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ABSTRACT
We have generated complementary halo mass estimates for all the groups in the Galaxy And
Mass Assembly Galaxy Group Catalogue (GAMA G3Cv1) using a modified caustic mass
estimation algorithm, originally developed by Diaferio & Geller. We calibrate the algorithm
by applying it on a series of nine GAMA mock galaxy light cones and investigate the effects
of using different definitions for group centre and size. We select the set of parameters that
provide median-unbiased mass estimates when tested on mocks, and generate mass estimates
for the real group catalogue. We find that on average, the caustic mass estimates agree with
dynamical mass estimates within a factor of 2 in 90.8 ± 6.1 per cent groups and compare
equally well to velocity dispersion based mass estimates for both high- and low-multiplicity
groups over the full range of masses probed by the G3Cv1.

Key words: galaxies: groups: general – galaxies: haloes – dark matter – large-scale structure
of Universe.

1 I N T RO D U C T I O N

A quantitative understanding of the largest structures in the Universe
provides a rigorous test of cosmology and dark matter simulations
(Eke, Cole & Frenk 1996). One of the principal assumptions of
the � cold dark matter (�CDM) paradigm is that galaxy groups
serve as tracers of the underlying dark matter haloes. It is thought
that prior to the decoupling of matter and radiation, dark matter
particles, with their smaller interaction cross-section, formed over-
dense regions under the influence of gravity. Following decoupling,
baryonic matter is left to free fall into these overdense regions and
form the building blocks of the large-scale structure of the universe
(Springel et al. 2005). Empirical measurements of the distribution

�E-mail: ma276@st-andrews.ac.uk

and masses of galaxy groups therefore provide a powerful constraint
for different dark matter models.

Traditionally, mass estimates of groups are calculated virially,
via measurements of the velocity dispersions of their members (e.g.
Hughes 1989; Carlberg et al. 1996; Girardi et al. 1998; Tucker
et al. 2000). By assuming that the group is in virial equilibrium, the
dynamical mass of the group follows the relation M ∝ σ 2R. The
obvious limitation of this method is that the relation will hold only
out to the virial radius of the galaxy group, so mass estimates made
using galaxies beyond this radius become less reliable. More accu-
rate mass estimates at large radii are possible using weak lensing
(Kaiser, Squires & Broadhurst 1995); however, the obvious draw-
back of this approach is the observational challenge involved in
measuring the lensing signal for a large galaxy group sample.

A different approach to group mass estimation is to look at the
distribution of galaxies within a group in redshift space (the pro-
jected distance r from the group centre and the line-of-sight velocity
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v with respect to the median group redshift for every member of
the group) and estimate the group escape velocity by interpreting
the distinct shape of this distribution. This method of analysing
galaxy group members in redshift space was first introduced as a
mass estimator by Diaferio & Geller (1997, hereafter DG97) and
Diaferio (1999, hereafter D99) and is known as the caustic mass
estimation technique. An early version of the method was first used
in an attempt to constrain cosmological parameters, specifically �M

(Regös & Geller 1989) with little success. In identifying that veloc-
ity measurements of galaxy groups were heavily affected by random
motions, as well as by comparing observed caustics to those pre-
dicted by cosmological models, DG97 determined that this method
is unreliable for determining �M. Navarro, Frenk & White (1997)
went on to demonstrate that the density profiles of dark matter haloes
do not vary with cosmological parameters. However, the amplitude
A(r) = min{|vu|, |vl|} of these caustics, defined as being half the
difference between the upper and the lower line-of-sight velocities
vu and vl does provide a measure of the gravitational potential φ(r)
of the group. The method has been subsequently used by Diaferio,
Geller & Rines (2005), Diaferio (2009) and Serra et al. (2011) as a
robust way of calculating masses of galaxy groups using all of the
positional information from a group (out to R200) and as a test for
cluster membership (Rines & Diaferio 2006). Additional research
has shown that for a set of rich X-ray luminous clusters, caustic
mass estimates agree to within a ratio of 1.03 ± 0.11 with mass
estimates obtained via lensing analysis (Rines et al. 2003).

In this work we apply the caustic method to the Galaxy and Mass
Assembly (GAMA1) Galaxy Group Catalogue (hereafter G3Cv1;
Robotham et al. 2011) and attempt to provide complementary caus-
tic mass estimates to the dynamical mass estimates of the group
haloes within the catalogue with the aim of verifying these masses.
By also applying the method to mock light cones that mimic the
GAMA data we are able to carefully calibrate our algorithm to pro-
duce median-unbiased mass estimators for each galaxy group using
only redshift and positional information out to radii that are well
beyond the virial radius.

The GAMA project (Driver et al. 2009, 2011) is an ongoing major
galaxy survey covering 21 bands of the electromagnetic spectrum
from the ultraviolet through to radio wavelengths using a multitude
of ground- and space-based telescopes. The aims of the survey are
to cover a region of ∼360 deg2 and to obtain ∼400 000 redshifts
for galaxies to a magnitude of rAB = 19.8 mag. During phase one
of GAMA we observed three fields of 4 × 12 deg2 centred at α =
9 h, δ = 1◦ (G09), α = 12 h, δ = 0◦ (G12) and α = 14.5 h, δ = 0◦

(G15). In phase two we are expanding these to 5◦ × 12◦ as well
as gathering data in three new fields. One of the principal scientific
goals of GAMA is to understand and better constrain the halo mass
function (HMF; Press & Schechter 1974; Lacey & Cole 1994; Sheth,
Mo & Tormen 2001; Warren et al. 2006; Tinker et al. 2008), which
describes the relationship between the mass and number density
of dark matter haloes. To that end, it is very important for any
catalogue of galaxy groups produced to have accurate and reliable
mass estimates, particularly for low-mass groups.

This paper is structured as follows. In Section 2 we briefly de-
scribe the theoretical framework behind the caustic mass estimation
method, our changes to the algorithm and a step-by-step descrip-
tion of its implementation. In Section 3 we discuss the data set used
in this work (mock galaxy group catalogues created for GAMA
and the actual groups themselves), and our results are presented

1 http://www.gama-survey.org/

in Section 4. We summarize our results in Section 5. Through-
out this paper, consistent with the cosmology used to create the
GAMA mocks and Robotham et al. (2011), we use a cosmology of
�m = 0.25, �� = 0.75 and H0 = h 100 km s−1 Mpc−1.

