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Data reduction analyses such as principal components and exploratory factor analyses identify 19 

relationships within a set of potentially correlated variables, and cluster correlated variables into 20 

a smaller overall quantity of groupings. Because of their relative objectivity, these analyses are 21 

popular throughout the animal literature to study a wide variety of topics. Numerous authors 22 

have highlighted ‘best practice’ guidelines for component/factor ‘extraction’, i.e. determining 23 
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how many components/factors to extract from a data reduction analysis, because this can greatly 24 

impact the interpretation, comparability and replicability of one’s results. Statisticians agree that 25 

Kaiser’s criterion, i.e. extracting components/factors with eigenvectors >1.0, should never be 26 

used, yet, within the animal literature, a considerable number of authors still use it, even as 27 

recently as 2018 and across a wide range of taxa (e.g. insects, birds, fish, mammals) and topics 28 

(e.g. personality, cognition, health, morphology, reproduction). It is therefore clear that further 29 

awareness is needed to target the animal sciences to ensure that results optimize structural 30 

stability and, thus, comparability and reproducibility. In this commentary, we first clarify the 31 

distinction between principal components and exploratory factor analyses in terms of analysing 32 

simple versus complex structures, and how this relates to component/factor extraction. Second, 33 

we highlight empirical evidence from simulation studies to explain why certain extraction 34 

methods are more reliable than others, including why automated methods are better, and why 35 

Kaiser’s criterion is inappropriate and should therefore never be used. Third, we provide 36 

recommendations on what to do if multiple automated extraction methods ‘disagree’ which can 37 

arise when dealing with complex structures. Finally, we explain how to perform and interpret 38 

more robust and automated extraction tests using R. 39 

40 
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Data reduction analyses such as principal components analysis (PCA) and exploratory factor 45 

analysis (EFA) identify relationships within a set of potentially correlated variables, and cluster 46 
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correlated variables into fewer groupings called ‘components’ (in PCA) or ‘factors’ (in EFA) 47 

(Gorsuch, 1983; Field, 2009). Because they provide researchers with a relatively objective 48 

approach to categorizing different sets of data (e.g. questionnaire ratings, task performances or 49 

rates of behaviour among individuals), such analyses are commonly used to study a wide variety 50 

of theoretical and applied topics on animals (e.g. genetics, health, sociality, personality and 51 

cognition). 52 

Numerous authors within the statistical literature have highlighted ‘best practice’ 53 

guidelines for component/factor ‘extraction’, i.e. determining how many components/factors 54 

should be extracted from a data reduction analysis, because this can greatly impact the 55 

interpretation, comparability and replicability of structures derived from these analyses (e.g. 56 

Zwick, & Velicer, 1986, Todorov, Fournier, & Gerber, 2018). Most notably, statisticians largely 57 

agree that one extraction method, Kaiser’s criterion, should never be used because it increases 58 

the risk of overextraction compared to more automated tests, which in turn can lead to instability 59 

in the structures derived from data reduction analyses, and thus affect the overall interpretation 60 

of one’s results. In terms of animal research, for example, Stevens, De Groot, and Staes (2015) 61 

subjected bonobo, Pan paniscus, social relationship data to a data reduction analysis and 62 

compared structures derived using Kaiser’s criterion versus a more robust and automated method 63 

called parallel analysis (discussed below in further detail). These authors found that the latter 64 

approach led to a more stable and conservative structure (two rather than three components), 65 

thereby changing the interpretation of their results entirely. 66 

There are multiple extraction methods, mostly but not exclusively quantitative, that 67 

researchers can use as more robust alternatives to using Kaiser’s criterion to identify the quantity 68 

of underlying latent variables, i.e. those factors that are not directly observed but can be inferred 69 
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from the data. That said, throughout the animal literature a considerable number of authors still 70 

use Kaiser’s criterion to extract components/factors despite decades of resolve within the 71 

statistical literature, which is probably fuelled by the fact that it remains the ‘default’ method in 72 

common statistical packages such as SPSS (Field, 2009). Studies using Kaiser’s criterion have 73 

been published as recently as 2018, encompassing an eclectic range of taxa, such as insects, 74 

birds, fish, and mammals, and covering a broad range of topics, including but not limited to 75 

personality (e.g. Martin & Reale, 2008; Menzies, Timonin, McGuire, & Willis, 2013; Pritchard, 76 

