and

to control for variation in the efficiency of reverse transcription

between templates, PTES and canonical junctions from genes

exhibiting the highest PTES frequencies (PHC3, CDK13, TLE4,

MAN1A2 E5-E2, and MAN1A2 E4-E2) were then cloned into plasmid

expression vectors and transcribed, and the resulting RNAs were

used to generate standard curves (SCs). Estimates of junction abun-

dance for these genes using both the D � Ct and SC methods are

shown in Figure 5, and SCs are shown in Supplemental Figure S5.

The SC results were comparable to those obtained with the D � Ct

method and identify high frequencies of PTES junctions in one or

more tissue for each gene. For example, the TLE4 E8-E5 junction is

present at ;15% (D � Ct) � 50% (SC) of canonical levels in adult

cerebellum (panel A), PHC3 E6-E5 is present at ;60% (D�Ct)� 90%

(SC) of canonical levels in fetal heart (panel B), CDK13 E5-E2 is

present at ;43% (D � Ct) � 57% (SC) of canonical levels in fetal

thalamus, while MAN1A2 E5-E2 is present at ;47% (D � Ct) � 96%

(SC) of canonical levels in fetal spine. In all tissues and for all genes,

canonical junctions are more abundant than individual PTES junc-

tions. However, in the fetal spine, all MAN1A2 PTES junctions (i.e.,

E5-E2 and E4-E2 combined) are more abundant than the related

canonical structures.

While there is some variation in the results obtained with the

different methods used to estimate junction frequency within

transcripts, the quantitative PCR analyses are consistent. The SC

analysis of MAN1A2 also confirms the high proportion of PTES

Figure 4. RT-PCR amplification of murine PTES products corresponding
to known human structures. The amplicon corresponding to the expected
PTES structure is highlighted in each case. The additional amplicons seen in
panels 1 and 3 are the expected size for murine orthologs of additional
human products (MAN1A2 E6-E2, Supplemental Table S6; TLE4 E8-E5,
GenBank accession no. HQ283388). For Tle4, a Gapdh loading control was
included. For details of primers and amplicons, see Supplemental Table S6.
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junctions identified in the in silico analysis. Collectively they

provide strong evidence that PTES exon junctions can be present at

levels comparable to canonical junctions within transcripts from

a small number of human genes.

Genomic rearrangement cannot account for PTES

Finally, naturally occurring exon duplication at the genomic level,

or errors in the current genome build, could result in transcripts

with apparently rearranged exon order relative to RefSeq entries.

While these are unlikely to account for the large numbers of PTES

transcripts identified here, they could account for the high ex-

pression levels of a small number of PTES transcripts relative to

canonical isoforms. To exclude this possibility, Southern analyses

were used to investigate the integrity of restriction maps sur-

rounding the donor and/or acceptor exons of six genes, and results

from four of these are presented in Figure 6. In all cases only ge-

nomic fragments of the expected sizes are observed, excluding

genomic rearrangement or build errors as possible explanations for

the high frequency of PTES junctions within transcripts from

genes such as MAN1A2, TLE4, and PHC3.

Discussion
This is the first systematic experimental analysis of PTES in humans.

We demonstrate for the first time that most of the genes that exhibit

this phenomenon generate multiple transcripts, that these tran-

scripts can be both polyadenylated and can extend into 59 and 39

UTRs, and that they are present in a wide variety of normal human

tissues. We also provide the first experimental evidence that some

human PTES transcripts can be expressed at high levels relative to

canonical (un-rearranged) transcripts and that they can also be

conserved in the mouse. Collectively, these data indicate that the

transcriptional output of many human genes is even more diverse

than previously thought and that shuffled transcripts could make

a significant contribution to human total and polyA+ RNA.

Although specific examples of this phenomenon have been

well characterized in other species, the few human PTES transcripts

characterized experimentally to date have been identified by

chance (Nigro et al. 1991; Zaphiropoulos 1997; Takahara et al.