2 M E T H O D O L O G Y

The caustic method relies on analysing the distribution of group
members in a redshift-space diagram, which is defined in D99 as the
plane (r, v) of the galaxies, where r is the projected radial separation
from the group centre and v is the line-of-sight velocity relative to
the group centre of mass. The spherical infall model of Regös &
Geller (1989) predicts the existence of two trumpet shaped ‘lines’ on
this plane where the phase-space density in redshift space is infinite;
and in practice these trumpets are observed when looking at both
simulated and real groups. By definition, galaxies outside of these
caustics are beyond the turnaround radius of the group. If we assume
that galaxies lying outside the caustics are considered to be escaping
the group, it follows that the caustic describes the escape velocity
v2

esc(r) of a cluster as a function of distance r from its centre. The
term ‘caustic’ refers to the formation of a singularity at a location
where the Jacobian of a coordinate transformation vanishes; in the
case of the caustic method, this is the transformation from real
to redshift space. In the spherical model, this causes the galaxies
within a group to collapse to the peak redshift of the group along
the line of sight, placing them somewhere between the centre of the
group and the turnaround radius. In redshift space this translates to
the trumpet-like lines that describe the escape velocity of the group.

Here follows a brief review of the physical justification behind
the caustic method. Full details of the model can be found in DG97,
D99 and Serra et al. (2011). Assuming a spherically symmetric
model, the escape velocity within a shell of radius r for a group
is given by v2

e (r) = −2φ(r). Given our position as observers, it
is the line-of-sight component (vlos) of this escape velocity that
determines the location of the caustics, but this value depends upon
the escape velocity profile of the cluster which we may not always
know. Instead, we require an expression for the caustic amplitude
that is independent of the escape velocity profile. Serra et al. (2011)
determine such an expression via the thought process summarized
below.

We begin by looking at the velocity anisotropy parameter β(r) =
1 − (〈v2

θ 〉 + 〈v2
φ〉)/2〈v2

r 〉, where vθ , vφ and vr correspond, respec-
tively, to the longitudinal, azimuthal and radial components of an
individual galaxy’s velocity. If we assume that cluster rotation is
negligible, 〈v2

θ 〉 = 〈v2
φ〉 = 〈v2

los〉 and 〈v2
r 〉 = 〈v2〉 − 2〈v2

los〉, where
vlos is the line-of-sight component of the velocity. Rearranging this
for 〈v2〉 and incorporating the equality of all velocity components
into the expression for β(r) gives

〈v2〉 =
〈
v2

los

〉 (
3 − 2β(r)

1 − β(r)

)
≡

〈
v2

los

〉
g(r), (1)

where

g(r) = 3 − 2β(r)

1 − β(r)
=

2
〈
v2

los

〉
+

〈
v2

r

〉
〈
v2

los

〉 . (2)

Given that the potential of a system is related to its escape ve-
locity in the form of −2φ = 〈v2

esc(r)〉, it is possible to link the
potential to the caustic amplitude if we make the assumption that
A2(r) = 〈v2

esc,los〉 in the form

−2φ(r) =
〈
v2

esc,los

〉
g(r) = A2(r)g(r), (3)
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which reduces our problem to having only one unknown: the pa-
rameter β. The final link in the chain is to consider the mass of an
infinitesimal shell:

G dm = −2φ(r)F (r) dr = A2(r)g(β)F (r) dr, (4)

with F (r) = −2πGρ(r)r2

φ(r) . Combining the expression for F (r) and
G dm brings us back to the familiar result for the mass of a shell;
G dm = 4πGρ(r)r2 dr . Integrating equation (4) gives

GM(< r) =
∫ r

0
A2(r)g(r)F (r) dr. (5)

This expression is close to what we need, but is limited by the
fact that the density profile of the system needs to be known in
order to get a value for the mass. To overcome this, D99 assume
that Fβ (r) = F (r)g(β) is a slowly varying function with respect to
the radius of the system in hierarchical clustering scenarios, and this
result is confirmed by Serra et al. (2011). We therefore set Fβ (r) to
be constant and adopt the value of Fβ = 0.7 of Serra et al. (2011;
this is not critical, as we later adjust our mass estimates by a scaling
factor, discussed below), giving the final expression

GM(< r) = Fβ

∫ r

0
A2(r) dr, (6)

which can be used to provide mass estimates for our data sample.

2.1 Caustic mass estimation algorithm

A successful caustic mass estimation algorithm must be able to
successfully infer the continuous dark matter distribution in the
halo from a discrete set of points determined by galaxies. The
most important goal of our algorithm is to correctly determine the
location of the caustic for a group. To do this, we project the group
into an area of redshift space and generate a kernel that describes
the continuous density of the group within this area (Pisani 1993).
Based on this density distribution, the algorithm then determines a
threshold at which the caustic is placed.

For a given galaxy group for which member positions are known
(α, δ and z), the projection into redshift space takes place via the
following transformations:

r = cDA(zc)

H0
tan ψ (7)

and

v = c
z − zc

1 + zc
, (8)

where DA is the comoving distance to the galaxy, zc is the redshift
of the group centre and ψ is the angular separation of a member
galaxy from the group centre at redshift z along the line of sight.
The area of redshift space is therefore determined by the full radial
extent of the group and its range of line-of-sight velocities. Consider
N galaxies in a cluster distributed in a redshift diagram with coor-
dinates x = (r, v). Using an adaptive kernel method (Silverman
1986), we describe the density distribution of these galaxies as

fq (x) = 1

N

N∑
i=1

1

h2
i

K

(
x − xi

hi

)
, (9)

where K is the adaptive kernel

K(t) =
{

4π−1
(
1 − t2

)3
if t < 1,

0 otherwise,
(10)

and hi = hchoptλi is the local smoothing parameter. λi =
[γ /f1(xi)]

1/2, where f 1 is equation (9) where hc = λi = 1 for

any i and log γ = ∑
i log [f1(xi)] /N . The motivation for using

an adaptive kernel estimator is to have a density estimator that can
adapt to density distributions where the true probability density
changes quickly (Pisani 1993); this is generally a caveat of fixed
kernel estimators that risk to oversmooth or undersmooth the prob-
ability distribution. Finally, the optimal smoothing parameter hopt

is

hopt = 3.12

N1/6

(
σ 2

r + σ 2
v

2

)1/2

, (11)

where σ r and σ v are, respectively, the uncertainties in the galaxy
coordinates. The positional uncertainty σ r is calculated from the
astrometric uncertainties in GAMA and is negligible, while for σ v

we use the same value of 55 km s−1 as used in Robotham et al.
(2011).