Sheeran, Gabriel, Li, & Wagner, 2014; Slipogor, Gunhold-de Oliveira, Tadic, Massen, & 77 

Bugnyar, 2016), cognition (e.g. Keagy, Savard, & Borgia, 2011; Meulman & van Schaik, 2013), 78 

morphology (e.g. Yakubu & Okunsebor, 2011; Dunham, Maitner, Razafindratsima, Simmons, & 79 

Roy, 2013; Khargharia, Kadirvel, Humar, Doley, Bharti, & Das, 2015), behavioural ecology (e.g. 80 

Adamo, Kovalko, & Mosher, 2013; Hassrick, Crocker, & Costa, 2013; Nath, Singha, Deb, Das, 81 

& Lahkar, 2015; Willems, Arseneau, Schleuning, & van Schaik, 2015; Klein, Pasquaretta, 82 

Barron, Devaud, & Lihoreau, 2017), sociality (e.g. Fraser, Schino, & Aureli 2008; Schino, & 83 

Aureli, 2008; Fraser & Bugnyar, 2010; McFarland & Majolo, 2011; Rebecchini, Schaffner, & 84 

Aureli, 2011; Fraser, Koski, De Vries, Van de Kraats, & Sterck, 2012; Moreno, Highfill, & 85 

Kuczaj, 2017;), welfare (e.g. Ferreira, Mendl, Guilherme, et al., 2016), health and conservation 86 

(e.g. Morton, Todd, Lee, & Masi, 2013; de Medeiros Filho, de Carvalho-Neto, Garcia, et al., 87 

2018), reproduction (e.g. Venturini, Savegnago, Nunes, et al., 2013), life history (e.g. Poinapen, 88 

Konopka, Umoh, et al., 2017), acoustics and communication (Finger, Bastian, & Jacobs, 2017) 89 

and inbreeding (e.g. Lawrence, Mastromonaco, Goodrowe, et al., 2017). It is therefore clear that 90 

further awareness is needed to ensure that researchers of animal behaviour are reporting results 91 



 Morton and Altschul 5 

that optimize structural stability and, thus, comparability and reproducibility of those results by 92 

making careful decisions about component/factor extraction. 93 

In this commentary, we first clarify the distinction between principal components and 94 

exploratory factor analyses in terms of analysing simple versus complex structures, and how this 95 

relates to component/factor extraction. Second, we highlight recent empirical evidence from 96 

simulation studies to explain why certain extraction methods are more reliable than others, 97 

including why automated methods are better, and why Kaiser’s criterion is inappropriate and 98 

should never be used. Third, we provide recommendations on what to do if multiple automated 99 

extraction methods ‘disagree’ which can arise when dealing with complex structures. Finally, we 100 

explain how to perform and interpret more robust and automated extraction tests in R. 101 

 102 

<H1> PCA or EFA, Simple or complex structure? 103 

   104 

Deciding which extraction methods are appropriate in a data reduction analysis depends 105 

on whether PCA or EFA is used, and whether the underlying structure of one’s solution is simple 106 

versus complex. PCA and EFA are often applied interchangeably, but the theoretical foundations 107 

of the two methods are different. For instance, PCA attempts to account for the total variance 108 

(Velicer, 1976), but unlike PCA, EFA does not assume that variables have been measured 109 

without error (Brown, 2009). PCA is also a pure data reduction technique, which generates 110 

parsimonious summary variables that are linear combinations of the observed variables (Velicer, 111 

