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Abstract

System safety, reliability and risk analysis are important tasks that are performed throughout the system life-
cycle to ensure the dependability of safety-critical systems. Probabilistic risk assessment (PRA) approaches
are comprehensive, structured and logical methods widely used for this purpose. PRA approaches include,
but not limited to, Fault Tree Analysis (FTA), Failure Mode and Effects Analysis (FMEA), and Event
Tree Analysis (ETA). Growing complexity of modern systems and their capability of behaving dynamically
make it challenging for classical PRA techniques to analyse such systems accurately. For a comprehensive
and accurate analysis of complex systems, different characteristics such as functional dependencies among
components, temporal behaviour of systems, multiple failure modes/states for components/systems, and
uncertainty in system behaviour and failure data are needed to be considered. Unfortunately, classical
approaches are not capable of accounting for these aspects. Bayesian networks (BNs) have gained popularity
in risk assessment applications due to their flexible structure and capability of incorporating most of the
above mentioned aspects during analysis. Furthermore, BNs have the ability to perform diagnostic analysis.
Petri Nets are another formal graphical and mathematical tool capable of modelling and analysing dynamic
behaviour of systems. They are also increasingly used for system safety, reliability and risk evaluation. This
paper presents a review of the applications of Bayesian networks and Petri nets in system safety, reliability
and risk assessments. The review highlights the potential usefulness of the BN and PN based approaches over
other classical approaches, and relative strengths and weaknesses in different practical application scenarios.
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1. Introduction

Safety critical systems underpin many of the advances in modern society and have become an integral
part of our life. Use of such systems can be noticed in a wide range of industries such as the automotive,
aerospace, nuclear, energy, medical, and process industries. However, our high reliance upon them also
means that the failure of such systems has the potential to cause great harm to people and the environment.
For this reason, the development of such systems requires a rigorous assessment of system behaviour to
ensure that they possess a high level of dependability: the capability of avoiding failures that are more
frequent and more severe than it is acceptable.

One of the key goals in developing safety-critical systems is to identify potential risks posed by such
systems and then minimising the likelihood of these risks. To increase the dependability of systems, analysts
have to understand the behaviour of systems, i.e., how they work and how they may fail. The dependability
analysis process allows system analysts to complete the above tasks. Based on the results of the analysis,
decision makers can determine necessary preventive and/or maintenance actions to minimise the likelihood
of system failure. As systems become more complex, dependability analysis plays a vital role in the successful
design and development of the system; they also become increasingly difficult.

Over the years, several approaches have gained popularity including Fault Tree Analysis (FTA) (Vesely
et al., 2002), Hazard and Operability Analysis (HAZOP) (Dunjé et al., 2010), Failure Modes Effect and
Criticality Analysis (FMECA) (US Department of Defense, 1980), and Bow-tie diagrams (de Dianous and
Fiévez, 2006) etc. These approaches often simplify the system safety and reliability analysis processes by
making assumptions about system behaviour. Such assumptions include: focusing only on the technical part
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of the system, single mode of operation for system, statistical independence of system components, binary
states (failed or non-failed) of components, non-repairability of components, and availability of failure data.
However, in practice all these assumptions are not valid. Modern systems frequently operate in multiple
modes or phases, making them dynamic systems. For example, an aircraft can operate in take-off, flight,
and landing phases. Similarly the fuel system of an aircraft can work in refuelling and consumption modes.
Under non-repairability assumption, it is considered that once a component fails it remains in the failed
state forever and is not repaired. However, in many practical situations, it is possible to repair a failed
component to restore its functionality. Moreover, it is also considered that systems and components can
either be in working or in failed state, ignoring any intermediate state. However, in practice, systems and
components can operate in other intermediate states with degraded functionality or performance levels.

Dynamic behaviour gives rise to a variety of dynamic failure characteristics such as functional dependen-
cies between events and priorities of failure events, and the analysis is further complicated as organizational
and human factors may contribute to system failure (Leveson et al., 2009). Overall, various challenges arise
in the analysis from the following factors (Weber et al., 2012):

Scale and complexity (Seong, 2008; Zio, 2009)

Number and types of failure modes components can have (Filieri et al., 2010; Pham, 1999, 2003)

Dependencies among system components (Dugan et al., 1990; Xing et al., 2011)

Number of states the system can be in (Bouissou and Pourret, 2003; Li and Zuo, 2008; Lisnianski and

Levitin, 2003; Yingkui and Jing, 2012)

5. Temporal behaviour of the systems (Berthomieu and Diaz, 1991; Labeau et al., 2000; Palshikar, 2002;
Kabir et al., 2017)

6. Effect of organizational and human errors on system failure (Davoudian et al., 1994; Swain and

Guttmann, 1983)

7. Uncertainties in system behaviour and failure data (Hu et al., 2015a; Kabir, 2016; Nannapaneni and
Mahadevan, 2016)
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To overcome the limitations of the classical approaches in addressing the above challenges, classical ap-
proaches have been extended, e.g., in the case of FTA, with dynamic fault trees (DFTs) (Dugan et al., 1992)
or Temporal Fault Trees (TFTs) (Palshikar, 2002; Walker, 2009). Moreover, Markov chains, simulations (e.g.
Monte Carlo), Petri nets, and Bayesian networks have been applied in the field to address the limitations
of classical approaches. Markov chains are limited to exponential distributions. This requirement may be
too tight for modelling complex systems as Markov Chains can only be used for systems with exponentially
distributed lifetime. Additionally, Markov chain based approaches suffer from the state-space explosion.
Simulation is usually used when the state-space analysis is infeasible. Simulation approaches can work with
both exponential and non-exponential distributions. However, simulation requires more memory and can
take much longer to run. It cannot be exhaustive and is typically limited to a subset of state trajecto-
ries. Bayesian networks can avoid the state space explosion problem and generally can work with different
types of lifetime distributions. They can also deal with uncertainty and can be used for robust probabilistic
reasoning in the conditions of uncertainty. The main advantage of BNs over other existing approaches is
their polyvalency, i.e., they can offer different functionality such as predictive and diagnostic analysis, model
updating, and optimization, etc. In the recent years, Bayesian networks have increased in popularity as
shown in (Mahadevan et al., 2001; Boudali and Dugan, 2005a; Langseth and Portinale, 2007). Sigurdsson
et al. (2001) and Weber et al. (2012) reviewed the applications of Bayesian networks for dependability, risk
analysis and maintenance areas until 2000 and 2008, respectively. Some developments from 2009 were also
included in (Weber et al., 2012). Petri nets have been applied in wide varieties of areas. A survey of the
application of Petri nets for freight logistics and transportation systems modelling could be found in (Cavone
et al., 2017). A review of different industrial applications of PNs is available in (Zhou and Zain, 2016). The
application of Petri nets for system safety, reliability, and risk assessment can be traced back to the 1980s
(Beyaert et al., 1981; Geist et al., 1983; Leveson and Stolzy, 1987) and their popularity for system analysis
is increasing due to their strong mathematical formalism and graphical view. In addition to addressing the
limitations of classical approaches for safety and reliability analysis, Petri net models provide a one-to-one
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interface for other purposes such as formal specification and verification, which cannot be handled with
other formalisms.

This paper presents a comprehensive review of the use of BNs and PNs in system safety, reliability and
risk assessments. The rest of this paper is organized as follows. Section 2 describes the fundamentals of
Bayesian networks and Petri nets. The applications of BNs and PNs in system safety, reliability and risk
assessment are reviewed in sections 3 and 4, respectively. Discussion and future research directions are
presented in section 5. Finally, concluding remarks are presented in section 6.

2. Background

2.1. Bayesian Networks

Bayesian Networks (BNs) are directed acyclic graphs that represent a set of variables and their conditional
dependencies (Pearl, 1988). A BN model contains a qualitative and a quantitative part. The qualitative part
contains a directed acyclic graph and the quantitative part contains prior and conditional probabilities of
BN nodes. In the acyclic graph, the nodes represent the random variables and are graphically represented as
circles. On the other hand, directed arcs represent dependencies or cause-effect relations among the nodes.
In a BN, a node X is said to be the parent of another node Y if there exists an arc from node X to node
Y. Parent nodes have a direct effect on its child nodes and each child node X; has a conditional probability
distribution defined as Pr{X;|Parents(X;)}, which quantifies the effect of the parents on the child node. If
a node has no parent, then it is known as a root node, and if a node has no children, then it is a leaf node.
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Figure 1: Example of a BN

A set of conditional independence statements are the main considerations when making BN models
and conditional independence information can be obtained from a BN model by employing the rules of
d-separation (Pearl, 1988). Two random variables X and Y are conditionally independent given a third
random variable Z if and only if they are independent in their conditional probability distribution given Z.
Stated in a different way, X and Y are conditionally independent given Z if and only if, given any value of
7, the probability distribution of X is the same for all values of Y, and the probability distribution of Y is
the same for all values of X. Using the conditional independence assumptions of BNs, the joint probability
distribution of a set of random variables {X;, X5, X3, -+, X,,_1, X, } can be determined using a chain
rule as explained in (Pearl, 1988):

Pr(Xy, Xa, X3, -+, X1, X,) = [ [ Pr(X;| Parent(X;)) (1)

=1



BNs can provide a robust probabilistic method of reasoning under uncertainty and they are capable of
combining different sources of information to provide a global assessment. In a BN model, both forward
(predictive) and backward (diagnostic) analyses can be performed. The forward analysis of the model is
done by following the directions of the network’s arcs from the root nodes towards the leaf nodes. In this
analysis, the information about the causes are used to obtain the new belief about the effects. On the other
hand, the backward analysis of the BN model is performed by following the direction of the arcs in the
opposite direction, i.e., reasoning from effects back to their causes. In this case, evidence is provided on the
nodes representing unknown variables and based on this evidence new beliefs about the known variables
are obtained and updated. The diagnostic analysis of BN model is performed using the Bayes’ theorem.
According to Bayes’ theorem, if A and B are two random events and it is known that B has occurred, then
the posterior probability of the event A occurring given that B has occurred can be determined as:

Pr(B|A) Pr(A)
where Pr(A) and Pr(B) are the prior probability of event A and B respectively.

Classical BNs are particularly suitable for modelling systems in the static domain where the temporal
behaviour of systems is not taken into account. However, classical BNs have been extended to model
systems in dynamic domain as well. Application of BNs in dynamic domain has led to the formalisms
like Dynamic Bayesian Networks (DBNs) (Nicholson, 1992; Murphy, 2002), Temporal Bayesian Networks
(TBN)(Kanazawa, 1992), Dynamic Object Oriented Bayesian Networks (DOOBNs) (Weber and Jouffe,
2006), etc. Usually, a node in a BN represents either a discrete or a continuous variable. However, a hybrid
BN (HBN) (Marquez et al., 2010) is a type of BN which can incorporate both discrete and continuous
variables in a single BN model.