Performing this calculation can take a great deal of time, par-
ticularly when it comes to calculating f q and optimizing for the
best value of hc. A faster, time-saving way of obtaining the density
estimator is to use fast Fourier transforms (FFTs) to convolve a 2D
histogram of the data in redshift space with the adaptive kernel (Sil-
verman 1986). Other alternative implementations of the algorithm
include using friends-of-friends (FoF) algorithms and binary trees,
but in our case, where the galaxy groups have already been selected
and statistically well defined, the FFT approach works best. The
process is described in Silverman (1986) for one dimension, but
can easily be extended to two.

We begin by creating a 2D normalized histogram of the galaxies
in redshift space (projected radius from the group centre versus line-
of-sight velocity), and over the same parameter space, a histogram
of calculated values for the kernel given in equation (10). The
smoothing parameters λi, hopt and hc are used to adjust the values
of the data histogram. The density estimate f q(r, v) is defined as
the inverse FFT of the product of the forward FFT of the data and
kernel histograms, or in other words

fq (r, v) = F−1 [F (data) × F (kernel)] , (12)

where F and F−1 denote forward and inverse FFTs, respectively.
The end result of this calculation is a 2D matrix that describes the
density distribution of the group galaxies in redshift space; note
that we use the modulus of this matrix in order to discard any phase
shifts caused by the Fourier transforms. The matrix has dimensions
of 28 × 28; we find that any size lower than 27 × 27 does not provide
our algorithm enough resolution to give reliable results. The caustics
are drawn on the density distribution on locations where f q(r, v) =
κ , and κ is obtained by minimizing the function S(κ , R) taken from
D99:

S(κ, R) =
∣∣∣〈v2

esc

〉
κ,R

− 4〈v2〉R
∣∣∣2

, (13)

where the term 〈v2
esc〉κ,R is the square of the mean escape velocity

at R for a given value of κ . This corresponds to the average size
of the caustic amplitude from the group centre to the maximum
projected radial distance R for a given value of κ and 〈v2〉R is the
group velocity dispersion taken from the G3Cv1. To minimize the
function S(κ , R), we wish to find the value of κ for which the
average caustic size is equal to 4〈v2〉R. We use the R function OPTIM

to do this; OPTIM is a general-purpose optimization function based
around the Nelder–Mead algorithm (Nelder & Mead 1965), which
lends itself particularly well to this task as S(κ , R) is a parabolic
function with only one well-defined minimum. Once the location
of the contour is determined (black line in Fig. 1), the algorithm
draws the caustics (green lines in Fig. 1 along min{|vu|, |vl|}, where
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Figure 1. Four examples of the placement of the contour κ (black) and
the caustics fitted to it (green) for four FoF mock galaxy groups (whose
galaxies are shown as the black points) from the G3Cv1 in descending order
of luminosity. It is evident here that the FFT method used to estimate the
density distribution causes the final caustics to be very smooth with respect
to the caustics drawn in DG97 and D99. This introduces a source of error in
our caustic mass estimates.

vu and vl correspond to the upper and lower values of the line-of-
sight velocity of the group along the contour). The algorithm scans
through the density distribution in bins of r, and for each bin selects
the minimum of these two velocities [vu(r) and vl(r)], and reflects it
along the line-of-sight velocity axis. The caustic amplitude beyond
the maximum extent of the group is artificially set to 0, even though
often the caustic closes before the maximum radial extent of the
group is reached (see Fig. 1).

Based on mock catalogues of galaxies built with N-body simu-
lations in DG97, there is a constraint on the logarithmic derivative
of the caustic amplitude: d lnA/d ln R ≤ 2. Any values of A(r)
for which this derivative does not hold are considered to be the
result of the caustic algorithm coming up with the wrong location
for the caustic at that particular radius, often due to excessive fore-
ground/background galaxies. Instead, in these cases we use a value
for the caustic amplitude such that d lnA/d ln R = 1/4, as in Serra
et al. (2011).

To summarize, our algorithm works as follows:

(i) convert the galaxy positions in redshift space into a 2D his-
togram of galaxy number densities;

(ii) create another histogram of the same dimensions containing
values for the kernel as per equation (9);

(iii) calculate f q(r, v) using equation (12);
(iv) calculate the best value for κ with equation (13);
(v) fit the caustics by reading off the minimum value of |vu| and

|vl| along r whilst ensuring that the derivative inequality holds;
(vi) integrate between the caustics to estimate the mass of the

group using equation (14) and scale it accordingly to obtain a
median-unbiased estimator.

It is important to stress that this FFT implementation of the kernel
estimator still retains the calculations and expressions given in this
section; we simply speed up the procedure of calculating the density
distribution by applying the kernel with a FFT.

Our final mass expression is

Mc

h−1 M

= 0.7Ac

G/(M
 km2 s−2 Mpc)

∫ r

0
A(r)2 dr, (14)

where r is given in units of h−1 Mpc and A in s−1 km.
∫ r

0 A2(r) dr

is calculated by discretizing A(r) over a set of equally spaced steps
and Ac is the caustic mass scaling factor. In Fig. 1 we show example
caustic fits for four FoF mock galaxy groups of descending total
luminosity (from 1012 to 109 h−2 L
).