2000; Flouriot et al. 2002). The first indication that large numbers

of human genes might generate PTES transcripts was provided by

an in silico analysis of ESTs (Dixon et al. 2005) that identified 263

putative PTES transcripts from 178 human genes and concluded

that ;1% of human genes may exhibit this phenomenon. A bias

toward the use of 59 exons with large upstream introns as PTES

acceptor exons was also identified, and this is empirically con-

firmed here. Our analysis has identified a comparable number of

PTES transcripts from a similar number of genes (205/176) and has

subsequently validated ;64% of the PTES structures experimen-

tally. The structures that could not be validated are likely to be

present at very low levels within cDNAs or to represent artifacts of

cDNA generation or subsequent PCR amplification. Importantly,

only 16 genes (;9%) and seven PTES structures (;3.4%) identified

here are also identified by the Dixon analysis (Supplemental Table

S4), and in both studies, the majority of PTES transcripts are de-

fined by a small number of ESTs/sequence reads. This suggests that

a much larger proportion of human genes may be capable of

generating PTES transcripts than have been identified to date and

that sampling at a much greater depth will be required to charac-

terize the full extent of this phenomenon.

All of the PTES events identified using our bioinformatics

pipeline are associated with canonical GT-AG splice junctions. In

contrast, an in silico analysis of EST data by Li et al. (2009) iden-

tified 31,005 human chimeric ESTs from 11,645 genes, over 80% of

which showed no evidence of spliceosomal processing. However,

the majority of these spliced ESTs involved two loci (putative fusion

genes). Short regions of sequence identity (<10 bp) were also found

at the fusion points of ;20% of chimeric transcripts, and a tran-

scription slippage model, which hypothesizes that RNA polymerase

II switches from one template to another in the same transcription

factories, was proposed to accommodate this observation. This high

Table 3. Frequency of Illumina reads spanning PTES and canonical splice junctions

Gene
symbol Rearrangement

NB
reads Frame

Average read
depth in ALLs

Gene
coverage
in ALLs

Proximal canonical
E(N � 1) � E(N)

PTES variant
E(X) � E(N)

Distal canonical
E(X) � E(X + 1)

% PTES
(average)

ARHGAP5* E3-E2 3 UTR 11.97 87%–93% 21 6 81 11.8
BPTF E22-E13 2 In 34.79 93%–98% 39 2 103 2.8
CDYL* E2-E2 1 Out 18.21 79%–97% 19 2 27 8.7
DEK* E9-E3 1 Out 105.32 97%–99% 200 3 232 1.4
DMC1* E13-E2 2 UTR 3.35 74%–93% 7 3 15 27.3
LARP1B E4-E2 4 UTR 6.94 69%–86% 9 1 13 9.1
LUC7L2 E7-E4 3 Out 66.82 95%–98% 175 1 194 0.5
MAN1A2* E5-E2 2 Out 11.86 86%–97% 31 21 34 64.6
MAN1A2* E4-E2 1 Out 11.86 86%–97% 31 10 70 19.8
MAN1A2* E6-E2 4 In 11.86 86%–97% 31 5 38 14.5
MIB1* E6-E2 1 Out 18.67 93%–98% 25 3 64 6.7
PHC3 E6-E5 2 In 11.55 90%–97% 26 1 29 3.6
PPP4R1 E9-E3 3 Out 34.99 96%–98% 25 1 73 2.0
RBM33 E5-E2 1 Out 19.35 92%–99% 48 1 81 1.6
UBAP2 E10-E5 3 In 18.98 98% 36 2 34 5.7
UBAP2* E6-E3 3 Out 18.98 98% 22 2 30 7.7

Read totals for 16 structures 745 64 1118
Read totals for further 25 structures (see Supplemental Table S3) 1266 0 2338