1976). As there is no theory associated with this approach, there is technically no ‘true’ number 112 

of components that a researcher can extract. On the other hand, EFA is premised on having a 113 

theoretical model or models, in which latent variables cause the observed variables. This type of 114 
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analysis fits a model using the correlation matrix of the observed data to account for common 115 

variance, i.e. the variance in a variable that is shared with other variables (Costello & Osbourne, 116 

2005). These are just a handful of many differences between PCA and EFA, and so for interested 117 

readers, we recommend Brown (2009) and Yong and Pearce (2013) for beginners, and Gorsuch 118 

(1983) and Velicer and Jackson (1990) for more experienced researchers.  119 

Historically, researchers have used PCA and EFA interchangeably for data reduction in 120 

animal behaviour research without issue because the results are very often the same. However, 121 

there is no guarantee of this, and if researchers wish to search for meaningful latent variables, 122 

then EFA should be used, and methods for identifying a meaningful number of factors should 123 

also be used (Fabrigar, Wegener, MacCallum, & Strahan, 1999). In the context of some studies, 124 

like those examining social relationship structure, the goal has been to identify underlying latent 125 

variables, which implies that researchers are theoretically justified in using EFA. As such, PCA 126 

should generally not be used. For this reason, we refer only to factors throughout this 127 

commentary, although when earlier works have used PCA, we refer to their results in terms of 128 

components. For a comparable guide to the use of PCA, we recommend Todorov et al. (2018). 129 

 If a researcher posits a theoretical structure to their data, a question they must also ask 130 

themselves is whether this structural model is simple or complex. A simple model is one in 131 

which variables tend to load strongly on one factor and weakly on all others (Revelle & Rocklin, 132 

1979). Simple structure also implies that the model has only one ‘level’. More complex models, 133 

i.e. those that contain more than one level, include hierarchical models in which one or more 134 

higher-order factors are loaded on by lower-order factors, or bifactor models, in which a parallel 135 

factor is loaded on by the variables independently of the main lower-order factors (Murray & 136 

Johnson, 2011). For comparative examples of these models in animal behaviour and cognition, 137 



 Morton and Altschul 7 

we recommend Arden and Adams (2016). If a researcher’s theoretical model does not have a 138 

single level structure, EFA should not be used and the researcher should consider using, for 139 

example, confirmatory factor analysis (CFA) or a structural equation modelling (SEM) 140 

framework; we return to CFA and SEM in a subsequent section. 141 

 EFA assumes a single level structure, but it does not assume simple structure. If the 142 

researcher wishes to maximize the possibility of simple structure, usually because simple 143 

structure is easier to interpret, they could do this by allowing factors to correlate. This can be 144 

accomplished by specifying what is called an ‘oblique rotation’. Rotations refer to the 145 

relationships between factors in space; the alternative to an oblique rotation is an orthogonal 146 

rotation. Factors that are orthogonal in space, e.g. x- and y-axes, have zero correlation (Jolliffe, 147 

1986). However, there is rarely a theoretical reason for factors to have zero correlation in animal 148 

behaviour research and these factors are unlikely to have simple structure. Thus, if researchers 149 

are unsure or do not have justification, then an oblique rotation should be used (Browne, 2001). 150 

 151 

<H1>Pros and cons of different extraction methods 152 

As we have mentioned, a critical decision one must make before completing a data 153 

reduction analysis is how many factors to extract. This choice will influence how variables 154 

cluster together, thereby affecting the final solution and, hence, researchers’ interpretation of 155 

those results (Zwick & Velicer, 1986; Ledesma & Valero-Mora, 2007). Underextraction can 156 

result in the loss of relevant information and distort the overall solution (Zwick & Velicer, 1986). 157 

Overextraction can result in some factors being unstable, making the overall solution difficult to 158 

interpret and/or replicate (Zwick & Velicer, 1986). 159 
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Deciding when to stop extracting factors depends on several competing considerations. 160 