2.2. Petri Nets

Petri Nets (PNs) are a formal graphical and mathematical modelling tool which is appropriate for
specifying and analysing the behaviour of complex, distributed and concurrent systems. A classical PN is a
bipartite directed graph generally represented as six-tuple N = (P, T, A, K, W, M), where:

e P={p1,p2,p3, , -+, Pn} is a finite set of places: a place is graphically represented by a circle.
o T ={ty,ta,t3, ,-+, tm} is a finite set of transitions: a transition is represented by a rectangular bar.
e AC(PxT)U(T x P) is a finite set of arcs from places to transitions or transitions to places.

o K =1{1,2,3,---} is the capacity function of a place p, which defines number of resources a place can
hold. Resources are represented as tokens (shown as dots).

o W:A—{1,2,3,--} is the weight of an arc, which represents the number of tokens consumed from
a place through an arc or number of tokens deposited to a place through an arc.

e My: P —{1,2,3,---} is the initial marking of a PN model representing the number of tokens in each
place of the model.

In a PN model, input places are known as the pre-conditions of a transition, which represent the condi-
tions that need to be satisfied for the transition to be enabled and are connected to the transition through
input arcs. Transition enabling conditions are defined as a pre-specified number of tokens in all the input
places of the transition. On the other hand, output places are known as post-conditions of a transition,
which represent the outcome of the transition and are connected to the transition through output arcs. On
firing of a transition, a pre-specified number of tokens are consumed from the input places of that transition
and a pre-specified number of tokens are deposited to the output places of the transition.

Although, classical PNs are easy to analyse, it requires many places and transitions to model the be-
haviour of moderately complex systems, which may give rise to a state explosion problem (Desrochers et al.,
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Figure 2: Example of a PN

2005). At the same time, it is problematic to model time-dependent behaviour using classical PNs. To
overcome the above mentioned limitations, conventional PNs have gone through different modifications.
Stochastic Petri Net (SPN) (Molloy, 1982) is one such extension of PNs that allows transition delays to be
exponentially distributed. To allow both immediate and timed transitions in the same PN model, SPNs
have been extended to Generalized Stochastic Petri Nets (GSPN) (Marsan and Chiola, 1987; Marsan et al.,
1996). In GSPNs, timed transitions are usually represented graphically by white bars and fire after a random
period of time. On the other hand, immediate transitions are graphically represented by black bars and
they fire immediately after being enabled. Immediate transitions have priority over timed transitions, i.e.,
if an immediate and a timed transition are enabled at the same time, the immediate transition fires first.

Extended Stochastic Petri Nets (ESPNs) (Trivedi et al., 1984; Dugan et al., 1984) are another extension
to SPNs, which allow transition delays to be defined as any arbitrary distribution. That means that non-
exponentially distributed transitions are possible in ESPNs. On the other hand, Fluid Stochastic Petri Nets
(FSPN) (Gribaudo et al., 2001a,b) allow modelling system behaviour with two classes of places: discrete
places and fluid places. Discrete places may hold a discrete number of tokens and fluid places may hold a
continuous quantity represented by a non-negative real number. The capability of PNs for system modelling
has been enhanced in different other ways. One such enhancement is the inclusion of inhibitor arcs (Peterson,
1981) in the PN model. An inhibitor arc is represented as an arc that ends with a small circle instead of
arrowhead. Inhibitor arcs can have a weight like normal arcs (Kleijn and Koutny, 2004) and they change
the firing rule of transitions. If a place p is connected to a transition ¢ through an inhibitor arc with weight
w, then the transition ¢ will be enabled only if p contains at most w-1 tokens. Moreover, when a transition
fires, no token is consumed through an inhibitor arc, i.e., tokens in the inhibiting place remain zero. Using
the property of the inhibitor arc, it is possible to verify non-occurrence of an event. There are different other
variants of Petri nets available such as coloured Petri nets (CPNs) (Peterson, 1980; Jensen, 1981, 2013),
Stochastic Well-formed nets (SWN) (Chiola et al., 1991, 1993), and predicate/transition nets (Genrich and
Lautenbach, 1981). A detailed description of different types of PNs is out of scope of this paper. However,
interested readers can find more information about Petri nets in (Reisig, 2012; Zurawski and Zhou, 1994;
Peterson, 1977; Murata, 1989).

3. Bayesian Networks in Safety, Reliability and Risk Assessments

3.1. Applications in Safety and Reliability Analysis

Bayesian networks have been used in system safety and reliability analysis in two different ways. Firstly,
they are used as standalone approaches. In such cases, system behaviour is directly modelled into a BN and
all the relevant analyses are performed on the BN model. In the second scenario, BNs are used in association
with other dependability analysis artefacts. In this case, generally dependability analysis artefacts such as
fault trees are obtained first. After that, these artefacts are converted to BN models and all analyses are
performed on these models.

3.1.1. Applications as standalone approaches
Early applications of BNs could be found in (Neil et al., 1996). A short review of applications of
dynamic BNs for dynamic reliability assessment was presented in (Zahra et al., 2013). When BNs are used
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as standalone approaches, either predefined BNs are used for the analysis of a specific system or new BNs
are created from scratch based on the knowledge about system under consideration. For example, in (Gran
and Helminen, 2001), the authors used a BN model for reliability assessment of nuclear plants. BN models
were used for the reliability analysis of power systems and military vehicles in (Yu et al., 1999; Daemi et al.,
2012; Yongli et al., 2008; Hu et al., 2008) and (Neil et al., 2001), respectively. Network reliability has been
studied in (Lynn et al., 1998) using a pre-defined BN.

When BNs are created from scratch, they can be created manually, (semi-)automatically from the existing
data, or by combining manual and data-driven processes (Zhao et al., 2012). To create a BN for system
reliability analysis, the information about the nodes, the association among the nodes and the strength of
these associations must be known a priori. To help with the creation of a BN model, an expert with significant
knowledge about the system is typically employed. Fig. 3 shows the steps required to create and utilise a BN
model for safety and reliability analysis. Bouissou et al. (1999) proposed a method for hierarchical top-down
construction of BNs combining evidence from different sources for reliability assessment of safety-critical
systems.

To overcome the limitation of employing experts for creating BNs, and find associations between BN
nodes, Doguc and Ramirez-Marquez (2009) proposed a method for automatic construction of a BN model of
a system based on the historical data about the system without the intervention of experts. In this approach,
associations between system components were identified using a data mining algorithm named K2. The same
authors have performed similar research in (Doguc and Ramirez-Marquez, 2012) for reliability analysis of
grid systems. Jiang et al. (2013) proposed a novel probabilistic model, called the hybrid relation model
(HRM) for reliability evaluation of programmable logic controller (PLC) systems. HRM is a type of BN,
which captures complex dependencies among PLC system components caused by the embedded software.
Aslett et al. (2015) used the concept of survival signature (Coolen and Coolen-Maturi, 2013) for reliability
evaluation of systems using BNs. A hybrid BN framework has been presented by Neil and Marquez (2012)
to model the availability of renewable systems. Cai et al. (2012) have shown how a BN can be used for
reliability evaluation of subsea blow-out preventer control system. Recently, Liu et al. (2015) proposed a
method for developing a dynamic Bayesian network model for reliability analysis of subsea blowout preventer
stack in the presence of common cause failures. In (Hénninen et al., 2014a; Eleye-Datubo et al., 2008) BNs
have been used for safety and reliability analysis in the maritime and offshore industries. Hanninen (2014)
reviewed the benefit and challenges of applications of Bayesian networks in maritime safety and accident
analysis. Honari et al. (2009) showed how the Bayesian network can be used for the probabilistic reliability
quantification of an (r,s)-out-of-(m,n): F system. In (Su et al., 2012), the application of DBN for reliability
assessment of distribution system has been illustrated.

Although most applications target hardware reliability, methodologies have also been proposed for soft-
ware systems. Fenton et al. (2008) reviewed the application of BNs for software defect prediction and
reliability estimation. In (Bai, 2005), a new BN method called Markov Bayesian network has been proposed
and applied for reliability assessment of software systems using data from their operational profile. In this
approach, failure data of components were obtained from historical data and expert knowledge. At the same
time, a dynamic Bayesian network based method has been proposed in (Roshandel et al., 2007) to assess
the reliability of software systems at the architectural level by creating a stochastic reliability model of the
system. This approach was developed for design time analysis of system where no information about the
runtime behaviour of the system is available. The technique used a component-based strategy to evaluate
the overall system reliability, i.e., the reliability of the system components is evaluated first and then the
results are combined to estimate system-level reliability.

Reliability of systems with small probabilities are usually evaluated using Monte Carlo simulation. But
Monte Carlo simulation based approaches are expensive in terms of execution time and memory requirement.
To overcome these limitations, Cadini and Gioletta (2016) have proposed a method by exploiting Bayesian
Monte Carlo (BMC) approach (Ghahramani and Rasmussen, 2003). Straub and Kiureghian (2010) proposed
a computational framework called enhanced Bayesian network (eBN) by combining Bayesian networks and
structural reliability methods (Ditlevsen and Madsen, 1996) for reliability estimation of engineering struc-
tures and infrastructures. Recently, Straub and Papaioannou (2014) proposed a method by combining
structural reliability methods with rejection sampling strategy (Gilks and Wild, 1992) for calculating the

6



Problem Structuring

Instantiation

Inference

Identify variables

I

Identify network structure

i1

Express as statistical variables

™

Specify conditional probabilities

o

Enter evidence

T

Propagate

11

Interpret results

Figure 3: Steps necessary to build and use BNs for safety and reliability analysis (Sigurdsson et al., 2001)

posterior distribution of unknown parameters in a BN model.

Although most of the BN-based approaches rely on simulation to evaluate system reliability, Guan
et al. (2012) proposed an analytical approach for reliability estimation using the Laplace method (Tierney
and Kadane, 1986), Bayesian updating, and system response estimation given a reliability index. As this
approach does not use simulations such as Monte Carlo or Markov chain Monte Carlo simulations, it is
computationally more efficient, which makes this approach a superior option for real time application. Cai
et al. (2015) also proposed a method combining classical and dynamic BNs for real time reliability evaluation.
In this approach, classical BN is used for failure diagnosis, i.e., to identify the root causes of system failure
and the DBN is used for the reliability analysis by performing predictive analysis on DBNs.