Total for all structures analyzed (n = 41) 2011 64 3456 2.3

Total read counts for 16 NB PTES structures identified within ALL samples are shown. Structures identified in more than one sample are indicated with an
asterisk. The final percentages of PTES reads are relative to average read numbers for proximal and distal junctions. Average read depths and range of
sequence coverage for each gene in the four ALL samples are also shown. Data for all PTES structures analyzed are presented for each ALL sample in
Supplemental Table S3.
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proportion of putative fusion genes contrasts sharply with our re-

sults, where only 13 were identified, 12 of which were subsequently

found to be PCR artifacts (H. Al-Balool, unpubl.). The high pro-

portion of putative fusion genes identified by Li et al. (2009) may

be due to such transcripts being created by a mechanism that

does not involve spliceosomal processing (Zhang et al. 2003)

but it may also be due, at least in part, to the high representa-

tion of transcripts from neoplastic tissues within human EST

databases (Qiu et al. 2004), including many recovered during

targeted searches for fusion genes using techniques such as

panhandle PCR (Jones and Winistorfer 1992; Robinson and Felix

2009). In addition, homology-dependent template switching

by reverse transcriptase during cDNA generation has been shown

to be responsible for some noncanonical splice variants within

human EST data (Cocquet et al. 2006), raising the possibility

that the chimeric ESTs with short tracts of sequence identity at

the putative fusion points observed by Li et al. (2009) may be

artifactual.

Template switching has also recently

been shown to generate PTES like struc-

tures from artificial templates derived

from the intronless Saccharomyces cerevi-

siae SPT7 gene (Houseley and Tollervey

2010). However, no evidence of template

switching has been found among spliced

human ESTs with canonical splice junc-

tions (Cocquet et al. 2006), and it cannot

account for the PTES structures defined

here. Of 23 products co-amplified and se-

quenced during our validation procedure,

22 proved to be spliced PTES products re-

lated in structure to the transcripts tar-

geted for validation, and each contained a

novel PTES junction with canonical splice

donor and acceptor sites (Fig. 2; Table 2).

This result is incompatible with template

switching. Furthermore, sequences gener-

ated by template switching have been

shown to be heterogeneous, reflecting sub-

tle variation in template switch position

(Houseley and Tollervey 2010), whereas the

PTES splice junctions sequenced here show

no such heterogeneity (e.g., Fig. 2).

PTES structures have now been

reported and verified in a wide variety of

eukaryotes. Despite this, the precise mech-

anism (or mechanisms) that underpins

this phenomenon remains to be formally

defined. The processing of lariat inter-

mediates generated during alternative

splicing has been invoked to account for

some structures (Cocquerelle et al. 1993;

Zaphiropoulos 1997; Surono et al. 1999).

However, this has been excluded in spe-

cific instances through the identification

of full-length transcripts (e.g., Flouriot et al.

2002; Rigatti et al. 2004), suggesting that

in some cases splicing between two pre-

mRNA molecules is responsible (Flouriot

et al. 2002; Dixon et al. 2005). Detailed

analysis of alleles of the rat Crot and Sa

genes that exhibit variable levels of PTES

expression have established that the mechanism is determined in cis

(Rigatti et al. 2004), and in silico analyses have identified a common

21-bp motif present in inverted orientation within 79% of PTES do-

nor and acceptor introns (Dixon et al. 2007), further suggesting that

the mechanism is homology dependent. This is consistent with the

extensive experimental evidence that hairpins formed by base pair-

ing between different regions of the same pre-mRNA can influence

exon choice during normal splicing (Solnick 1985; Miriami et al.

2003; Lev-Maor et al. 2008; Warf and Berglund 2010). Within the data

presented here, the enrichment of specific PTES transcripts in polyA+

RNA (Fig. 1; Supplemental Table S2), the amplification of 59 and 39

UTRs using primers specific for PTES exon junctions (Fig. 3), and the

identification of PTES structures containing multiple copies of the

same exon (GenBank accession nos. HQ234317 and HQ283388) are

all consistent with exon splicing between two pre-mRNA molecules,

providing further support for this mechanism as one source of PTES

transcripts. However, the possibility that a proportion of PTES tran-

scripts may be derived from lariat intermediates cannot be ruled out.