Despite the computational efficiency of the FFT method to cal-
culate the density estimate, there are a number of drawbacks that
need to be addressed. To begin with, the area over which the 2D
histograms for the data and the kernel are created needs to be larger
than the area the data span. This is to avoid the kernel (and the
resulting density estimate) wrapping around the borders due to the
periodic nature of Fourier transforms and results in a very smooth
density distribution compared to those shown in DG97 and D99.
This will effectively artificially increase the sizes of our caustics
and cause a systematic overestimation of the caustic mass (though
the scaling factor Ac corrects for this); the smoothing is independent
of group size as shown in Fig. 1. We do not consider the presence of
background galaxies in this analysis, and make the assumption that
the FoF algorithm used in Robotham et al. (2011) has recovered
group members as accurately as possible. This assumption is tested
in Section 3.

3 DATA

3.1 The GAMA galaxy group catalogue

The groups presented in the G3Cv1 have been identified using a
slightly modified FoF algorithm (Huchra & Geller 1982; Press &
Davis 1982) to correctly account for the distortions due to pecu-
liar velocities. It achieves this by considering projected separations
independently of radial positions. Fig. 2 shows cone diagrams con-
taining galaxies and groups for the G12 field, where it is possible
to see how they trace the large-scale structure.

The final group catalogue contains approximately 14 000 galaxy
groups with ≥2 members out to rAB = 19.4 (fields G09 and G15)
and 19.8 mag (G12 field) which encompass about 40 per cent of the
galaxies in the full GAMA catalogue. Robotham et al. estimated
their masses by using the relation M ∝ σ 2R, where σ and R cor-
respond to the velocity dispersion and the projected group radius.
The group velocity dispersion is calculated using the GAPPER al-
gorithm given in Beers, Flynn & Gebhardt (1990) where all the
recession velocities for N galaxies within a group are ordered, and
the velocity dispersion is estimated using calculated values for the
gaps between velocity pairs vi+1 − vi for i = 1, 2, . . ., N − 1. Group
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Figure 2. Example of a cut-out cone showing galaxies and groups with rAB < 19.8 for the GAMA G12 field going from 174◦ ≤ RA ≤ 186◦ out to redshift
z ∼ 0.5. From left to right, the cones display all galaxies in this field, all groups found in G3Cv1 (coloured by their total group luminosity), all grouped galaxies
and all ungrouped ones.

radius estimates were calculated for radii that contain 50, 68 and
100 per cent of the galaxies within each group (Rad50, Rad68 and
Rad100, respectively), and the projected group centre was located by
three different methods, discussed below. The mass of each group
was estimated by

MFoF

h−1 M

= A

G/(M
 km2s−2 Mpc)

(
σ 2

FoF

km2 s−2

)
RadFoF

h−1 Mpc
, (15)

where G is the gravitational constant (6.673 × 10−20 km2 s−2 Mpc),
RadFoF and σ FoF are the radius and velocity dispersion of the group
obtained by the methods described above. A is a scaling factor that is
required to obtain a median-unbiased estimate of the FoF mass with
respect to the real halo mass. It varies depending on multiplicity and
median redshift of a group. In this work we mimic the multiplicity
and redshift subsets of Robotham et al. (2011) to ensure a direct
comparison. We consider every galaxy in a group when running
our algorithm, while the dynamical mass estimates do not contain
the full radial galaxy density profile information. The projected
group centre is defined in three different ways in the G3Cv1: the
first centre corresponds to the rAB luminosity centre of light (CoL)
of all the galaxies associated with the group. The iterative group
centre is estimated by calculating the rAB CoL of the cluster and
then rejecting the most distant galaxy from this centre. This process
is then repeated until only two galaxies remain, at which point
the brightest one of these is selected as the group centre. In the

final method, the brightest group galaxy (BGG) in the rAB band is
selected as the group centre. In Section 3 we test the sensitivity of
our caustic algorithm against the three group centre definitions.

3.2 The mock group catalogue

The mock catalogues were constructed by first populating the dark
matter haloes of the Millennium Simulation (Springel et al. 2005)
with galaxies, the positions and properties of which were predicted
by the Bower et al. (2006) description of the Durham semi-analytical
model, GALFORM, and adjusted to match the GAMA survey luminos-
ity function of Loveday et al. (2012). To generate an all-sky survey
to the GAMA depth, it is necessary to stack 113 replicated copies
of the simulation box to create a ‘supercube’ (with sides of length
5500 h−1 Mpc).

Following the prescription of Merson et al. (in preparation) to
place the haloes and galaxies in the supercube at the position at
which they enter the light cone, galaxies are assigned their intrinsic
properties, such as stellar mass and fluxes in the appropriate bands.
Galaxy properties are generally not interpolated between snapshots,
with the exception of fluxes. This is to avoid discontinuities at the
snapshot boundaries. Having assigned the r-band apparent magni-
tudes, they are adjusted to perfectly match the redshift-dependent
GAMA galaxy luminosity function, following a simple abundance
matching in the r band. Finally, the flux limits of the GAMA survey

C© 2012 The Authors, MNRAS 426, 2832–2846
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are applied. We then take the all-sky mock catalogue and apply solid
angle cuts to create the nine mocks.

4 CAUSTIC MASS ESTIMATES

Before applying this algorithm to the actual group catalogue, it
is important to understand how well it performs when estimating
masses for a set of mock catalogues that have been prepared along-
side the G3Cv1. We therefore calibrate our caustic mass estima-
tion algorithm using a set of nine GAMA mock galaxy catalogues
(described in Section 2).

In these mock catalogues, the true grouping of galaxies is known,
so a well-informed calculation of their halo mass is possible. This
acts as a benchmark for our caustic mass estimation algorithm
and allows us to experiment with different implementations of the
method. Serra et al. (2011) show that fine-tuning the parameters of
the caustic mass algorithm (hc, q, κ) does not provide a consider-
able improvement of its results. Instead, we run the algorithm using
different values for the group centre given in the G3Cv1: the CoL,
the iterative group centre and the brightest cluster galaxy. This pro-
vides a useful way of testing the stability of the caustic algorithm to
different definitions of the group centre, as well as confirming the
conclusions from Robotham et al. (2011) of which definition is the
most appropriate.