Most of the BN-based approaches estimate system reliability based on precise lifetime data of components.
However, it is not always possible to obtain precise failure data of system components. BNs are inherently
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capable of handling random and non-random uncertainties, however, the issue of uncertainty has been

explicitly addressed by different researchers. An overview of a few of such contributions is presented in
Table 1.

Table 1: Overview of modelling aspects considered by BNs as part of standalone approaches

Aspects considered | Contributions

Multi-state Weber and Jouffe (2003, 2006), Bensi et al. (2013), Codetta-Raiteri et al. (2012),
systems Wilson and Huzurbazar (2007), Yontay and Pan (2016), Kang et al. (2015).

Weber and Jouffe (2003, 2006), Musharraf et al. (2013),Salem et al. (2006),
Codetta-Raiteri et al. (2012), Su et al. (2014), Jiang et al. (2013),
Yontay and Pan (2016).

Dependency
among events

Weber and Jouffe (2006), Mahadevan and Rebba (2005), Huang et al. (2006),
Uncertainties Eleye-Datubo et al. (2008), Zhang et al. (2014), Gérkemli and Ulusoy (2010),
Musharraf et al. (2013), Wu (2004, 2006), Fard et al. (2015), Ren et al. (2009).

Eleye-Datubo et al. (2008), Mkrtchyan et al. (2016), Podofillini and Dang (2013),
Human reliability Groth and Mosleh (2012), Baraldi et al. (2009), Musharraf et al. (2013, 2014),
Groth and Swiler (2013), Kim et al. (2006), Su et al. (2014), Li et al. (2012).

Continuous variables | Neil et al. (2008), Marquez et al. (2007), Guan et al. (2012).

Wu (2004, 2006) addressed the issue of uncertain data in reliability analysis by combining fuzzy set
theory with Bayesian networks. The method was used for the reliability analysis of production systems in
(Gorkemli and Ulusoy, 2010). Huang et al. (2006) used fuzzy set theory to address the issue of imprecise
failure data and proposed an approach to determine multi-parameter lifetime distribution of components.
In this approach, membership functions of the failure rate data were estimated using neural networks and
genetic algorithm. Zhang et al. (2014) proposed a fuzzy set theory based BN approach for safety analysis
in construction projects. Ibrahim and Beiu (2011) proposed a BN-based method for reliability evaluation of
nano-scale CMOS circuits.

Human reliability analysis (HRA) is an important aspect that requires significant consideration while
designing dependable systems. HRA is concerned with systematically identifying and analysing the causes
and effects of human errors in system operation. Several approaches have been developed based on BNs
for HRA and are listed in Table 1. A review of the applications and gaps in the use of BNs in HRA
could be found in (Mkrtchyan et al., 2015). Recently, for HRA with limited judgement, the same authors
have proposed methodologies in (Mkrtchyan et al., 2016) for building conditional probability tables of BNs.
Groth and Swiler (2013) proposed a BN-based version of the widely used Standardized Plant Analysis
Risk—-Human Reliability Analysis (SPAR-H) (Gertman et al., 2005) method in the nuclear industry. This
approach was aimed to close the gap between the HRA research and HRA practice in this industry. A BN-
based method has been proposed by Podofillini and Dang (2013) to aggregate expert judgements on human
error probabilities. This method can be used to determine the relationship between given performance
conditions and the human error probability. As claimed by the authors, this approach can be applied to
enhance the treatment of expert opinion in existing HRA methods such as SPAR-H, CESA (Reer et al.,
2004; Reer and Dang, 2007), and HEART (Williams, 1986) etc. At the same time, Musharraf et al. (2013)
have used BN to model the interdependency between human factors and associated actions during offshore
emergency conditions. Multi-expert knowledge was used to address the issue related to the scarcity of data,
and evidence theory was used to handle uncertainty and conflict associated with expert opinion.

3.1.2. Applications as model-to-model transformation approaches

The first application of BNs as part of model-to-model transformation approach could be found in
(Torres-Toledano and Sucar, 1998). In this approach, Torres-Toledano and Sucar modelled the system
reliability using a reliability block diagram (RBD). The RBD was then transformed into a BN model for
probabilistic reliability evaluation. Further work on this approach is available in (Kim, 2011; Zhou et al.,
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2006a; Mi et al., 2012). In (Kim, 2011), the author extended an RBD with general gates (RBDGG) using
the concept of reliability graph with general gates (RGGG) (Kim and Seong, 2002). In order to quantify
system reliability, RBDGG was transformed into BNs. While the previous approaches considered binary
states of system components, the approach proposed in (Zhou et al., 2006a) considered multi-state systems.
In addition to multi-state systems, common cause failure (CCF) is also considered in (Mi et al., 2012).

The most extensive application of BNs in system safety and reliability evaluation as model-to-model
transformation approaches is by translating fault trees (FTs) into BNs. The pioneering work on system
reliability analysis by translating FTs into BNs was performed by Bobbio et al. (2001). The process of
mapping a FT into a BN is shown in Fig. 4. As seen in the figure, the mapping of a FT into a BN model
is a one-to-one mapping process. The basic events of the FT are mapped to the root nodes of BN, the
intermediate events (e.g., logic gates) are mapped into the internal nodes and the top event of the FT is
mapped to a leaf node. The prior probabilities of the root nodes of the BN are calculated using the failure
probabilities of the basic events they represent. On the other hand, the conditional probabilities of the
internal nodes are populated based on the functional definitions of the logic gates they represent. As the
outcome of the logic gates are deterministic, i.e. true or false, the entries in the conditional probability
tables (CPTs) are either 0 or 1.
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events events of BEs
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Figure 4: FT to BN conversion process

Once a BN is formed from of a FT model, predictive analysis is performed by following the arcs of the
network. The result of predictive analysis usually consists of system reliability related information. On the
other hand, diagnostic analysis can be performed by providing evidence about the system failure on the BN
model. Based on this evidence the posterior probability of the root nodes of the BN can be calculated and
updated. Evidence-based analysis is also used to determine the importance of the basic events in terms of
their contributions to the occurrence of the system failure. In many areas, FTs have been translated to
BNs for safety and reliability analysis of systems. For example, in (Martins and Maturana, 2013) FTA has
been integrated with BNs for human reliability analysis in oil tanker operations. Some other applications
include the reliability evaluation of steel construction projects (Leu and Chang, 2013), train control systems
(Flammini et al., 2006; Su and Che, 2013), and power systems (Limin et al., 2002).

In most of the approaches mentioned earlier in this section, the prior probabilities of the component
failures are considered as precise values. However, for large and complex systems, in many cases it is
difficult to obtain a precise failure probability. The issue of epistemic uncertainty in failure data has been
explicitly addressed using BNs. For instance, in (Simon et al., 2007, 2008), the authors combined evidence
theory with BNs to address the issues of both random and epistemic uncertainties. The authors showed how
the basic concepts of the Dempster Shafer theory (Shafer, 1976) can be implemented in BN tools for the
treatment of epistemic uncertainty. Moreover, they also showed how diagnostic analysis can be performed
to identify components that contribute more to the uncertainty.

In addition to classical fault trees, dynamic fault trees (DFTs) have also been probabilistically evaluated
by translating them into Bayesian networks. Boudali and Dugan (2005a) proposed a method for reliability
evaluation of dynamic systems by translating DFTs into discrete-time Bayesian networks (DTBNs). This
approach can model complex behaviours of components and their interactions. It also alleviates the state
space explosion problem met in the evaluation of DFTs using Markov chains. The qualitative translation

9



process of DFTs to DTBNSs is the same as the translation process of FTs to BNs, as seen in Fig. 4. The
only difference is that, in addition to Boolean gates, dynamic gates are also translated into BNs. However,
the quantitative part of the translation process, i.e., the generation of prior probabilities and conditional
probabilities, are different from the static approach. Now, these probability values are generated by taking
into account that a component can fail in different points in time and also by considering the dynamic
behaviour of the logic gates. It is important to note that as this approach considers the discrete model
of time, the granularity of temporal discretisation has to be decided prior to modelling. The accuracy
and computational performance of this approach is dependant on the number of time intervals used for
time discretisation. To overcome the issues with time discretisation, Boudali and Dugan (2006) proposed
a method based on continuous time BNs. This approach is different from the DTBN-based approach in
the sense that the variables in the BN are now continuous. More importantly, the probabilities (both prior
and conditional) are expressed as probability density functions and the joint probability distribution is
expressed as a joint probability density function instead of multi-dimensional tabular form. For this reason,
this approach saves on memory, by not storing any probability tables, and can provide an exact closed form
solution to the system reliability evaluation. Marquez et al. (2008, 2010) developed a BN-based approach
where both discrete and continuous nodes are used in the same model and which allows the use of any
parametric and empirical distributions for the time-to-failure of system components.

At the same time, Montani et al. (2005) proposed a concept of translating DFTs to dynamic Bayesian
networks (DBNs) for dependability analysis of systems. They performed further research to propose the
concept of a tool for automatic translation of DFTs to DBNs in (Montani et al., 2006b,a). Finally, they
presented a complete tool named RADYBAN in (Montani et al., 2008) for automatic conversion of DFTs
to a 2-time-slice BNs (2TBNs)(Weber and Jouffe, 2003). 2TBN is an instant-based approach, whereas the
methodology proposed by Boudali and Dugan (2005a) was interval-based. The instant-based approach has
been criticised for being too general or creating unnecessarily complex networks by repeating the same struc-
ture for each time instance. However, the 2TBN approach seems to overcome this limitation by modelling
any time horizon using only two time slices. Portinale et al. (2010) further developed this work by intro-
ducing a repair box gate to enable the modelling of repairable systems. In (Codetta-Raiteri and Portinale,
2015), dynamic Bayesian networks were used for fault detection, identification, and recovery in autonomous
spacecraft. Most recent contributions of BNs applications in safety and reliability by converting DFTs into
BNs can be found in (Codetta-Raiteri, 2015; Codetta-Raiteri and Portinale, 2017). In (Codetta-Raiteri and
Portinale, 2017), DFTs were evaluated by translating them into a Generalised Continuous Time Bayesian
Network (GCTBN) (Codetta-Raiteri and Portinale, 2010), an extension of the CTBN defined by Nodel-
man et al. (2002). Unlike other variants of BNs, GCTBN can consider repairability of components during
analysis. The GCTBNs were solved by converting them to GSPN models. For this reason, if the GCTBN
contains many multi-state nodes, the GSPN-based analysis will suffer from state space explosion due to the
consideration of large number of states.