Figure 5. Identification of abundant PTES products using real-time PCR. (A) TLE4; (B) PHC3; (C )
CDK13; and (D) MAN1A2. Each panel shows PTES and canonical transcript abundance in four human
tissues estimated using both standard curves (upper bars) and the D � Ct method (lower bars) As all
genes are expressed at a lower level than control genes, �D � Ct values are plotted to facilitate com-
parison with data from standard curves. (Thal) Thalamus; (Cereb) cerebellum. Additional data are
presented in Supplemental Figures S4 and S5. For all primers, see Supplemental Table S6.
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Evidence for the functional importance of alternative splicing

is incontrovertible, with specific events having clear impact upon

a wide variety of phenotypes, including human disease states (for

review, see Tazi et al. 2009). Currently, however, there is no evi-

dence for the function of PTES transcripts. Our in silico and real-

time PCR analyses of transcript abundance are, therefore, of in-

terest as they are consistent with possible function. Most PTES

junctions analyzed here are observed at frequencies <5% of related

canonical exon junctions, higher than the previous quantitative

analysis of DCC transcripts (Nigro et al. 1991) but still relatively

low. In contrast, PHC3, TLE4, CDK13, and MAN1A2 PTES junctions

are expressed at anything from 15%–90% of the levels of canonical

junctions in some tissues. While high expression levels have been

reported for a rat Crot transcript containing two copies of exon 2

(Rigatti et al. 2004), this is the first evidence that human PTES

transcripts can be expressed at such high levels.

Protein products derived from PTES transcripts have been

identified in other species (Caudevilla et al. 1998), and the PTES

transcripts detected for PHC3 and TLE4 do not disrupt the reading

frame, suggesting that they could be translated. However, both of

these transcripts are highly enriched in total RNA compared with

polyA+ RNA (Fig. 1B; Supplemental Table S2), making this unlikely.

Furthermore, the majority of PTES transcripts identified here and

elsewhere (Dixon et al. 2005) result in frame shifts or involve ac-

ceptor exons upstream of the translation start site, suggesting that

the vast majority of these transcripts do not contribute to the

proteome. Thus, if these transcripts are functional, a regulatory

role seems more plausible given the growing number of functional

noncoding RNAs being identified (Ponting et al. 2009; Wilusz et al.

2009). Our discovery that 17% (69.7%) of human PTES junctions

are conserved in mouse is also of interest as this level of conser-

vation is comparable to levels seen for standard alternative splicing

events (Modrek and Lee 2003; Pan et al. 2005).

We have confirmed that some PTES junctions can be linked to

both 59 and 39 terminal exons. However, the extensive variation in

polyadenylation observed, as well as the multiple products gen-

erated from many loci, indicates that PTES transcripts are hetero-

geneous in structure as well as abundance. As a result, it is also

possible that PTES transcripts are noise within the complex and

dynamic transcriptional system (Graveley 2001; Kan et al. 2002;

Melamud and Moult 2009) and that the genes identified here rep-

resent extremes of this noise. For instance, it is possible that, for

reasons currently unknown, MAN1A2, PHC3, and TLE4 are partic-

ularly prone to PTES generation or that the PTES products from these

genes are unusually stable and not efficiently degraded by the

nonsense mediated decay pathway. If this is the case, the underlying

reasons for this stability, and how it is controlled, will be of interest.

Furthermore, as there is evidence for circular (Cocquerelle et al.

1993; Zaphiropoulos 1997; Surono et al. 1999) and linear PTES RNAs

(Caudevilla et al. 1998; Flouriot et al. 2002; this study), the possi-

bility that both could be generated from the same loci must be

considered. Lariats from spliced isoforms that may be more abun-

dant than full-length transcripts could, for instance, contribute to

PTES structures generated by the genes identified here. Detailed

experimental analyses of all transcripts from these genes, and of the

processes that create them, are therefore now warranted.

Finally, the evidence that RNA secondary structure can be

involved both in exon skipping during normal spliceosomal pro-

cessing (Solnick 1985; Miriami et al. 2003; Lev-Maor et al. 2008;

Warf and Berglund 2010) and in PTES (Dixon et al. 2007), raises the

further possibility that a proportion of co-linear spliced products

(which exhibit no disruption of exon order relative to genomic

DNA) could also be generated from more than one pre-mRNA.