As we have briefly touched on, and describe more fully below, there is a suite of quantitative and 161 

qualitative tools available to assist researchers in making this decision. However, researchers 162 

must also consider theory in EFA and look to the interpretability of the factors they extract. Even 163 

if all quantitative indicators suggest that a certain number of factors would yield the best model, 164 

the pattern of loadings between the latent and observed variables must be interpretable and the 165 

model should be theoretically viable. In other words, if variables representing distinct constructs 166 

load on a single factor, and/or variables representing the same construct load across many 167 

different factors, then the model will be theoretically uninterpretable and of little use (Fabrigar et 168 

al., 1999). 169 

 170 

<H2>Kaiser’s criterion 171 

Various cutoffs have been developed to help researchers choose their factors, which 172 

typically involve taking into consideration the amount of variation that is explained by each 173 

factor (called ‘eigenvalues’). As previously discussed, one problematic method that is still 174 

commonly used throughout the animal literature is Kaiser’s criterion, which retains components 175 

with eigenvalues >1.0, that is, components/factors that account for more variance than what is 176 

accounted for by one of the original variables (Kaiser, 1960). Compared to other extraction 177 

methods, Kaiser’s criterion is only appropriate to use with components, not factors, although 178 

researchers are not always aware of this nuance and have used Kaiser’s criterion with EFAs 179 

(Costello & Osbourne, 2005). Moreover, unlike other techniques, Kaiser’s criterion is largely 180 

arbitrary: there is little empirical reason why a component with an eigenvalue slightly greater 181 

than 1 ought to be retained while a component with an eigenvalue just below 1 should not 182 
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(Courtney, 2013). A component with an eigenvalue less than 1 accounts for less variance than 183 

the average observed variable, which is a reasonable criterion for exclusion, but it is too crude. 184 

Kaiser’s criterion has shown tendencies towards overextraction and, to a lesser degree, 185 

underextraction (Zwick & Velicer, 1986). These biases are in part due to the observation that the 186 

number of components retained by the criterion reflects the number of variables included in the 187 

analysis more strongly than any attributes of underlying latent variables (Gorsuch, 1983). Ruscio 188 

and Roche (2012) simulated data from abstract theoretical models with varying numbers of 189 

factors and, for each simulation, tested several methods to determine how often each method 190 

selected the ‘correct’ number of factors as defined by the theoretical models. In these 191 

simulations, Kaiser’s criterion led to a success rate of 8.77% and failed to extract the correct 192 

number of factors in more than 90% of cases (Ruscio & Roche, 2012). 193 

Structures with high loadings (i.e. |0.7|) and/or those with components/factors containing 194 

four or more loadings greater than |0.4| are typically considered robust and reproducible (e.g. 195 

Guadagnoli & Velicer, 1988), yet studies relying on Kaiser’s criterion do not always find this, 196 

which may be due to overextraction. Thus, simply put, no study should be using Kaiser’ criterion 197 

to analyse their data. 198 

 199 

<H2>Cattell’s scree test 200 

Another commonly used extraction method is Cattell’s scree test, which is a graphical 201 

technique that plots eigenvalues in a simple line plot. The number of factors to extract is visually 202 

estimated from the scree plot by finding the point where the line drops and begins to level off; all 203 

components to the right of this point are considered random ‘noise’ and should therefore be 204 

excluded (Cattell, 1966). Within the animal literature, scree tests are often used alongside 205 
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Kaiser’s criterion because, like Kaiser’s criterion, they are the ‘default’ method in common 206 

statistical packages such as SPSS (Field, 2009). 207 

Although scree tests are relatively simple to implement (perhaps contributing to their 208 

common usage by researchers), they are fundamentally subjective and, as such, can lead to 209 

spurious solutions. When factors are simple, observed variables load highly on one factor and 210 

there are few cross-loadings. Therefore, scree plots work well in such cases, as shown in Fig. 1a, 211 

because the solution is clearly discernible. On the other hand, when factors become more 212 

complex, scree plots open researchers to the risk of under- or overextraction due to their 213 

subjectivity, particularly as the line of the plot begins to asymptote, as shown in Fig. 1b (Zwick 214 