RBDs and FTs are not the only artefacts that are transformed into BNs for system safety and reliability
analysis. Different other artefacts such as bow-tie diagrams were translated to BNs in (Khakzad et al.,
2013a; Abimbola et al., 2015) and FMEA was translated to BNs in (Chengshan and Yinghua, 2004). In
addition to model-to-model transformation approaches, BNs have also been used in association with other
dependability artefacts, where other models are not directly transformed into BNs. Instead, BN models are
used in parallel with other models to improve the results. For instance, in Yang et al. (2008) have used
BNs with FMEA and fuzzy set theory for risk prioritisation in FMEA. Weber et al. (2004) used a dynamic
BN as an equivalent model to the Markov chain for reliability assessment of complex systems. On the
other hand, Foulliaron et al. (2015) modelled semi-Markovian processes using a special type of DBN called
Graphical duration model (GDM) (Donat et al., 2010) for reliability analysis of dynamic systems. In (Singh
et al., 2001), BN has been used with UML diagrams for reliability evaluation of component based software
systems. In this approach, system reliability is estimated using three models as: state-based models, path-
based models and additive models. In state-based models, predefined system architectures or architectures
generated at run time are represented using control graphs (Gokhale et al., 1998). All possible execution
paths that the system can follow during runtime are considered in the path-based models. Component
failure data are used in the additive models (Xie and Wohlin, 1995) by considering the growth model.
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Table 2: BNs applications as model-to-model transformation approaches

Dependability Methodological Applicative
artefacts contributions contributions
Leu and Chang (2013),
Portinale and Bobbio (1999),Bobbio et al. (2001, 2003a), Limin et al. (2002),
Classical Martins and Maturana (2013), Simon et al. (2007, 2008), Lu et al. (2004),
fault trees Franke et al. (2009), Wang et al. (2004, 2011a), Su and Che (2013)
Xiaowei (2010),Xiaowei et al. (2008), Gu and Yang (2013), | Flammini et al. (2006)
Yazdi and Kabir (2017) Yin et al. (2008)

Zhou et al. (2006Db)

Boudali and Dugan (2005a,b, 2006), Portinale et al. (2010)
Montani et al. (2005, 2006b,a, 2008), Mi et al. (2016),
Marquez et al. (2008, 2010), Codetta-Raiteri (2015),
Codetta-Raiteri and Portinale (2014, 2017), Li et al. (2015)
Khakzad et al. (2013c), Kabir et al. (2018a, 2014)

Dynamic
fault trees

Mi et al. (2016),
Codetta-Raiteri (2015)

Bow-tie diagram | Khakzad et al. (2013a) Abimbola et al. (2015)
Reliability Torres-Toledano and Sucar (1998), Zhou et al. (2006a), Ur et al. (2014)

Block Diagram | Kim (2011), Mi et al. (2012), Li et al. (2016a) retak

FMEA Chengshan and Yinghua (2004) Wang and Xie (2005)

3.2. Applications in Risk Assessments

A review of the applications of Bayesian inference for probabilistic risk assessment till 2007 was presented
by Kelly and Smith (2009). Different aspects of Bayesian network-based risk assessment and decision analysis
are described by Fenton and Neil (2012, 2014). The inference process of BN was integrated with traditional
probabilistic risk assessment by Lee and Lee (2006) to consider the effects of evolutionary environmental
conditions on nuclear waste disposal. Maglogiannis et al. (2006) introduced a BN-based method for risk
analysis in patient health monitoring system. In this approach, they combined basic attributes of the CCTA
Risk Analysis and Management Methodology (CRAMM) (Yazar, 2002) with the BN network to identify
assets, potential threats and vulnerabilities of patient telemonitoring systems, and model dependencies
between these events.

Like system safety and reliability analysis applications, different dependability artefacts such as event
trees, fault trees, dynamic fault trees and bow-tie diagrams are translated into BNs for risk assessment.
For example, Kalantarnia et al. (2009, 2010) and Rathnayaka et al. (2011) represented potential accident
scenarios using event trees and utilised Bayes’ theory as a means for dynamic risk assessment by helping to
update the failure probabilities of the events in the event trees. Khakzad et al. (2012) used Bayes’ theory
with bow-tie (BT) model for dynamic risk assessment. The BT model combines fault tree and event tree
to represent accident scenario including causes and consequences. This approach is suitable for real-time
risk assessment. In the approach, the basic events failure probabilities are updated in real-time based on
the observed parameters of the physical system components. On the other hand, Bayes’ theorem is used to
update the failure probability of safety barriers of the BT. Methodologies have been proposed for mapping
bow-tie diagrams into BNs for dynamic risk assessment in (Ale et al., 2006, 2009; Khakzad et al., 2013a;
Yuan et al., 2015). The approach proposed in (Khakzad et al., 2013a) was applied for the quantification of
risk associated with offshore drilling operations in (Khakzad et al., 2013b; Abimbola et al., 2015). Bayesian
network based risk assessment approaches have been widely used in process industries. Khakzad et al.
(2011) compare the applications of fault trees and Bayesian networks in the safety risk analysis in process
industries. Khakzad et al. (2013c) have proposed a method for converting DFTs into discrete-time BN for
risk analysis in process industries. The authors proposed an algorithm called neutral dependency to avoid
large, multi-dimensional conditional probability tables (CPTs). Using this algorithm, CPTs of PAND,
AND, and OR gates are decomposed into two tables, each of which is smaller than the original CPTs.
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However, the inclusion of neutral dependency algorithm for complexity minimisation of CPTs makes this
approach unsuitable for posterior/diagnostic analysis. Similar contribution has also been made by Barua
et al. (2016). They proposed to use DFTs to model dynamic failure behaviour of chemical process plants
and then convert the DFTs into DBNs for dynamic risk assessment. Khakzad et al. (2013d) proposed a new
BN-based approach for probability estimation and failure propagation path determination of domino effects.
Recently, Khakzad (2015) developed another Bayesian network methodology to model both the spatial and
temporal evolutions of the cascading effects of a chain of accidents and to determine the most probable
sequence of accidents in a process plant. (Hu et al., 2015b) proposed a dynamic Bayesian network based
method for fault propagation studies in petrochemical process facilities. In this approach, firstly, a HAZOP
study is performed to identify the faults, their causes and potential consequences. The causal relationships
among different events are then modelled using DBN for risk assessment.

The modelling power of BNs has been utilised to model various aspects of maritime risk assessment
such as the ship-ship collision or grounding occurrence (Akhtar and Utne, 2014; Hanninen et al., 2014b),
accidents and their consequences (Antéao et al., 2009; Kelangath et al., 2012; Zhang et al., 2013; Goerlandt
and Montewka, 2014; Montewka et al., 2014). Hénninen and Kujala (2012) used Bayesian networks to
identify the risk-influencing variables which significantly affect the occurrence of ship collision in the Gulf
of Finland. Wu et al. (2015) proposed to integrate the interpretive structural modelling (ISM) method
(Warfield, 1973) with BNs for risk assessment for operations in marine environments. To form the structure
of the BN model and find the relationships among the BN nodes, this approach used the ISM method to
systematically acquire information from experts. The prior probabilities of the BN nodes were determined
based on expert opinions. The approach was applied to two offshore pipeline case studies to facilitate better
risk assessment in associated maritime projects. When precise failure data are scarce, expert judgements
are commonly used to obtain the prior probability of the BN nodes. However, there exists criticism about
the subjectivity of the expert judgement. To address this issue, Li et al. (2014) developed a binary logistic
regression method to obtain prior probabilities of the BN nodes by utilising the existing maritime accident
data resources. Other recent contributions related to the risk assessment of oil and gas pipelines using
Bayesian networks are available in (Aljaroudi et al., 2015; Li et al., 2016b; Wu et al., 2017; Li et al., 2017).
Bayesian networks have been applied for conducting dynamic risk assessment of deepwater managed pressure
drilling and under-balanced drilling operations by Bhandari et al. (2015).

Cai et al. (2013) proposed an algorithm to convert fault trees into a dynamic Bayesian network for
quantitative risk assessment of human errors on offshore blowouts considering the repairability of events.
In order to address the issue of scarce statistical failure data, Wang and Mosleh (2010) proposed a method
based on BNs called QQBBN to incorporate both qualitative and quantitative information in the BN models.
This approach is particularly useful when the risk assessment requires to take into account the influence
of human and organizational factors. At the same time, Wang et al. (2011b) integrated fuzzy fault trees
with BN for probabilistic risk assessment under conditions of uncertainty. Ren et al. (2009) combined fuzzy
logic with BN for offshore risk analysis. In order to incorporate both qualitative and quantitative data in
the risk assessment process under uncertainty, recently, John et al. (2016) developed a modelling approach
combining BNs with fuzzy set theory. They applied this approach for resilience improvement of the seaport
system by performing risk assessments.

Chin et al. (2009) proposed a BN-based method for risk assessment in new product development. In this
approach, the risk factors in new product development project such as research and development risk, supply
risk, production risk and product reliability were identified and their interrelationships were investigated
first. After that, BN is used to model the relationships among those factors. A systematic probability
generation algorithm was developed for prior and conditional probability generation of the nodes of the
BN. However, for complex Bayesian network structures where a node has many parent nodes, and a large
number of states is considered for a node, this approach creates difficulties in completing the large conditional
probability tables. Duval et al. (2012) proposed a BN-based integrated risk assessment method for industrial
risk assessment where all the potential risks such as risks associated with system models (e.g., functional and
organizational), environmental conditions, human actions and maintenance strategy are globally covered in
a single view. Li et al. (2010) proposed to construct BN models for flood risk assessment using domain
knowledge and spatial data. Liu et al. (2012) used Bayesian network for health risk assessment using the
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example of road constructions. Recently, Brito and Griffiths (2016) proposed a Bayesian approach to predict
the risk of losing Autonomous Underwater Vehicles (AUVs) during a mission in hazardous environments due
to the deviations of operating conditions from its agreed nominal conditions. BNs have been used by Kabir
Kabir et al. (2015a) to develop a model for evaluating risk of water main failure by considering different
contributing factors such as hydraulic capacity, structural integrity, and water quality etc.

Similar to addressing human factors in system safety and reliability analysis applications, BNs have been
used for human factor analysis in risk assessment. Trucco et al. (2008) proposed a method for integrating
Human and Organisational Factors (HOF) into a risk analysis by combining fault tree analysis and Bayesian
networks. In this approach, firstly, fault trees are used to represent the hazardous situations that may occur
due to the failure of the systems. Afterwards, BN is used to modify the probability of the basic events of
the fault tree by taking into account the effect of the human and organisational factors.