4.1 Sensitivity to definition of group centre

In Robotham et al. (2011), the iterative method seems to be partic-
ularly robust at picking out the group centre even in the presence of
outliers, which tend to throw off the estimated group centre when
using the CoL method. The brightest cluster galaxy approach is also
robust to outliers, but analysis reveals that the iterative method re-
covers more group centres that match the mock groups. It precisely
matches the group centre around 90 per cent of the time, while the
CoL method is the poorest performer because it is the method that
depends most explicitly on the group being recovered completely.
For the caustic mass algorithm, we expect the most robust defini-
tion of the group centre to produce the most stable results; in other
words, the variance in the scale factors Ac for each multiplicity and
redshift bin should be minimal for the most stable group centre.
This is confirmed when we run the caustic algorithm on the mock
group catalogue and change only the location of the group centre
from the iterative CoL group centre to the BGG and then to the CoL:
σ 2(AIterCen) = 0.192, whereas σ 2(ABGG) = 0.201 and σ 2(ACoL) =
0.361. We expect the tendency of the CoL method to incorrectly
define the group centre to be an outlying bright galaxy to throw off
the placement of the caustics by deforming the density distribution
of galaxies in redshift space. However, we also expect the caustic
algorithm to be robust to minor perturbations in the placement of the
galaxies in redshift space, as the difference in the variances given
above is minor.

4.2 Sensitivity to definition of group extent

Our second exploration involves changing the number of galaxies
that we consider when calculating the mass for each group, i.e.
artificially increasing group membership. We do this by extending
the boundary of the group in redshift space to include some nearby
galaxies. In redshift space, this extension is defined as

|z − zmed| ≤ �z; �z = 4 × max|z − zmed|. (16)

Spatially, we increase the maximum distance a given galaxy can
be from the group centre. This effectively allows us to check whether
the caustic algorithm is sensitive to other interloping groups. We
find that including extra galaxies that in some cases belong to other
groups not only systematically increases the mass estimates made
by the caustic algorithm as one might expect, it also increases the
mean spread of the results (defined as the ratio of the logarithm of
the true and estimated mass) from 〈σ 2〉 = 8.33 × 10−3 for caustic
mass estimates made with the groups as they are to 〈σ 2〉 = 0.0126.
One expects the overall mass estimate to increase as a result of
including more galaxies, but the increase in spread is unexpected:
the caustic algorithm ought to work better with a greater number
of galaxies. Instead, our algorithm is unable to correctly place the
caustics in the redshift-space diagram because our extended search
cut includes galaxies that are most likely inside other independent
groups.

Visual examination of the redshift-space plots in Fig. 3 of these
extended group cuts demonstrates that the inclusion of nearby galax-
ies disrupts the distinctive trumpet-shaped distribution seen in ideal
spherical groups. Fig. 4 shows a mass comparison between the
group catalogue data and the extended group cut. Shown are a sub-
set of groups; those that with redshift between 0 and 0.1 and with
5–9 members (before including nearby galaxies). The caustic mass
estimates made with the extended group cut (in dashed black lines)
show a much greater spread, due to the reasons described above.

This result highlights the importance of carefully determining
group membership when using the caustic algorithm, as the pres-
ence of galaxies that are not associated with the group being consid-
ered can have a catastrophic effect on the locations of the caustics,
ultimately resulting in an incorrect mass estimate (Fig. 5). By com-
bining the caustic method with the FoF algorithm used to determine
group membership for the G3Cv1 and mocks, we are able to signifi-
cantly reduce the probability of the caustics being placed incorrectly
due to the presence of interloper galaxies within a group.

4.3 Application to mocks

Using the original grouping from the G3Cv1 with the iterative group
centre, we calculate caustic mass estimates for every group in the
mock catalogues and calculate Ac for a set of redshift and multiplic-
ity bins in order to make these estimates median unbiased (Table 1).
Fig. 6 shows the results of this process for each multiplicity and red-
shift bin, comparing the distribution of caustic mass estimates (in
black) to the dynamical mass estimates (red). The caustic method
performs best in very populated groups (N ≥ 200, of which there is
only one such group in the G3Cv1), demonstrated by the fact that
the scatter of the distribution of mass estimates shown in Fig. 6 de-
creases as a function of increasing multiplicity. We would normally
expect the scaling factor Ac to always equal 1. Instead, we find that
the caustic mass is systematically greater than the masses of the
mock groups, i.e. Ac < 1. The only exception to this is for groups
with two to four members, where the caustic algorithm is much
more likely to fail to find appropriate contours, and thus defaults
to a specific value, artificially adding a tail to the distribution of
masses for that group subset. It is likely that due to the simulated
galaxy groups in the mock catalogues not being perfectly spheri-
cal, the groups not being virialized (one of the basic assumptions
of the spherical infall theory, on which the caustic algorithm is
based, is that the group is virialized), the extra smoothing in our
caustic introduced by using FFT to calculate the density distribu-
tion f q(r, v), as well as the fact that the caustic method works best
for galaxies with more than 200 members, Ac is not always equal
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Figure 3. Side-by-side comparison showing how the caustic mass estimation performs for a large mock galaxy group. In both panels, the black points represent
the locations of galaxies in redshift space, the black lines show the contour f q(r, v) = κ and the green lines are the caustics drawn along min{|vu|, |vl|}. The
left-hand panel is a caustic fit only for galaxies present within this mock group and shows a clear example of the ‘trumpet’ distribution. The right-hand panel
includes nearby galaxies in redshift space out to ±4R100 and |z − zmed| ≤ 4 × max|z − zmed| whilst circling the original group members in red. In this case,
the trumpet distribution is lost and the caustics are artificially closed at the end of the sample.

Figure 4. The black dashed contours show the results of running the caus-
tic algorithm on the mock catalogues and considering a larger number of
galaxies around each cluster in the catalogues. By comparison, the solid
black contours represent the mass estimates made when considering only
galaxies known to be in each group from the simulation. Finally, the red
contours represent the distribution of the dynamical mass estimates from
the G3Cv1. All three distributions have been adjusted to the same median
as the dynamical mass estimates, shown in the red contours. Each contour
line contains 10, 50 and 90 per cent of the points, and the dashed green lines
are two, five and 10 times away from the median.