& Velicer, 1986). 215 

In simulations, scree tests are correct in only 41.7% of cases (Zwick & Velicer, 1986). 216 

Thus, researchers should avoid using scree tests by themselves or alongside Kaiser’s criterion, 217 

and only use them alongside more automated methods as a ‘tie-breaker’ if the plot reveals a 218 

distinct and unambiguous drop in eigenvalues past a certain component/factor (discussed in 219 

further detail below). 220 

 221 

<H2>Automated extraction methods 222 

Many alternative extraction methods have been developed that are more robust and 223 

automatic than Kaiser’s and scree tests, and we strongly urge animal researchers to use them for 224 

data reduction analyses. Popular ones include the empirical Bayesian information criteria or 225 

empirical BIC (Schwarz, 1978), standardized root mean square residuals or SRMR (Hu & 226 

Bentler, 1999), Revelle and Rocklin’s (1979) very simple structure (VSS) and Horn’s (1965) 227 

parallel analysis (PA). 228 
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Empirical BIC is an information theoretical assessment of fit that evaluates the parsimony 229 

of any model (Schwarz, 1978). A solution with more components/factors will very often have a 230 

better absolute fit, but the BIC applies a penalty based on the number of parameters. Therefore, 231 

models with the lowest BIC are preferred. Because solutions with more components/factors have 232 

more parameters, BIC measures are an effective statistic for comparing many models. BIC is 233 

widely used in model building across different fields and is a superior statistic among 234 

information theory measures (Posada, Buckley, & Thorne, 2004). In simulations, BIC identifies 235 

the correct number of factors more than 60% of the time (Ruscio & Roche, 2012). 236 

SRMR is the square root of the difference between a sample’s covariance matrix and the 237 

proposed model’s covariance matrix (Hooper, Coughlan, & Mullen, 2008). SRMR is 238 

representative of measures typically used in confirmatory factor analysis and is biased towards 239 

overextraction; however, the greater the number of parameters in the model and the larger the 240 

sample size, the lower SRMR tends to be (Hu & Bentler, 1999). Lower values are better; any 241 

value above 0.1 is considered unacceptable. To the best of our knowledge, SRMR has not been 242 

compared to alternative modern methods in simulation studies (Courtney, 2013). 243 

VSS examines how well the individual components/factors fit within many solutions, 244 

where each progressive solution has one more factor than the last (Revelle & Rocklin, 1979). 245 

VSS can be used in an entirely objective fashion, by finding maxima, but it can be viewed 246 

subjectively as well, like a scree plot. However, VSS is best at identifying simple structures (i.e. 247 

those with a single level of factors) and therefore it is probably not appropriate if the ‘true’ 248 

structure of the data includes more than two factors (Revelle, 2015). To the best of our 249 

knowledge, VSS has not been compared to alternative modern methods in simulation studies 250 

(Courtney, 2013). 251 
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PA is based on generating random eigenvalues that ‘parallel’ the observed data in terms 252 

of sample size and the number of variables (Zwick & Velicer, 1986). A component/factor is 253 

retained if its eigenvalue is greater than the 95th percentile of the distribution of eigenvalues 254 

generated from the random data (Horn, 1965). This technique improves upon most other 255 

methods, both subjective (e.g. scree test) and objective (e.g. empirical BIC, Complexity), by 256 

taking sampling error into account, which is not partitioned from total variance in other methods 257 

(Horn, 1965). PA is not arbitrary: the ‘parallel’ data it generates can be resampled from the 258 

empirical data themselves, and the technique is robust. Both resampled and simulated parallel 259 

data do not yield substantively different results (Revelle, 2015). Moreover, PA is flexible, having 260 

been modified and improved upon since its conception, and is capable of assessing factor and 261 

component structures, as well as both ratio and ordinal data (Garrido, Abad, & Ponsoda, 2013). 262 