4. Petri Nets in Safety, Reliability and Risk Assessments

4.1. Applications in Safety and Reliability Analysis

Similar to BNs, PNs have also been used both as standalone approaches and as a part of model-to-model
transformation approaches for system safety and reliability analysis. When used as standalone approaches,
system behaviour is directly modelled using Petri nets and the model is then analysed to evaluate system
safety and reliability. On the other hand, when used as part of model-to-model transformation approaches,
system failure behaviour is captured first using a dependability analysis model as a fault tree. This model
is then transformed into a PN model and the model is analysed to determine system safety and reliability.

4.1.1. Applications as standalone approaches

Petri nets have been used for the safety analysis of real-time safety critical software systems by Leveson
and Stolzy (1987). In their approach, the nominal behaviour of systems is modelled using Timed Petri
nets and the model is then extended by introducing failures and faults. This extended model is analysed for
safety and criticality analysis of systems. It is important to note that only the severity of the hazards is used
for safety analysis so the analysis remains qualitative. Dutuit et al. (1997) presented a PN-based approach
which included qualitative analysis, i.e. determination of potential sequences of events that lead to system
failure as well as reliability analysis with application to distributed processing systems and communication
networks in (Kumar and Aggarwal, 1993; Muppala and Lin, 1996) and (Balakrishnan and Trivedi, 1996),
respectively.

A tutorial has been provided in (Schneeweiss, 2001) showing how PNs can be used to model different
reliability scenarios. Fig. 5 shows the typical steps that are required to create and analyse a PN model
for safety and reliability analysis. Volovoi (2004) proposed a flexible and graphical modelling framework
for reliability analysis of non-exponentially distributed data. The approach was demonstrated with several
examples, including load sharing, shared pool of identical imperfectly repaired components, phased mission
systems, and damage tolerant components.

Mura and Bondavalli (2001) used Markov Regenerative Stochastic Petri Nets to propose an analyti-
cal technique with low computational complexity for dynamic behaviour modelling and analysis of phased
mission systems. Recently, Wu and Wu (2015) proposed an extended object-oriented Petri net (EOOPN)
model for mission reliability analysis of the repairable phased mission system with common cause failures.
Adamyan and He (2002a) used PNs to model sequence-dependant failure behaviour of manufacturing sys-
tems. Using the PN model, the potential sequences of events that can cause the system failure were identified
and based on these information, safety and reliability are evaluated. Failure rates of system components are
assumed to be exponentially distributed. To overcome this limitation the same authors proposed a method
in (Adamyan and He, 2003) and (Adamyan and He, 2004), which allows the use of inhibitor arcs and loops
in PN model. They also use fewer variables than in earlier work to reduce computational complexity. Sadou
and Demmou (2009) proposed a PN based approach for temporal behaviour analysis of dynamic systems.
Using PN, they derive the causes of reaching a feared (unexpected) scenario. Reliability is evaluated by
identifying a set of minimal sequence of scenarios that can cause the system to go to the feared state. A
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Figure 5: Typical steps for building and analysing PN models for safety and reliability analysis

reachability graph that is generated from PN to determine failure scenarios can easily lead to state space
explosion. To avoid this problem the authors in (Sadou and Demmou, 2009) translate the reachability graph
of a PN to equivalent linear logic sequents.

A model-based approach was proposed by Portugal et al. (2005) using Stochastic Petri nets (SPNs) for
dependability analysis of controller area network in the presence of transient faults occurred during commu-
nication. Sachdeva et al. (2008) proposed a method based on PNs for reliability evaluation of the pulping
system in the paper industry. Interactions between different active and standby units of the system were
modelled using Stochastic Reward Nets. Monte Carlo simulation was then used to evaluate the reliability of
the system. Signoret (2009) showed how SPNs can be used for dependability analysis and safety integrity
level allocation problems. Application of SPNs for availability analysis of safety critical on-demand sys-
tems was presented in (Kleyner and Volovoi, 2010). The method proposed in this application takes into
account different practical factors such as detectability of faults, duration of repairs, estimated down time,
system age, etc. Zeng et al. (2012) used SPNs to model the behaviour of control networks in smart grid
by considering cold and hot spare strategies. Transient and steady-state analysis were performed on the
SPN models to evaluate reliability and availability of the smart grid system. A method was proposed to
avoid the state-space explosion problem. Colored Petri net (CPN) has been used by Pinna et al. (2013)
for safety and reliability analysis. A guideline was provided for hierarchical modelling of both deterministic
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and probabilistic features of system behaviour using CPN. Monte Carlo simulation was used for reliability
evaluation.

Tonescu et al. (2006) have used GSPN for the reliability modelling of medium voltage distribution systems
of nuclear power plants. GSPNs have also been used by Ghosh et al. (2017) for reliability modelling and
analysis of phasor measurement units (PMUs) in power systems. Codetta-Raiteri and Bobbio (2005) used
GSPN and FSPN for solving dynamic reliability problem. On the other hand, colored PN has been used by
Németh et al. (2009) for primary-to-secondary leaking safety procedure verification of nuclear power plants.
In order to deal with imprecise, uncertain information in the reliability analysis of repairable systems, Garg
(2013) proposed a method combining PNs with intuitionistic fuzzy sets. PN is used for qualitative modelling
of behaviour of systems. For quantitative analysis, failure rates and repair times of system components are
represented by intuitionistic fuzzy numbers of triangular membership functions instead of crisp or classical
fuzzy numbers.

PN has been used by Singh and Rajput (2016) for modelling and safety analysis of computer based
safety critical systems. The same authors proposed another PN-based method in (Singh and Rajput, 2017)
for dependability analysis of real-time systems. In this approach, they considered different properties such
as non-liveness, deadlock, stability, etc., during dependability evaluation. A hierarchical approach was
proposed by Chung and Chang (2011) to create a PN model for the purification operation in the Metal
Organic Chemical Vapor Deposition (MOCVD) process. The model was then simulated to identify the
effects of different component failure and external interferences. Hybrid Petri nets were used by Ghasemieh
et al. (2016) to model the behaviour of waste water treatment facility. The survivability of the system
was evaluated by using model checking on the PN model. Vasilyev et al. (2017) used hybrid Petri nets for
reliability modelling of polymer electrolyte membrane (PEM) fuel cell systems. Li et al. (2016¢) proposed
a PN-based reliability modelling method when system reliability was evaluated considering the dependence
of failure mechanism. Wieland et al. (2009) proposed a PN based model to calculate reliability data of
polymer-electrolyte-membrane fuel cell stacks. The reliability data include the average lifetime of a single
stack or the reliability of stacks of a whole fuel cell vehicle fleet within a given time. Zareice et al. (2014)
developed PN-based controller for safety analysis of discrete event systems. This controller prevents the
system from entering any forbidden state by solving Integer Linear Programming problems. Singh et al.
(2017) used PNs for safety modelling of gantry crane operations. Gongalves et al. (2017) used PNs for
safety assessment of unmanned aerial vehicle. A Petri net-based fault modelling approach was proposed in
(Sunanda and Seetharamaiah, 2015) and the approach was validated by applying it to a prototype rail-road
crossing junction system.

One particular application of Petri nets in system safety and reliability analysis is in the fault detection
and diagnosis. Sun et al. (2004) used fuzzy Petri nets to create fault diagnosis models of electric power
systems (EPS). By combining Petri nets with fuzzy set theory, this approach allows the fault diagnosis of
EPS when incomplete and uncertain alarm information of protective relays and circuit breakers is detected.
Feasibility and effectiveness of this approach were illustrated through simulation. Fuzzy PNs have been
utilised to propose another approach in (Zhang et al., 2016) for fault diagnosis of power systems. This
approach can take into account the temporal behaviour of the systems. Liu et al. (2013) combined fuzzy
evidential reasoning (FER) and dynamic adaptive fuzzy Petri nets (DAFPNs) for fault diagnosis and cause
analysis. In the approach, FER was used to identify abnormal events and the DAFPNs was used to determine
the root causes and consequences of abnormal events. PNs have been used by Mansour et al. (2013) for
fault diagnosis of large power generation station. To improve the confidence degree on the diagnostic result,
Cheng et al. (2015) proposed a method based on fuzzy PNs.

Case-based reasoning (CBR) (Aamodt and Plaza, 1994) has been integrated with PN by Yang et al.
(2004) to propose a method for fault diagnosis of induction motors. In this approach, CBS is used to
collect information from previous cases by taking into account knowledge and experience of experts, and
thus using this information to solve new problems that show similarity with previous cases. A modular and
hierarchical approach has been proposed in (Miyagi and Riascos, 2006) for fault detection and treatment in
manufacturing systems. A state-based approach has been proposed by Lefebvre (2012) using the properties
of the reachability graph of PNs for fault detection and diagnosis of systems under partial observation of
system states and events. Other applications of PNs for fault diagnosis include the fault diagnosis of normal
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and wind turbine generators (Kachur and Shakhova, 2016; Han, 2015).

Basile et al. (2009) proposed a diagnoser for discrete event system (DES), where the online computation
of the set of possible fault events explaining the last observed event is done by defining and solving integer
linear programming problems. When the system model evolves the diagnoser has to be redesigned and
redefined. However, to avoid this, Dotoli et al. (2008, 2009) proposed an on-line diagnoser based on Petri
nets. Cabasino et al. (2009, 2010) also proposed a method for online diagnosis of DES using Petri nets. In
this method, faults in the system are modelled as unobservable transitions, and nominal behaviours may
also be modelled as unobservable transitions. Renganathan and Bhaskar (2010) also proposed a PN-based
method for online fault diagnosis. They have also proposed a method in (Renganathan and Bhaskar, 2013)
using hybrid PNs for fault diagnosis and fault tolerant control in bottling plants.

State space explosion is a common problem faced by the PN-based approaches due to the generation of
all possible system states. Giua and Seatzu (2005) proposed a method to avoid the exhaustive enumeration
of the DES states by introducing the concept of basis markings and justifications. Jiroveanu et al. (2008)
proposed a similar approach. This approach made improvement over (Giua and Seatzu, 2005) in the sense
that it can be applied to large systems. For fault detection and diagnosis of large scale systems, Jiroveanu
and Boel (2006) proposed a model-based approach using timed PNs. Small PN models are created for local
components and these models are composed together to obtain the PN model of the whole system. Due to
the modularity of the approach, the re-usability of the existing models has increased significantly. This has
also improved the scalability and computational complexity of the approach, which allows possible online
applications.