Figure 5. A projection of the mock group in Fig. 3 showing all galaxies
within the mock group circled in red, and all galaxies that are detected when
the algorithm includes nearby galaxies out to ±4R100 and |z − zmed| ≤ 4 ×
max|z − zmed|. The area shaded in blue represents the physical size of the
simulation region at the median redshift of the group. At this range, it is
evident that the algorithm is including galaxies that are likely to belong to
other separate groups.

to 1 as it should be in an ideal case. The overall variation in the
scale factor Ac is roughly a factor of 4.5, which is of the order of
the range of scaling factors used to calibrate the G3Cv1 dynamical
mass estimates (see table 3 in Robotham et al. 2011). In contrast
to the dynamical mass estimate scaling factors, the caustic mass
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Table 1. Values for Ac for each group subset in both the rAB < 19.4 and rAB < 19.8 mock G3Cv1 mock catalogues using iterative group
centres and with all galaxies in group. Including these numbers in equation (14) gives a median-unbiased estimate for the group mass.

2 ≤ NFoF ≤ 4 5 ≤ NFoF ≤ 9 10 ≤ NFoF ≤ 19 20 ≤ NFoF ≤ 1000
19.4 19.8 19.4 19.8 19.4 19.8 19.4 19.8

0 ≤ zFoF ≤ 0.1 1.63 1.63 0.43 0.43 0.45 0.46 0.41 0.41
0.1 ≤ zFoF ≤ 0.2 1.58 1.59 0.43 0.43 0.42 0.42 0.38 0.39
0.2 ≤ zFoF ≤ 0.3 1.52 1.53 0.42 0.44 0.36 0.38 0.35 0.35
0.3 ≤ zFoF ≤ 0.5 1.18 1.21 0.29 0.31 0.29 0.29 0.24 0.26

Figure 6. Distribution of caustic (dynamical) masses for the intrinsic mock groups as a function of halo mass, drawn in black (red) for rAB ≤ 19.4. For each
panel, both mass estimates have been corrected to be median unbiased. The contours represent areas containing 10, 50 and 90 per cent of the groups and the
green lines are regions where the mass estimate is two, five and 10 times off the true mass. Of particular interest is the tendency for both distributions to follow
each other very closely, particularly when overestimating or underestimating the true halo mass.

scaling factors vary less as a function of redshift, but are far more
susceptible to variations in group multiplicity.

As expected, the least satisfactory results are for groups that
are galaxy pairs, where there is little velocity information for the
caustic algorithm to use. This explains the presence of large tails
in the 2 ≤ NFoF ≤ 4 panels of Fig. 6. However, we must note that

both methods tend to fail at these low multiplicities. For higher
multiplicity and redshift cuts, the caustic mass estimate probability
distribution functions (PDFs) shown in this figure agree extremely
well with those of the dynamical mass estimates, indicating some
correlation between both algorithms when it comes to performing
badly for certain galaxy groups. This can be seen in the scatter
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Figure 7. PDFs of median-unbiased values of log Mest/MHalo for the rAB < 19.4 sample, with caustic masses drawn in black and dynamical masses in red.
The blue line is the PDF of log Mc/Mdyn and highlights the agreement between the two methods. The green dashed lines indicate regions that are factors of
2, 5 and 10 away from the ‘true’ mass. The difference between scatter in the caustic and dynamical mass estimates is often minimal, with the caustic method
showing less scatter for groups with 5 ≤ NFoF ≤ 19.

plots as both contours tend to follow roughly the same profile,
meaning that it is likely that a group that performs badly in one
algorithm is likely to do so with the other. This is particularly
visible for the 10 ≤ NFoF ≤ 19, 0.3 ≤ zFoF ≤ 0.5 bin where there
is a secondary concentration of high-mass groups that is present in
both distributions.

Fig. 7 translates the information shown in Fig. 6 into a set of den-
sity distributions where the ratio between the caustic and dynamical
mass estimates and the known halo mass (shown in black and red,
respectively) is displayed alongside the ratio between both mass
estimates (in blue). As seen on Fig. 7, for groups with a mid-range
multiplicity (5 ≤ NFoF ≤ 19) the caustic mass estimates have a
greater spread than the dynamical mass estimates; this is true across
all redshift bins. For groups with NFoF ≤ 4, the scatter is comparable
across all redshifts. Both methods produce estimates that are within

a factor of 2 in agreement with each other. The large tails seen in
Fig. 6 are visible here: the small ‘bumps’ forming on the right-
hand side of the distribution are seen in both distributions, once
again demonstrating that both methods tend to fail in similar ways.
Despite the caustic algorithm being designed for high-multiplicity
groups, we are still able to make reasonable estimates of the group
mass.

Our aim is for the caustic mass estimate to recover the intrinsic
halo mass of each group as accurately as possible. However, in
practice and when applying the algorithm to the real data in the
G3Cv1, we must run the algorithm not on intrinsic groups, but on
groups defined by the FoF algorithm used in Robotham et al. (2011).
An important test therefore is to see how the caustic mass estimation
algorithm performs on bijectively matched groups drawn out from
the mock catalogue using the same FoF algorithm, and the results
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Galaxy group masses via caustic analysis 2841

Figure 8. As in Fig. 6, but for bijectively matched groups identified by the FoF algorithm instead of the true known intrinsic grouping. The coloured lines
represent regions containing 10, 50 and 90 per cent of groups. The black contours compare the caustic mass to the FoF halo mass, and FoF dynamical mass
estimate to the FoF halo mass estimate are shown by the red contours.

of this can be seen in Figs 8 and 9. In both figures the distribution
of data mimics that of the distributions for the caustic masses on the
intrinsic mock groups, with these showing less scatter compared to
the caustic masses of the FoF mock groups. Given that the design of
the FoF algorithm used in Robotham et al. (2011) to construct the
groups in both the mocks and the final group catalogue is to reject
groups that have significant outliers, this greater agreement indicates
that the caustic mass estimate may be slightly more sensitive to
outliers.