Finally, PA is noteworthy when contrasted with other, modern factor number tests because 263 

unlike even the best alternatives, e.g. comparison data (Ruscio & Roche, 2012), it is completely 264 

unbiased (cf. Courtney, 2013). Based on simulations, PA identifies the correct number of factors 265 

in more than 76% of cases (Ruscio & Roche, 2012). For this reason, it remains one of the best 266 

tests available for component/factor extraction. 267 

All methods of course have their drawbacks (Ruscio & Roche, 2012); there is no ‘one 268 

size fits’ all approach. Even if some methods are demonstrably more accurate than others, e.g. 269 

PA versus Kaiser’s criterion, few data sets will produce an immediate and clear solution. 270 

Therefore, it is paramount that no single automated extraction test be used as the sole method to 271 

determine how many components/factors to extract from a data reduction analysis. Instead, 272 

multiple automated tests should be implemented and compared. If multiple tests agree on the 273 
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same number of components/factors to extract, then researchers can be confident with their 274 

decisions about extraction (Gorsuch, 1983). 275 

 276 

<H1>What if multiple automated methods disagree? 277 

It is not uncommon for multiple automated methods to disagree on the number of 278 

components to extract. As previously noted, in such cases a scree test may be used as a quick and 279 

easy ‘tie-breaker’ if the plot reveals a clear and distinct drop in the eigenvalues past a certain 280 

component/factor. Such instances, however, are becoming increasingly rare as automated 281 

methods are improved upon. Where appropriate, researchers should use PA as a tie-breaker 282 

because it is a robust technique, but we again caution readers to consider as many options as 283 

possible before settling on a particular selection of factors. For example, other sophisticated 284 

analyses such as Everett’s tests may be required to determine which model to use for subsequent 285 

analyses after extracting multiple solutions with differing numbers of factors (Everett, 1988). 286 

Researchers should always keep in mind the theory they wish to test, and where theory is 287 

well established, it can be used to guide choices in how many factors to extract. If the analysis is 288 

wholly exploratory, or theories are at odds, there is nothing wrong with extracting multiple factor 289 

structures and comparing them when multiple extraction methods disagree on how many to 290 

extract. Factor interpretability can be assessed after extraction, and, depending on what variables 291 

are of interest, investigating additional associations may indicate which structure is the most 292 

useful (Altschul, Terrace, & Weiss, 2016). As with any model, however, researchers must 293 

beware of post hoc modification since greater degrees of freedom can hinder the generalizability 294 

of an analysis. Ideally, researchers should always keep their theory in mind throughout the 295 
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analytical process, and factor solutions that are extracted should be interpretable in light of 296 

theory. 297 

Finally, basic EFA or PCA may not be the best method for all situations. More complex 298 

and potentially hierarchical data may require a more advanced modelling approach. For example, 299 

EFA is itself a specific implementation of a more general SEM framework, which allows users to 300 

specify latent variables and all paths between latent and measured variables. If one suspects that 301 

a one-level factor model is not sufficient to explain the data, for example if there are 302 

unambiguous sources of nonindependence such as correlated error structure, then SEM should be 303 

considered because it is better suited for handling complex structures (Reise, Schneines, 304 

Widaman, & Haviland, 2013). 305 

Ultimately, researchers need to be aware of what EFA and PCA are creating: reduced 306 

data that are only the result of what one has fed into one’s analysis. Variable reduction may make 307 

data more manageable and possibly more interpretable, but the results are derived from 308 

noninferential matrices of correlations between variables, and there is no guarantee that these 309 

techniques will produce quantitatively superior data. The results of data reduction are contingent 310 

on the input; some data will be appropriate for data reduction, some simply will not. Moreover, 311 

similar but distinct data will yield different results. Comparing different data sets in the same or 312 

similar models is fundamentally qualitative, and researchers must bear this in mind when 313 

considering what to conclude from their analyses. 314 

 315 

<H1>Performing and interpreting automated extraction tests in R 316 

 The following instructions are specific to the R programming language because of its 317 

wide use and robust, well-maintained feature set. All commands are available from base R, or the 318 
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‘psych’ package (Revelle, 2015). The code for running these analyses can be found in the 319 