4.1.2. Applications as model-to-model transformation approaches

An overview of the approaches where different models are translated into PNs for safety and reliability
analysis are shown in Table 3. Early application of PNs as model-to-model transformation approaches for
system safety and reliability analysis can be found in (Hura and Atwood, 1988) where Hura and Atwood
showed the concept of utilisation of PNs for fault tree analysis. They provided an algorithm for mapping
classical fault trees into PNs and showed how the PN model can be used for fault detection, fault propagation
and reliability analysis. Later on, different complementary contributions had been made showing how PNs
can be used to quantify fault trees. For example, Malhotra and Trivedi (1995) developed a methodology for
dependability modelling using GSPN and stochastic reward nets (SRN). In their method, algorithms were
proposed to convert FTs into equivalent GSPN and SRN by considering repairability of systems. At the
same time, Liu and Chiou (1997) have presented a novel method for failure analysis using Petri nets. In
addition to showing how fault trees can be converted to PN models, this method also showed how to obtain
minimal cut sets and path sets from a PN model. To take into account the repair activities in fault tree
analysis, Bobbio et al. (2003a) proposed to convert FTs into stochastic Petri nets. A list of many other
similar approaches is shown in Table 3.

In addition to the classical fault trees, dynamic fault trees have also been translated to PNs for safety and
reliability analysis. For instance, Codetta-Raiteri (2005) and Zhang et al. (2009) proposed methodologies
to translate DFT's into GSPNs for reliability analysis of dynamic systems. On the other hand, Kabir et al.
(2018a, 2015b) showed how temporal fault trees can be translated into GSPNs. Fig. 6 shows the graphical
symbols of the commonly used DFT gates and a detailed information about the definitions and functional
behaviour of these gates can be found in (Dugan et al., 1992; Kabir et al., 2016). The AND and OR gates
are two Boolean gates. The output of an AND gate will become true when all its inputs become true,
whereas the OR gate will become true when at least one of its input becomes true. The PAND gate can
model sequencing of events and the outcome of this gate will become true if and only if all its input becomes
true in left-to-right sequential order. The FDEP gate helps to model a scenario when the operations of some
system components are dependent on the operation of another component of the system. In the FDEP gate
there is only one trigger event, but there could be multiple functionally dependent events. The occurrence
of the trigger event would force the dependent events to occur; by contrast, the occurrence of a dependent
event would affect neither the trigger event nor the other dependent events. In a SPARE gate, the left most
input is the primary input and other inputs act as secondary inputs. This gate designs a scenario where the
spare components are activated in a sequence, i.e., if there are two spare components, then the first spare
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will be activated in case the primary fails; if the first spare fails then the second one will be activated. The
outcome of the SPARE gate becomes true if all the input events are true. The SPARE gate could model
three types of spares: cold spares, warm spares, and hot spares (Kabir et al., 2016). Sequence-Enforcing
gate (SEQ) imposes a sequence on its events such that they must occur in that order. Fig. 7 shows the
GSPN models of these logic gates used in classical and dynamic fault trees. A detail description of how
the logic gates are translated into GSPN models can be found in (Kabir et al., 2018b). Given these GSPN
models of the logic gates, Fig. 8 shows a pseudocode of a function that converts a DFT to GSPN in the
course of a depth first traversal of the DFT.

Y.dn Y.dn Y.dn

AND OR PAND

Xidn Xz.dn Xndn Xidn Xzdn Xndn Xidn Xa.dn Xn.dn
(a) (b) (c)

No logical output [ Y.dn [ 1Y.dn

FDEP SPARE SEQ

5O SO

T.dn Di.dn Dn.dn P.dn Si.dn Sn.dn X1.dn Xz.dn Xn.dn
(d) (e) (f)

Figure 6: Commonly used logic gates in DFTs

Table 3: PNs applications as model-to-model transformation approaches

Models
translated Contributions
Classical Hura and Atwood (1988), Malhotra and Trivedi (1995), Liu and Chiou (1997),

Wu et al. (2011), Bobbio et al. (1999), Buchacker (1999), Knezevic and Odoom (2001),

fault trees Reza et al. (2009), Adamyan and He (2002b)

Non-classical | Bobbio et al. (2003b), Codetta-Raiteri (2005), Zhang et al. (2009), Kabir et al. (2015b),
fault trees Herscheid and Troger (2014)

Reliability

block diagram Robidoux et al. (2010), Signoret et al. (2013)

Event Tree Nyvlt and Rausand (2012)

UML Hei et al. (2011), Wang and Lu (2012)

Petri nets have also been used together with FTA for uncertainty quantification during reliability analysis
and a review of such approaches was presented in (Kabir and Papadopoulos, 2018). Knezevic and Odoom
(2001) proposed a method for reliability analysis of repairable systems based on Petri nets and fuzzy set
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dftTOgspn (dft node) {

dft rn

if (node i= basic event) {

translate node to GSPHN module

add new GS5PN modnle to list of GSPFN modules
}

else { J/node is a gate
if (child of node has GSPN translation) { //gate inpunts have GSPN translations
translate node to GSPH modnle J/foreate GSPN modunle for gate

add new GS5PN modnle to list of GSPFN modules
}

else { J/fgate inputs not translated
for (rn = child of node and all siblings) { J/fall gate inputs
dftTOgspn (rn) J/recursive call

Figure 8: Pseudocode to convert DFT to GSPN (Kabir et al., 2018b)

theory. Fault trees are translated into Petri nets and minimal cut and path sets are generated from PN
models. On the other hand, fuzzy set theory has been used for representing failure and repair rates instead of
crisp values. Inclusion of fuzzy set in the analysis allowed to incorporate expert opinions, linguistic variables,
and uncertainty and imprecision in reliability data. Wu et al. (2011) proposed a method combining FTA
and fuzzy reasoning PN (FRPN) for reliability analysis of a solar array system. The root causes of the
failure of solar array were determined using FTA. The FT was then translated into FRPN, which was used
for fault propagation studies and reliability analysis. This method was extended in (Wu et al., 2012) and
applied for reliability optimisation of the solar array of a spacecraft. A PN-based FTA has been used to
probabilistic safety assessment of a power plant in (Lee and Lu, 2012).

Reliability block diagrams (RBDs) have also been translated to Petri nets for system reliability evaluation.
Distefano and Puliafito (2009) have used dynamic RBDs (DRBDs) to capture time-dependant behaviour
of systems. DRBDs were translated into PN models for reliability evaluation. Similarly, Robidoux et al.
(2010) proposed a method to translate DRBD into colored Petri net for reliability evaluation. A reliability
markup language (RML) is defined to formally describe DRBDs. RML is an XML-based language to formally
describe the components, structure, and dynamic behaviour of a DRBD model. An algorithm was developed
for automatically converting DRBD models to colored Petri net models.

Other models were also translated into PNs for system safety and reliability analysis. For instance,
event trees were translated into PNs in (Nyvlt and Rausand, 2012). Hei et al. (2011) and Wang and Lu
(2012) proposed methodologies to translate UML Statecharts into PNs for safety analysis. Dependability
artefacts such as fault trees, FMEAs are not only translated to PNs for safety and reliability analysis, they
are also used in association with PNs. For example, Dutuit et al. (2008) studied the safety integrity level
allocation problem for safety instrumented systems using both FTA and PNs, and compared the results.
Fault Tree Driven Markov Processes (FTDMP) (Cacheux et al., 2013) and GSPN have been used together
in (Talebberrouane et al., 2016) for availability analysis of safety critical systems and the results were
compared to show the advantages of GSPN over FTDMP. In (Yan et al., 2017), PNs have been used with
FTA and FMEA for mission modelling of automated guided vehicles. Habchi and Barthod (2016) proposed
a methodology combining RBD and PNs for reliability assessment of mechatronic systems.
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4.2. Applications in Risk Assessments

Like Bayesian networks, Petri nets have also been used for risk assessment in different industries. In 2003,
Vernez et al. (2003) discussed the uses and application perspectives of PNs in the risk analysis and accident
modelling areas. A timed Petri net based approach has been proposed by Tuncel and Alpan (2010) for risk
assessment and real-time control of supply chain (SC) networks. Failure mode effects and criticality analysis
(FMECA) is used to identify the disruption factors in the SC. The dynamic and stochastic behaviour of the
SC is modelled using timed PNs and the risk is evaluated through simulating the model. A special version
of PN called attack net has been used by McDermott (2001) for penetration testing to assess the security
risk of information systems. This approach allows to view graphically how a collection of flaws can combine
together to cause system penetration.

A hierarchical approach was developed by Balasubramanian et al. (2002) to construct PN models for risk
analysis of liquid ammonia loading operations in process industries. A set of sub-PN models were created for
all the components of the system and the failure behaviour of components was incorporated into these models.
The sub-PN models of components were combined together and simulated to obtain the failure propagation
behaviour of the system. Getting motivated by the approaches proposed in (McDermott, 2001; Zhou et al.,
2003; Dahl, 2005), Henry et al. (2009) proposed a method for assessing the risk of computer network
operations against Supervisory Control and Data Acquisition (SCADA) systems. This work extended the
earlier work of Balasubramanian et al. (2002) and the process model presented in (Balasubramanian et al.,
2002) was extended to construct a corresponding SCADA model by including remote manual and automated
control in the model of the process components. Later, this approach was more formalised by the same
authors in (Henry et al., 2010).

Helmer et al. (2007) proposed a distributed, agent-based method by combining software fault trees (SF'T)
with colored Petri nets for systematic specification, design, and implementation of an intrusion detection
system (IDS) for security risk assessment of computer systems. SFTs are used for defining intrusions
and developing a requirement model of the IDS. The SFT models are then used to create CPN models for
intruder detection. Aloini et al. (2012) have showed how colored Petri nets can be used for risk assessment of
enterprise resource planning by taking into account dependencies (e.g. causal relationships) among different
risk factors. SPNs have been used in (Ghazel, 2009) for dynamic behaviour modelling of level crossings
considering both road and railway traffic. An SPN model showing global system behaviour was simulated
to evaluate collision risk at level crossings.

UML design and Timed Petri net have been used by Bernardi et al. (2011) for timing-failure risk as-
sessment of real-time software systems. UMIL-based software specification was augmented with MARTE
(OMG, 2009) profile annotations to model the non-functional system properties. The UML-based design
is then transformed into a timed PN model for timing-failure risk assessment. Zafra-Cabeza et al. (2004)
proposed an algorithm for the optimal scheduling of projects with respect to time and cost, where a timed
PN was used to represent the project tasks and the project risk assessment plan. Lee et al. (2013) proposed
a PN based method by integrating risk identification, analysis and mitigation actions for qualitative risk
assessment of distributed manufacturing system. In this approach, Monte Carlo simulation was used for
quantitative risk assessment.