Since the discovery of splicing (Berget et al. 1977; Chow et al.

1977), it has been implicitly assumed that spliced mRNA isoforms

are generated from single pre-mRNA molecules with looping out of

intervening introns and exons. However, there is no a priori reason

why a proportion of some spliced mRNAs could not be generated

via the interaction of two pre-mRNAs. This could be particularly

relevant to splices involving the proximal and distal exons of genes

spanning large genomic regions. Rates of RNA polymerase II tran-

scription in humans have been estimated to be ;2.4–3.8 kb/min,

and splicing can occur co-transcriptionally (Roberts et al. 1998),

being observed as early as 10 min after synthesis (Tennyson et al.

1995; Singh and Padgett 2009). As a result, the 59 introns of many

genes may be processed before 39 introns are transcribed, yet tran-

scripts with alternative splices requiring removal of ;800 kb of

transcribed genomic DNA have been reported (Surono et al. 1999).

While the generation of such transcripts could utilize secondary

structure and/or protein interactions to prevent intervening exons

from being spliced (Roberts et al. 1998; Warf and Berglund 2010),

they could also be generated through the splicing of two inde-

pendent pre-mRNAs. Interestingly, both increased intron length

and transcriptional pausing can increase the level of PTES transcripts

generated from transgenic Sp1 constructs (Takahara et al. 2005).

Thus, while the data presented here indicate that PTES transcripts

are generated by a much larger number of human genes than pre-

viously thought, that they can be conserved, and that they can be

expressed at a high level relative to canonical transcripts, the data

Figure 6. Genomic Southern analysis of PTES exons. (A) Position of
exons flanking PTES junctions in four genes relative to genomic HinDIII
and EcoR1 sites (Build GRCh37/19). (B) Southern blots of human genomic
DNA using the probe and enzyme combinations shown in A ([H] HinDIII;
[E] EcoR1). The expected product sizes are shown in each case. For details,
see Methods and Supplemental Table S6.
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also suggest that the fundamental assumption that human mRNA

processing is overwhelmingly co-linear may need to be reassessed.

Methods

Sample preparation
Total RNA for sequencing was extracted using the RNeasy Micro kit
(Qiagen). Other total RNAs were isolated using Trizol (Invitrogen).
PolyA+ RNA was isolated using a Dynabeads mRNA purification kit
(Invitrogen). DNA was isolated using phenol/chloroform/isoamyl
alcohol extraction following proteinase K digestion (Maniatis et al.
1982). The quantity of RNA and DNA was estimated using the
NanoDrop ND-1000 spectrophotometer (NanoDrop), and RNA
quality was established using the Agilent 2100 Bioanalyser (Agilent
Technologies).

Transcriptome sequencing

Sequence from four primary NB tumors (Lastowska et al. 2007),
four ALL samples (Case et al. 2008), and the NB cell line IMR32
(Clementi et al. 1986) was generated, originally to develop and
assess mutation detection pipelines. Appropriate informed con-
sent for use of all primary material was obtained (Lastowska et al.
2007, Case et al. 2008). Six templates (from L466, L547, L612,
L731, NB5, and NB19) were prepared using the Illumina mRNA-
seq sample preparation kit (part no. 1004898) according to man-
ufacturer’s recommendations, with the exception that 500 ng of
total RNA was used for each template with 17 cycles of amplifica-
tion. Approximately 9.2 Gb of unpaired 76-bp sequence reads was
generated on the Illumina Genome Analyzer II platform according
to the manufacturer’s protocols (Illumina) by Geneservice. Six
templates (NB3, IMR32, NB6, NB5, L466, and L612) were also
prepared by oligo dT priming using the SMART cDNA Synthesis kit
(Clontech). These were used to generate a further ;0.5 Gb of un-
paired sequence data on the GS-FLX 454 platform (Roche) by
NewGene using the GS LR70 sequencing kit according to the rec-
ommended protocols. Average read lengths varied between tem-
plates from 195–252 bp. For all samples, two independent cDNA
templates were sequenced to facilitate the subsequent identifica-
tion of PCR artifacts. All sequence data are available from the Se-
quence Read Archive under accession no. SRA023629.