Appendix. 320 

First, data should be organized in a ‘data.frame’ format, which is native to R. We will call 321 

our example data.frame: ‘df’. The first column of the data.frame should contain the names of 322 

individuals and/or dyads. Many functions require only numerical input, and the first column can 323 

be subset out of the data.frame with the command ‘df[,-1]’. For example, to examine the 324 

correlation matrix of the data for suitability, the entire command ‘cor(df[,-1])’ will display the 325 

numeric correlation matrix. We also suggest using ‘corPlot’ in the same way, to view the 326 

correlation matrix graphically. Two specific tests for factorability, Barlett’s test and the Kaiser-327 

Meyer-Olkin measure, can be found in psych and accessed using ‘cortest.bartlett(df[-1])’ and 328 

‘KMO(df[-1])’. 329 

 Executing the command ‘nfactors(df[,-1])’ will display graphical representations of VSS, 330 

eBIC and SRMR (e.g. Fig. 2). It will also generate a myriad of other fitted statistics, which may 331 

be useful to the advanced user. Executing ‘fa.parallel(df[,-1])’ will display a plot, as in Fig. 3, as 332 

well as give a specific recommendation for how many components to retain for extraction.  333 

As previously mentioned, EFA and PCA often produce very similar solutions in practice, 334 

but the underlying matrix algebra differs such that when each procedure is repeated, the results 335 

can differ considerably. Thus, while the other five extraction methods that we previously 336 

discussed need not distinguish between factors and components, PA must be adjusted to support 337 

EFA (Revelle, 2015). 338 

In Fig. 2, the VSS test suggests that a three-factor model has a better fit than a one- or 339 

two-factor solution, meaning the three-factor model shows an improvement in fit over the one- 340 

and two-factor models, which is evident because the number three in the plot is above the line 341 



 Morton and Altschul 16 

associated with the other two models. The empirical BIC test suggests two factors should be 342 

extracted since that model shows the lowest BIC compared to the others. The SRMR test 343 

indicates that models with two or more factors are acceptable. 344 

In Fig. 3, based on Kaiser’s criterion these artificial data cluster onto a single factor. By 345 

contrast, the scree plot suggests two factors, since the line appears to asymptote after the second 346 

eigenvalue. Similarly, the parallel analysis suggests extracting two factors, which is evident 347 

because the line representing the ‘FA actual data’ crosses the line representing the ‘FA 348 

resampled data’ after the two-point mark along the x-axis, i.e. those factors that are greater than 349 

the 95th percentile of the distribution of eigenvalues generated from the resampled data.  350 

 Collectively, based on this example, extracting two factors appears to be the most 351 

reasonable decision to make for a data reduction analysis since (1) half the automated tests, 352 

including parallel analysis (i.e. the most robust method), point towards a two-factor solution, (2) 353 

the SRMR test indicates that this decision is acceptable, and (3) the scree plot (i.e. our ‘tie-354 

breaker’) corroborates this decision. 355 

 356 

<H1>Summary and Future Directions 357 

Data reduction analyses provide a unique and objective means through which researchers 358 

can interpret animal data, and the work that has already been done in this area has taken a very 359 

important step in that direction. With the increasing number of studies using this approach, 360 

researchers must take into careful consideration both the data reduction technique (PCA or FA) 361 

and the extraction method(s) used to reduce the number of components/factors within their data 362 

set. Failure to do this can have consequences in terms of comparability, replicability and 363 

interpretation of those results. In light of the well-known deficiencies associated with Kaiser’s 364 
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criterion, we emphasize that animal researchers must refrain from using this technique in future 365 

work and instead use more robust and automated extraction techniques (e.g. PA, empirical BIC, 366 