A colored PN-based risk assessment method was proposed by Ammar et al. (1997) for risk assessment
of functional specification of real-time software systems. This approach was later extended by the same
authors in (Ammar et al., 2001). A colored PN-based method called MORM (man-machine occupational
risk modelling) has been developed by Vernez et al. (2004) for occupational health and safety risk assessment
in industrial processes. This approach overcomes many of the limitations of the classical risk assessment
approaches such as FMEA and HAZOP, by taking into account multiple factors such as man-machine
functional interactions, flow deviations, and physical failures of machines into a single analysis. Fanti et al.
(2015) used modular colored PNs in their model-based decision support system (DSS) for evaluating risk
associated with transport of hazardous materials. The DSS contains three components: the data component
(DC), the model component (MC) and the user Interface Component (UIC) can address two problems.
Firstly, it can evaluate the risk induced on the population by vehicles transporting hazardous materials
through highways. Secondly, it can help to select optimal restoration procedures in critical situations such
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as after accidents involving hazardous material transportation vehicles. The MC within the DSS contains
the risk assessment module (RAM), the simulation module (SM) and the decision module (DM). Out of
these modules, the SM used colored PNs to model the behaviour of highway network, which includes the
model of the accident and the restoration procedure after the accident. Colored PNs have also been used by
Stephenson (2004) as a modelling and simulation method for risk assessment of information systems. Kadri
et al. (2012) proposed a new method using colored PNs for quantitative risk assessment of domino effect on
industrial plants caused by heat radiation to process equipment and/or storage vessels.

A comprehensive risk assessment framework based on fuzzy PNs in combination with the analytic hierar-
chy process (AHP), the entropy method (EM) and the cloud model, has been proposed by Guo et al. (2016)
for long-distance oil and gas transportation pipelines. The AHP method together with the EM method and
the cloud model help to address the issue related to the uncertain, vague and random characteristics of risk
factors of oil and gas pipelines. On the other hand, Zhou et al. (2017) used weighted fuzzy PNs to propose
a method for security risk (e.g., threat of terrorist attacks) assessment in the chemical industry. The use of
the PNs helps this method to model interrelationships between risk factors and the importance of the risk
factors, thus allowing to perform meaningful risk assessment.

5. Discussion and future outlook

Meaningful and accurate safety, reliability, and risk assessment play a vital role in the development and
safe operation of safety-critical systems. Several classical approaches such as FTA, ETA and FMEA have
been utilised for system analysis. Despite their extensive use for system safety, reliability and risk assessment,
they do have a number of shortcomings. The major shortcoming is that these approaches often perform anal-
ysis under unrealistic assumptions, such as by considering statistical and stochastic independence between
events, binary states of system components, and overlooking temporal behaviour. However, these limitations
have not gone unnoticed. Alternative approaches have been developed to alleviate the limitations of classical
approaches, thus enabling the analysis of practical systems under realistic assumptions.

Bayesian networks and Petri nets are two different approaches that are used either as standalone ap-
proaches or in association with other approaches to address many of the limitations of the existing ap-
proaches. The two approaches share capabilities, such as enabling predictive analysis of failure behaviour
of systems by taking into account statistical, stochastic and temporal dependencies of events. Moreover,
both the approaches can consider repairability and multiple states of failure of components during modelling
of the system behaviour. However, they do have distinct capabilities, and relatively better performance in
different scenarios. For instance, in diagnostic analysis, BN-based approaches can propagate new evidence
through the network to obtain new beliefs about the failure probability of the events and update prior
beliefs. Unlike PNs, BNs are therefore able to adapt and refine their diagnostic ability over time.

Although extensive research has been performed on BNs and PNs, there exist many challenges in this
area. When BNs and PNs are used as standalone approaches, their manual construction requires experts
with extensive knowledge about the system so that behaviour can be accurately captured. In BNs, this
task is further complicated by the fact that deep knowledge about the system is required to understand
dependencies among different variables in a BN model so that conditional probability tables can be created.
If the system design evolves over the life-cycle, the BN or PN model of the system has to be adapted to
maintain consistency.

The major limitations of BNs application as standalone approaches are that there are limited formal
semantic guidelines available for developing BNs for a system and they do not guarantee a coherent model.
For this reason, it is possible to create different BN models for the same system which will produce the same
result, except that they differ in complexity. This is primarily a problem when the parent-child relationships
among nodes are not properly defined, thus producing a complex model instead of a simple one. On the
other hand, strong semantics guidelines and mathematical formulation of PNs could help to create coherent
models of systems behaviour, but PN models are inherently complex. For this reason, PNs-based approaches
often suffer from the state space explosion problem, which undermines their efficacy and applicability for
the analysis of large and complex industrial scale systems. Mechanisms have been proposed to minimise the
state space explosion problem. But there still remains scope for further research to improve the scalability
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of the PN approaches. For example, modularisation (Gulati and Dugan, 1997; Anand and Somani, 1998;
Manian et al., 1998; Huang and Chang, 2007; Chiacchio et al., 2013; Yevkin, 2011) has been used successfully
to improve performance of the techniques, an area where further work is possible. In addition to that, when
the state space of PN is too wide for the analysis, simulation can be exploited instead of analysis.

When BNs and PNs are used as part of model-to-model transformation approaches, coherent models can
be created as these models are transformed from other artefacts such as fault trees. However, the correctness
of the BN or PN models and subsequent analyses depends on the correctness of the input models. Moreover,
for PN-based approaches, it can be difficult to translate large models into PNs and the translated models can
be very difficult to understand due to very complex graphical view. Again, while running analysis on such
a big model the users can face the state space explosion problem. On the other hand, BN-based approaches
provide more flexibility and create more understandable models. Moreover, BN-based approaches can avoid
the state space explosion problem by avoiding the state space generation by exploiting the local dependencies
between variables while modelling complex behaviour. Another advantage of BN, with respect to PN, is the
possibility to learn the model, in terms of graphs and probabilities, by applying machine learning techniques
on available training data (Neapolitan, 2004). However, BN models are more complex than PN in terms of
parameter setting: in the PN, we only have to set firing rates of timed transitions, and they are equivalent
to the failure rates of the basic events; in the BN instead, we have to set the CPT entries of each variable,
considering all the possible value combinations of the variable with its parent variables. If the entries in a
CPT are deterministic (e.g. CPT of a logic gate), then these values can be generated automatically.

In order to have a general comparison between PN and BN based approaches when used as model-to-
model transformation approaches, consider the simple dynamic fault tree (DFT) shown in Fig. 9. The BN
model and the GSPN model of this DFT is shown in Figs. 10 and 11, respectively. As can be seen, from
a graphical point of view, the PN model of the DFT is relatively more complex than the BN model of the
DFT. More specifically, while the BN model has 23 nodes, the PN model has 40 nodes. The BN model
has 23 arcs; and the PN model has 78 arcs and 34 transitions. In terms of parameter setting, in the PN
model, we need to set the firing rates of 13 timed transitions. The BN model of Fig. 10 was created based
on the method shown in (Kabir et al., 2018a) and it is a discrete time model. To facilitate the definition
of the temporal behaviour of the logic gates in the CPTs, the time was discretised by dividing it into 5
different intervals. As the node GI1 represents the top event of the TFT, time is not discretised for this
node. For this particular setting, we need to set 17574 values in the probability tables. Out of these values,
17496 values are deterministic, i.e., either 0 or 1, hence set automatically. 78 probabilistic values for 13
root nodes corresponding to 13 basic events of the DFT were set manually. A transient analysis performed
on this GSPN model for 5000 hours mission time generates 174345 states. DFTs of larger systems can be
much larger and more complex, which will lead to graphically complex and computationally demanding PN
models. In terms of results, the BN-based and the PN-based methods estimated the top event probability
of the DFT as 0.0293 and 0.0290, respectively. This shows that the results given by the two models are
coherent.

In terms of modelling of time, PN-based methods use continuous model of time, whereas BNs-based
approaches use both discrete and continuous models of time. When the discrete model of time is used, the
granularity of time discretisation must be decided as part of the transformation process. The size of the step
(A), in other words, the number of discrete intervals used, represents a trade-off between the computing
time and the precision of the results. When an approximate result suffices, using a relatively large step
size it is possible to obtain results in short time. On the hand, the selection of a smaller discretisation
step can make the model of time nearly continuous. As a result, computing time increases, but in return
accuracy of the results improve. To eliminate the need for time discretisation, continuous-time BNs use
the continuous model of time. Most recently, a generalised continuous-time BN-based approach (Codetta-
Raiteri and Portinale, 2017) combined strong features of both BNs and PNs to provide added advantages.
For instance, both system repairability and multi-state system are considered in this approach. However,
due to the consideration of multiple states for system components and PN-based analysis, this approach may
suffer from state space explosion. Further research in this area is thus also required. One potential option is
to use approximate algorithms instead of exact algorithms to analyse BNs. For instance, for dynamic BN,
the approximate Boyen-Koller algorithm (Boyen and Koller, 1998) can be used instead of the exact Junction
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Tree algorithm (Murphy, 2002) , when the BN is characterized by a relevant complexity.

6. Conclusion

Oversimplification of the system analysis processes made by classical approaches based on unrealistic
assumptions can lead to an inappropriate estimation of system dependability properties. This shortcoming
has necessitated the development of approaches that can perform more accurate analysis by taking into
account realistic behaviour of systems. BNs and PNs have been proven effective for system analysis under
realistic scenarios and a significant upward trend is noticed in their applications in system safety, reliability,
and risk assessment. This paper reviews many such developments and applications.

The popularity of BNs has increased rapidly due to their flexible structure and ability to reasoning under
uncertainty. The diagnostic analysis capability of BNs has made them superior techniques for the analysis
of practical systems. On the other hand, PNs are particularly suitable for specifying and analysing the
behaviour of complex, distributed and concurrent systems. Although PN-based methods are extensively used
for performance and performability analysis of systems, their use in safety, reliability, and risk assessment
applications is still limited.

While BNs and PNs-based approaches overcome many limitations of the classical safety and reliability
analysis approaches, there exist some challenges in this area as discussed in section 5. Therefore, future
research efforts may be directed to address the aforementioned challenges, and thus improve further the
application potential of these approaches to a wider range of systems.

Acknowledgements

This work was funded by the DEIS H2020 project (Grant Agreement 732242).

24



References

Aamodt, A., Plaza, E., 1994. Case-based reasoning: Foundational issues, methodological variations, and system approaches.
Al communications 7, 39-59.

Abimbola, M., Khan, F., Khakzad, N., Butt, S., 2015. Safety and risk analysis of managed pressure drilling operation using
Bayesian network. Safety science 76, 133—144.

Adamyan, A., He, D., 2002a. Analysis of sequential failures for assessment of reliability and safety of manufacturing systems.
Reliability Engineering & System Safety 76, 227—236.