One final check is to examine how the caustic mass estimates
perform as a function of the quality of the grouping, as defined
in Robotham et al. (2011). The total quality parameter, QTot, is a
measure of how significantly matched individual groups are. The
best two-way matching group is defined as being the one which
has the largest product for the relative membership between the
recovered FoF group and the closest matching mock group [see

equations (12)–(14) in Robotham et al. (2011)]. In Fig. 10 we show
how the two mass estimates behave as a function of QTot. From the
left-hand panel we are able to see that the caustic mass estimates
behave in just the same way as the FoF mock dynamical mass
estimates, performing well after a total quality factor of about 0.2.
This is further demonstrated in the right-hand panel of this figure,
where the ratio between the caustic and dynamical mass estimates
for the FoF mock groups remains close to unity as a function of
QTot, with a small tendency for the caustic mass to be systematically
greater than the dynamical mass as QTot approaches 1.

Based on these explorations, we chose to create our caustic mass
estimates for the mock groups in the catalogue using group centres
obtained with the iterative CoL rejection method, and to only include
galaxies considered to belong to each group. To generate each set
of results, we select the same redshift and multiplicity cuts used in
Robotham et al. (2011). We calculate the scaling factors Ac for each
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Figure 9. As in Fig. 7, but for the bijectively matched FoF groups from the mock galaxy catalogues. The different lines show median-unbiased values of
log Mest/MHalo for the rAB < 19.4 sample. The black line shows the ratio between the caustic mass and the FoF halo mass, while the red line shows the ratio
between the FoF dynamical and halo masses. As before, the blue line shows the distribution of the ratio between the caustic mass and the FoF dynamical mass.

bin as the necessary value to ensure that the median of the ratio of
the mass estimate to the true mass is unity. Values for Ac are listed
in Table 1.

4.4 Application to G3Cv1

With the appropriate scale factors in Table 1, we run the algorithm
on the actual group catalogue itself, using the same redshift and
multiplicity bins, the same group centre and only galaxies within
each group. This provides us with a full set of halo mass measure-
ments for every group in the catalogue that are complementary of
those already existing in the G3Cv1.

Both the caustic and the dynamical mass estimates are adjusted
by their appropriate scale factors and then compared. The results of
this can be seen in Fig. 11 for the rAB < 19.4 mag limited sample.
By calculating the ratio of the caustic to the dynamical mass, we

show that 90.8 ± 6.1 per cent groups have a caustic mass estimate
that is within a factor of 2 of the dynamical mass estimate. In a vast
majority of cases, the two mass estimates agree very well with each
other, particularly for groups at high redshift (bottom row). In all
cases the scatter of the data is minimal, with the scatter decreasing
with increasing group membership through a combination of better
quality mass estimates and the smaller number of galaxies present
in these subsets. When interpreting these results, one must bear in
mind that the caustic algorithm has been designed with populous
groups in mind, ideally with more than 200 members. The G3Cv1
has exactly one group that fits this criteria, at 264 members. Of the
12 200 groups in the G3Cv1, 10 813 of these have between two and
four members and there are only 68 groups that contain more than
20 galaxies. We also observe a disparity between the number of
compact groups in the mocks compared to those in GAMA; this
is further discussed in Robotham et al. (2011). One also expects
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Galaxy group masses via caustic analysis 2843

Figure 10. Left: a comparison of the performance of the two mass estimation methods as a function of the grouping quality parameter, QTot. Black points
correspond to caustic masses and red ones to dynamical masses. Both methods perform worst when QTot is close to 0, but quickly recover at approximately
0.2. The green lines show a rolling median in each 0.1 bin for the caustic mass (solid line) and for the dynamical mass (dashed line). Right: the ratio between
the caustic and the dynamical mass estimates as a function of QTot, with the rolling median in each 0.1 bin overplotted in green.

small-number statistics to affect the results for these larger groups:
this is particularly evident in Table 2 which shows the fraction of
caustic mass estimates within certain factors of the dynamical mass
estimate. As group multiplicity increases, these fractions become
less reliable, as the number of groups present in each bin drops
sharply.

In order to make a comparison between the groups and mocks
as fair as possible, we must account for the fact that velocity un-
certainties have not been included in the mocks as this directly
affects the kernel, through equation (11). This issue is addressed in
Robotham et al. (2011), whereby all groups with σ 2 ≥ 130 km2 s−1

are removed from any comparisons between the groups and mocks,
arguing that below this cut the velocity dispersion of a group would
be significantly affected by this uncertainty and that the dynamical
mass estimate is directly proportional to σ 2. Based on this result,
we apply the same velocity cut to the group and mock catalogues.
Figs 11 and 12 display the resulting comparison between the ra-
tio Mc/Mdyn of the caustic and dynamical masses for the groups
(black) and mocks (black). There is still some difference between
the scatter of the mass estimates for the groups and the mocks and
the disagreement is most noticeable in cases where the caustic mass
is greater than the dynamical mass. However, if we do not include
this velocity cut and include the mock groups with poorly defined
masses, the discrepancy between the two distributions increases,
with Mc/Mdyn for the groups showing much less scatter than for the
mocks. We note that when calculating the mass estimates for the bi-
jectively matched mock groups with σ 2 ≥ 130 km2 s−2 for Fig. 12,
we allow σ v and σ r to tend to 0, as equation (9) diverges if hi = 0
when hopt = 0. In much the same way as done in Table 2, we are able
to calculate that the same percentage of caustic and dynamical mass
estimates fall within 50 per cent of the FoF halo mass, implying that
both algorithms have correctly been calibrated against the mocks.
When comparing the ratios of both mass estimates to the known
halo mass for bijectively matched groups, we find that these ratios
are virtually the same. From this, we can conclude that any final
discrepancies in the mass estimates shown in Figs 11 and 12 must
be down to an intrinsic difference between the mocks and the real
data and that both methods are properly calibrated to output results
that are median unbiased with respect to the halo masses.

Taking these considerations into account, these new mass esti-
mates appear to agree with the existing dynamical mass estimates
for the G3Cv1. While both methods utilize the same velocity and po-
sitional information in different forms, the dynamical mass method
is not as sensitive to the full 2D velocity profile of each group.
This is caused by the dependence of v and r on each other, which
is another effect that is considered in the caustic method, whereas
the velocity dispersion and group radius used to calculate Mdyn are
treated independently to each other.