VSS, comparison data). If these automated tests recommend the same number of 367 

components/factors, then researchers can be confident about their decisions to extract. If they 368 

disagree, then as we discussed, there are multiple avenues to take to aid decision making on 369 

extraction and modelling frameworks. Avoiding Kaiser’s criterion and supplementing scree tests 370 

with more robust and automated tests will greatly improve the utility and reliability of data 371 

reduction techniques, particularly for comparisons across studies. Of the methods we have 372 

discussed, we recommend PA and BIC in particular because of their strong performance under 373 

simulation (Ruscio & Roche, 2012), but novel methods are being developed with surprising 374 

frequency, and we encourage readers to explore the literature for newly verified methods. 375 

 376 
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 538 

Appendix 539 

Here we give the code for performing automated extraction tests in R (Revelle 2015). 540 

library(psych) ## Main package used in this annex. 541 
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require(GPArotation) ## Supplementary package - useful for rotations. 542 

 543 

## Users should import their data set here, saving as 'df'. 544 

 545 

### Inspecting the correlations between variables before testing. 546 

cor(df[,-1] 547 

    , use = 'pairwise.complete.obs' ## Default is 'everything' - can produce many NAs. 548 

) 549 

 550 

corPlot(df[,-1]) ## Graphical plot of the correlation matrix. 551 

 552 

### Testing the suitability of the data for factoring. 553 

cortest.bartlett(df[,-1]) ## Bartlett's test that the correlation matrix is the ID matrix. 554 

## The P value should be low, indicating that correlations are not all 1, and multiple  555 

## factors could be extracted. 556 

 557 

KMO(df[,-1]) ## Kaier, Meyer, Olkin measure of sampling adequacy. 558 

## Less than 0.5 for an item has been labelled unacceptable, 559 

## but higher values (e.g. > 0.8) are generally preferred. 560 

 561 

### Determining the number of factors to extract. 562 

nfactors(df[,-1] ## Replicates the style of Fig. 2. 563 

         , n = 10 ## Sets the maximum number of factors to search for - default is 20. 564 
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         , rotate = 'oblimin' ## Default is 'varimax' - an orthogonal rotation. 565 

) 566 

## Output plot shows VSS, eBIC, SRMR and Complexity (a general diagnostic statistic). 567 

## Full output is displayed in the console, and additional statistics can be explored 568 

## and plotted, e.g.: 569 

plot(nfactors(df[,-1], n=10, rotate='oblimin')$map, type = 'b') 570 

## Velicer's minimum average partial (MAP), which indicates the optimal number of factors 571 

## where it reaches a minimum. 572 

 573 

## To fully take advantage of the many nfactors statistics, we strongly recommend 574 

## that users consult the help file: 575 

?nfactors 576 

 577 

## Parallel analysis of factors solutions. 578 

fa.parallel(df[,-1] 579 

            , sim = FALSE ## Default is TRUE - FALSE replicates style of Fig. 3. 580 

            , SMC = FALSE  ## Ensures that PA is adjusted for factors. 581 

            , fa = 'fa' ## Plots only the factor analyses. 582 

) 583 

## This plots a scree plot with adjusted eigenvalues and the data for comparison, 584 

## which are random and/or resampled. Where the adjusted eigenvalue for a given factor  585 

## is above the line of eigenvalues from random/resampled data, parallel analysis 586 

## indicates that that factor ought to be retained. 587 
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 588 

 589 

  590 
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 591 

Figure Captions 592 
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 593 

Figure 1. Example of scree tests on (a) clearly and (b) ambiguously factorable data sets. 594 
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 595 

Figure 2. Example of plotted results using the R psych package ‘nfactors’ function, including (a) 596 

very simple structure, (b) complexity, (c) empirical BIC and (d) standardized root mean square 597 

residuals (SRMR). For the empirical BIC output, the number of variables (10) limits the 598 

calculation of empirical BIC to solutions of at most five components/factors. 599 
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 611 

Figure 3. Example of results of parallel analysis, on a scree plot. Triangles represent eigenvalues 612 

generated from the actual data. Dashed lines represent random simulated eigenvalues. The 613 

horizontal black line at 1 represents Kaiser’s criterion. 614 
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