In silico identification of PTES transcripts

Illumina reads were converted to FASTA format using the sol2sanger
and fq-all2std scripts within MAQ (http://maq.sourceforge.net/
maq-man.shtml). All reads were aligned to the human RefSeq gene
set build 36.1 using the GS Reference Mapper (Roche). Perl scripts
were then used to identify rearranged transcripts as follows: reads
within FLX PairAlign files with two or more independent matches
to RefSeq, each with >95% identity over >25 bp, where the two
matches overlapped by a maximum of 5 bp were identified. Reads
where the matches were >10 bp apart within the sequencing read
and/or in different orientations within RefSeq were then removed.
Reads where both matches were to the same RefSeq entries were
further processed to distinguish reads where both matches to
RefSeq were in the same order relative to the read (alternatively
spliced isoforms) from those where the matches were in an
inverted order (rearranged transcripts). All perl scripts are available
upon request. The structure of all reads passing these filters were
then manually analyzed using BLAT (Kent 2002) to remove reads
where the junction between the two independent hits to RefSeq did
not correspond precisely to two exon boundaries and to remove
reads that mapped to other regions of the genome at a higher

identity that to the top RefSeq entries. To compare read counts at
PTES and canonical splice junctions, reads were mapped as before to
60-bp sequences consisting of 30 bp on either side of each PTES
splice junction (E(x) � E(N)) and equivalent 60-bp sequences from
both related canonical junctions (E(X) � E(X+1) and E(N�1) � E(N)).
A minimal sequence match of 40 bp was enforced to ensure speci-
ficity. Minor differences in read counts relative to other analyses
were observed due to the different mapping parameters used.

PCR

Human fetal RNAs and DNAs were extracted from tissue samples
obtained from the MRC/Wellcome Trust Human Developmental
Biology tissue bank (http://www.hdbr.org/). RNAs from adult tis-
sues were obtained from BioChain Institute Inc. All cDNA and
DNA samples for RT-PCR validation experiments were generated
using the random priming TransPlex Whole Transcriptome Am-
plification Kit or Genome Plex Complete Whole Genome Ampli-
fication Kit (Sigma Aldrich) using 50–100 ng of template according
to the manufacturer’s instructions. Templates for subsequent RT-
PCR and real-time PCR experiments were generated using the High
Capacity cDNA reverse transcription system (Applied Biosystems).
Templates for 59 and 39 UTR reactions were generated by oligo-dT
primed SMART cDNA Synthesis (Clontech). PCR reactions were
performed as 20 mL reactions using 0.065 U/mL GoTaq polymerase
in 13 buffer (Promega) or HotStar Taq (Qiagen) with 200 mM of
each dNTPs (Fermentas), 500 pM forward and reverse primer
(Metabion), and 0.5ng/mL cDNA or 2.5 ng/mL DNA, respectively.
Amplifications to 59 and 39 UTRs were performed using Phusion
high-fidelity DNA polymerase (Finnzymes) according to the
manufacturer’s recommended protocols. Primers were designed
using Pimer3 (Rozen and Skaletsky 2000). Thermo cycling was
performed using an MJ Research Peltier ThermalCycler (MJ Re-
search) with 5-min denaturation at 95°C, 30 cycles of 30-sec de-
naturation at 95°C, 30 sec annealing at 58°C–64°C depending on
the primers used, and 1-min elongation at 72°C followed by a final
10-min elongation at 72°C. All PCR primer sequences are given in
Supplemental Tables S5 and S6.

Sequencing of PCR products

Individual fragments were gel extracted and purified using Qiaquick
PCR purification columns (Qiagen), sequenced using Sanger se-
quencing by GeneService, and deposited in GenBank (accession
nos. HQ234305-HQ234314, HQ234317, and HQ283388). PCR re-
actions containing multiple products from the same gene were
subjected to FLX amplicon sequencing, and the data were deposited
in the Sequence Read Archive under accession no. SRA023629.