5 C O N C L U S I O N

Using the caustic mass estimation algorithm introduced by DG97
and D99, we have provided complementary caustic mass esti-
mates for the G3Cv1. We have calibrated our implementation
of the algorithm by running it on mock GAMA group cata-
logues where the intrinsic grouping is known, and for bijectively
matched FoF mock groups. This allows us to derive a scaling
factor Ac for bins of redshift and multiplicity which provides us
with median-unbiased mock mass estimates, and we find that in
all cases there is very good agreement between the caustic mass
and dynamical mass estimates. Of great note is the tendency for
both distributions shown in Fig. 6 to match each other extremely
well, implying that both algorithms perform equally well and
equally badly for mock groups: that both estimate methods fail
for low-multiplicity (2 ≤ N ≤ 4) groups highlights an interest-
ing systematic bias present in both methods that warrants further
study.

Having calibrated the algorithm on the mock catalogues, we ap-
ply it to the G3Cv1 and obtain caustic mass estimates for real groups
as shown in Fig. 11. As with the mocks, we demonstrate that both
mass estimates are generally consistent with each other: on aver-
age, 90.8 ± 6.1 per cent of groups have caustic and dynamical mass
estimates that agree to within a factor of 2. This is strong evidence
for the reliability of the caustic mass estimation method, particu-
larly when considering the less than ideal conditions the algorithm
faces when working with so many groups of low multiplicity. De-
spite being designed to work with groups with over 200 members,
the caustic method is able to successfully determine accurate mass
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Figure 11. Distribution of the caustic masses compared to dynamical masses for real galaxy groups from the G3Cv1. The dashed green lines are as in Fig. 6,
and the solid black lines represent regions containing 10, 50 and 90 per cent of the data. There is a good correlation between the caustic and dynamical mass,
estimates as already shown in Fig 8 and 9 for the mocks.

estimates for groups with as few as two members, highlighting the
adaptability and strength of this method when combined with a FoF
algorithm. We stress the importance of applying the caustic mass
algorithm alongside a FoF algorithm; by accurately determining

the membership of any given group, we reduce the chances that the
caustics may be located incorrectly. The tightness of the contours
shown in the first column of Fig. 11 and the large fraction of ac-
curately determined masses given in Table 2 are very convincing

Table 2. Fraction of groups that have a caustic mass estimate that is within a factor of 2 and 5 from the dynamical mass
estimate. The error ε(N2) is defined as

√
1/N2 − 1/Ntot, where N2 is the number of groups within a factor of 2 and Ntot is the

total number of groups for a given bin. The number of groups present in each multiplicity bin drops sharply (from thousands
of groups to 10 or less) after the first multiplicity bin, drastically lowering the relevance of these statistics.

2 ≤ NFoF ≤ 4 5 ≤ NFoF ≤ 9 10 ≤ NFoF ≤ 19 20 ≤ NFoF ≤ 1000
2 5 ε(N2) 2 5 ε(N2) 2 5 ε(N2) 2 5 ε(N2)

0 ≤ zFoF ≤ 0.1 0.878 0.970 0.010 0.862 0.983 0.030 0.958 1.0 0.030 0.769 1.0 0.152
0.1 ≤ zFoF ≤ 0.2 0.898 0.977 0.005 0.836 0.904 0.020 0.949 1.0 0.020 0.978 1.0 0.022
0.2 ≤ zFoF ≤ 0.3 0.904 0.979 0.006 0.794 0.997 0.028 0.952 1.0 0.028 1.0 1.0 0
0.3 ≤ zFoF ≤ 0.5 0.909 0.978 0.009 0.904 0.979 0.034 0.889 1.0 0.118 1.0 1.0 0
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Figure 12. As in Fig. 7, this figure shows the PDF of the logarithm of the mass ratio between the caustic and dynamical mass estimates for all groups with
σ 2 ≥ 130 km2 s−2. The blue line shows the same distribution but for the bijectively matched FoF mock catalogues with the same velocity cut to illustrate the
smaller scatter between the two methods for the real data.

demonstrations that the caustic method is able to perform well even
for very low-multiplicity groups.

We wish to draw particular attention to the result shown in Fig. 12
that the ratio between the caustic and dynamical mass estimates in
the groups is very sensitive to the application of a velocity cut at
σ 2 ≥ 130 km2 s−2, as required by the fact that the mocks (and gene
the mock group catalogues) have not been analysed with realistic
velocity errors. By discarding groups whose velocity dispersions
would be badly affected by the inclusion of velocity errors, we
ensure that we apply a fair comparison to the group catalogue,
which does include velocity errors (and these velocity errors play
a crucial part in the calculation of the kernel on which the caustic
algorithm depends). Once this cut is applied, we show that the
distribution of ratio between the caustic and dynamical masses is
consistent between the mocks and groups, particularly for groups
with two to four members.

These caustic mass estimates serve to add further credibility to
the dynamical mass estimates, as the caustic algorithm is sensitive
to the escape velocity profile of a given group out to its full extent.
That both dynamical mass and caustic mass estimates for the mocks
and the groups give such similar results despite their relative inde-
pendence from each other is a positive result that not only reinforces
the dynamical mass estimates, but also demonstrates the power of
the caustic approach when combined with a FoF algorithm.

The G3Cv1 will be made publicly available on the GAMA web-
site as and when the associated redshift data are made available.
Those wishing to use the group catalogue before this time should
contact Aaron S. G. Robotham at asgr@st-and.ac.uk. The caustic
mass estimation algorithm developed by the author has been writ-
ten in R (R Development Core Team 2011). A non-GAMA specific
version of the algorithm is freely available to use and can be down-
loaded from http://www.gama-survey.org/pubs/.
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Gottlöber S., Holz D. E., 2008, ApJ, 688, 709
Tucker D. L. et al., 2000, ApJS, 130, 237
Warren M. S., Abazajian K., Holz D. E., Teodoro L., 2006, ApJ, 646, 881

This paper has been typeset from a TEX/LATEX file prepared by the author.

C© 2012 The Authors, MNRAS 426, 2832–2846
Monthly Notices of the Royal Astronomical Society C© 2012 RAS

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/426/4/2832/1013164 by U
niversity of H

ull user on 05 February 2019