Real-time PCR

All real-time PCR was performed using amplicons of between 90 bp
and 166 bp in length using internal probes with a 59 FAM fluo-
rescent dye and 39 TAMRA quencher (Metabion). All primer pairs
were designed to amplify across at least one exon boundary, and
the specificity of amplification in cDNA was confirmed prior to
use. PTES and canonical (unrearranged) amplicons from each gene
were designed to use the same probe and to be of similar size to
minimize amplification bias. The concentration of forward and
reverse primers varied from 100–300 pM as primer concentrations
for each transcript analyzed was optimized to maximize reaction
efficiencies. Only PTES and canonical assay pairs where the ampli-
fication efficiencies differed by <3% were subsequently used (see
Supplemental Table S6). Reactions were performed in 15 mL volume
using 0.6 ng/mL cDNA, 100 pM TaqMan probe, and TaqMan PCR
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Master Mix (Roche) using the ABI 7900 HT Fast real-time PCR Sys-
tem (Applied Biosystems) with the following cycling parameters:
2-min initial activation of the polymerase at 50°C, 10-min initial
denaturation at 95°C, and 45 cycles comprising a 15-sec dena-
turation step at 95°C and a 1-min combined annealing and elon-
gation step at 60°C. The mean Ct value of three amplifications from
each template was normalized against the averaged expression level
of the endogenous control genes PPIA (Fischer et al. 2005), ACTB,
and GAPDH (Applied Biosystems), each run in triplicate.

In vitro transcription

PTES and canonical splice junctions were amplified using primers
containing the BamH1 and Sal1 restriction sites (Supplemental Ta-
ble S6), ligated into the polylinker of pBluescript KS+ (Strategene)
using T4 DNA ligase (New England Biolabs), and electroporated into
DH5a cells according to the manufacturer’s recommendations.
Clones with the desired inserts were identified using Xgal/IPTG
color selection followed by PCR and Sanger sequencing. Plasmid
DNAs were isolated using Qiagen mini prep columns (Qiagen), and
the inserts were amplified using M13 forward and reverse primers.
In vitro transcription of 250 ng of each plasmid was performed us-
ing T7 MEGAscript kit (Applied Biosystems) according to the man-
ufacturer’s recommended protocols. DNase-treated RNA was puri-
fied using NucAway Spin Columns (Applied Biosystems), and RNA
concentrations were adjusted to 2 3 1012 molecules/mL based on
amplicon size. Equal volumes of each RNA were then pooled, and 3
mg of this pool was used to generate a single template that was
subject to first-strand cDNA synthesis using a high-capacity cDNA
reverse transcription kit (Applied Biosystems). Three independent
pools were created and reverse transcribed to give three control
templates that were serially diluted for SC generation.

Electrophoresis, Southern transfer, and hybridizations

Digestion with restriction enzymes (New England Biolabs), electro-
phoresis, and Southern blotting using Hybond-N+ membranes (GE
Healthcare) were carried out using standard methods (Maniatis et al.
1982). DNA probes were generated by PCR, cleaned using Qiaquick
purification columns (Qiagen), and labeled with a32P-dCTP by
random oligonucleotide priming (Feinberg and Vogelstein 1984)
using the Megaprime DNA labeling system Kit (GE Healthcare).
Filters were prehybridized for 1 h at 65°C in 63 SSC 1%SDS with 0.1
mg/mL denatured sheared salmon sperm DNA and 53 Denhardt’s
solution (Maniatis et al. 1982), hybridized for 16 h at 65°C in the
same solution, washed at high stringency (0.53 SSC 0.1% SDS at
65°C), and exposed to Kodak Biomax MR X-ray film for 24–72 h at
�70°C with intensifying screens.

Data access
Sequence data from this study have been submitted to the NCBI
Sequence Read Archive (http://trace.ncbi.nlm.nih.gov/Traces/sra/
sra.cgi) under accession no. SRA023629 and to GenBank (http://
www.ncbi.nlm.nih.gov/genbank/) under accession nos. HQ234305–
HQ234314, HQ234317, and HQ283388.
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