Adamyan, A., He, D., 2002b. Failure and safety assessment of systems using Petri nets, in: Proceedings of International
Conference on Robotics and Automation, IEEE. pp. 1919-1924.

Adamyan, A., He, D., 2003. Sequential failure analysis using counters of Petri net models. IEEE Transactions on Systems,
Man, and Cybernetics-part A: Systems and Humans 33, 1-11.

Adamyan, A., He, D., 2004. System failure analysis through counters of Petri net models. Quality and Reliability Engineering
International 20, 317-335.

Akhtar, M.J., Utne, I.B., 2014. Human fatigue’s effect on the risk of maritime groundings—a bayesian network modeling
approach. Safety science 62, 427-440.

Ale, B., Bellamy, L.J., Cooke, R., Goossens, L., Hale, A.R., Roelen, A., Smith, E., 2006. Towards a causal model for air
transport safety—an ongoing research project. Safety Science 44, 657-673.

Ale, B.J., Bellamy, L., Van der Boom, R., Cooper, J., Cooke, R.M., Goossens, L.H., Hale, A., Kurowicka, D., Morales, O.,
Roelen, A., et al., 2009. Further development of a causal model for air transport safety (cats): Building the mathematical
heart. Reliability Engineering & System Safety 94, 1433-1441.

Aljaroudi, A., Khan, F., Akinturk, A., Haddara, M., Thodi, P., 2015. Risk assessment of offshore crude oil pipeline failure.
Journal of Loss Prevention in the Process Industries 37, 101-109.

Aloini, D., Dulmin, R., Mininno, V., 2012. Modelling and assessing ERP project risks: A Petri Net approach. European
Journal of Operational Research 220, 484-495.

Ammar, H.H., Nikzadeh, T., Dugan, J.B., 1997. A methodology for risk assessment of functional specification of software
systems using colored Petri nets, in: Proceedings of Fourth International Software Metrics Symposium, IEEE. pp. 108-117.

Ammar, H.H., Nikzadeh, T., Dugan, J.B., 2001. Risk assessment of software-system specifications. IEEE transactions on
Reliability 50, 171-183.

Anand, A., Somani, A.K., 1998. Hierarchical analysis of fault trees with dependencies, using decomposition, in: Proceedings
of the Annual Reliability and Maintainability Symposium, IEEE. pp. 69-75.

Antédo, P., Guedes Suares, C., Grande, O., Trucco, P., 2009. Analysis of maritime accident data with BBN models. Safety,
reliability and risk analysis: theory, methods and applications. London, UK: Taylor & Francis Group .

Aslett, L.J., Coolen, F., Wilson, S.P., 2015. Bayesian inference for reliability of systems and networks using the survival
signature. Risk Analysis 35, 1640-1651.

Bai, C.G., 2005. Bayesian network based software reliability prediction with an operational profile. Journal of Systems and
Software 77, 103—112.

Balakrishnan, M., Trivedi, K.S., 1996. Stochastic petri nets for the reliability analysis of communication network applications
with alternate-routing. Reliability Engineering & System Safety 52, 243-259.

Balasubramanian, N., Chang, C.T., Wang, Y.F., 2002. Petri-net models for risk analysis of hazardous liquid loading operations.
Industrial & engineering chemistry research 41, 4823-4836.

Baraldi, P., Conti, M., Librizzi, M., Zio, E., Podofillini, L., Dang, V., 2009. A bayesian network model for dependence assessment
in human reliability analysis, in: Proceedings of the Annual European Safety and Reliability Conference, ESREL, pp. 223—
230.

Barua, S., Gao, X., Pasman, H., Mannan, M.S., 2016. Bayesian network based dynamic operational risk assessment. Journal
of Loss Prevention in the Process Industries 41, 399-410.

Basile, F., Chiacchio, P., De Tommasi, G., 2009. An efficient approach for online diagnosis of discrete event systems. IEEE
Transactions on Automatic Control 54, 748-759.

Bensi, M., Kiureghian, A.D., Straub, D., 2013. Efficient bayesian network modeling of systems. Reliability Engineering &
System Safety 112, 200-213.

Bernardi, S., Campos, J., Merseguer, J., 2011. Timing-failure risk assessment of UML design using Time Petri Net bound
techniques. IEEE Transactions on Industrial Informatics 7, 90—104.

Berthomieu, B., Diaz, M., 1991. Modeling and verification of time dependent systems using time Petri nets. IEEE Transactions
on Software Engineering 17, 259-273. doi:10.1109/32.75415.

Beyaert, B., Florin, G., Lonc, P., Natkin, S., 1981. Evaluation of computer systems dependability using stochastic Petri nets,
in: Digest of the 11th Annual Symposium on Fault-Tolerant Computing, pp. 79-81.

Bhandari, J., Abbassi, R., Garaniya, V., Khan, F., 2015. Risk analysis of deepwater drilling operations using Bayesian network.
Journal of Loss Prevention in the Process Industries 38, 11-23.

Bobbio, A., Ciancamerla, E., Franceschinis, G., Gaeta, R., Minichino, M., Portinale, L., 2003a. Sequential application of
heterogeneous models for the safetyanalysis of a control system: a case study. Reliability Engineering & System Safety 81,
269-280.

Bobbio, A., Franceschinis, G., Gaeta, R., Portinale, L., 1999. Exploiting Petri nets to support fault tree based dependability
analysis, in: Petri Nets and Performance Models, 1999. Proceedings. The 8th International Workshop on, IEEE. pp. 146-155.

Bobbio, A., Franceschinis, G., Gaeta, R., Portinale, L., 2003b. Parametric fault tree for the dependability analysis of redundant
systems and its high-level Petri net semantics. IEEE Transactions on Software Engineering 29, 270-287.

25



Bobbio, A., Portinale, L., Minichino, M., Ciancamerla, E., 2001. Improving the analysis of dependable systems by mapping fault
trees into Bayesian networks. Reliability Engineering & System Safety 71, 249-260. doi:10.1016/S0951-8320(00)00077-6.

Boudali, H., Dugan, J.B., 2005a. A discrete-time Bayesian network reliability modeling and analysis framework. Reliability
Engineering & System Safety 87, 337-349.

Boudali, H., Dugan, J.B., 2005b. A new Bayesian network approach to solve dynamic fault trees, in: Proceedings of Annual
Reliability and Maintainability Symposium, IEEE. pp. 451-456.

Boudali, H., Dugan, J.B., 2006. A Continuous-Time Bayesian Network Reliability Modeling, and Analysis Framework. IEEE
Transaction on Reliability 55, 86-97.

Bouissou, M., Martin, F., Ourghanlian, A., 1999. Assessment of a safety-critical system including software: a Bayesian belief
network for evidence sources, in: Reliability and Maintainability Symposium, 1999. Proceedings. Annual, IEEE. pp. 142-150.

Bouissou, M., Pourret, O., 2003. A Bayesian belief network based method for performance evaluation and troubleshooting
of multistate systems. International Journal of Reliability, Quality and Safety Engineering 10, 407-416. doi:10.1142/
S0218539303001275.

Boyen, X., Koller, D., 1998. Tractable inference for complex stochastic processes, in: Proceedings of the Fourteenth conference
on Uncertainty in artificial intelligence, Morgan Kaufmann Publishers Inc.. pp. 33—42.

Brito, M., Griffiths, G., 2016. A bayesian approach for predicting risk of autonomous underwater vehicle loss during their
missions. Reliability Engineering & System Safety 146, 55—67.

Buchacker, K., 1999. Combining fault trees and Petri nets to model safety-critical systems, in: High performance computing,
pp. 439-444.

Cabasino, M.P.; Giua, A., Seatzu, C., 2009. Diagnosis of discrete event systems using labeled Petri nets. IFAC Proceedings
Volumes 42, 52-57.

Cabasino, M.P., Giua, A., Seatzu, C., 2010. Fault detection for discrete event systems using Petri nets with unobservable
transitions. Automatica 46, 1531-1539.

Cacheux, P.J., Collas, S., Dutuit, Y., Folleau, C., Signoret, J.P., Thomas, P., 2013. Assessment of the expected number and
frequency of failures of periodically tested systems. Reliability Engineering & System Safety 118, 61-70.

Cadini, F., Gioletta, A., 2016. A Bayesian Monte Carlo-based algorithm for the estimation of small failure probabilities of
systems affected by uncertainties. Reliability Engineering & System Safety 153, 15-27.

Cai, B., Liu, Y., Liu, Z., Tian, X., Dong, X., Yu, S., 2012. Using bayesian networks in reliability evaluation for subsea blowout
preventer control system. Reliability Engineering & System Safety 108, 32-41.

Cai, B., Liu, Y., Ma, Y., Liu, Z., Zhou, Y., Sun, J., 2015. Real-time reliability evaluation methodology based on dynamic
bayesian networks: A case study of a subsea pipe ram bop system. ISA transactions 58, 595-604.

Cai, B., Liu, Y., Zhang, Y., Fan, Q., Liu, Z., Tian, X., 2013. A dynamic bayesian networks modeling of human factors on
offshore blowouts. Journal of Loss Prevention in the Process Industries 26, 639-649.

Cavone, G., Dotoli, M., Seatzu, C., 2017. A Survey on Petri Net Models for Freight Logistics and Transportation Systems.
IEEE Transactions on Intelligent Transportation Systems .

Cheng, H., He, Z., Wang, Q., Yang, J., Lin, S., 2015. Fault diagnosis method based on petri nets considering service feature of
information source devices. Computers & Electrical Engineering 46, 1-13.

Chengshan, W., Yinghua, X., 2004. Applying Bayesian network to distribution system reliability analysis, in: IEEE Region 10
Conference (TENCON), IEEE. pp. 562-565.

Chiacchio, F., Cacioppo, M., D’Urso, D., Manno, G., Trapani, N., Compagno, L., 2013. A weibull-based compositional approach
for hierarchical dynamic fault trees. Reliability Engineering & System Safety 109, 45-52.

Chin, K.S., Tang, D.W., Yang, J.B., Wong, S.Y., Wang, H., 2009. Assessing new product development project risk by Bayesian
network with a systematic probability generation methodology. Expert Systems with Applications 36, 9879-9890.

Chiola, G., Dutheillet, C., Franceschinis, G., Haddad, S., 1991. Stochastic well-formed coloured nets and multiprocessor
modelling applications, in: High-level Petri Nets. Springer, pp. 504-530.

Chiola, G., Dutheillet, C., Franceschinis, G., Haddad, S., 1993. Stochastic well-formed colored nets and symmetric modeling
applications. IEEE Transactions on Computers 42, 1343—-1360.

Chung, L.P., Chang, C.T., 2011. Petri-net models for comprehensive hazard analysis of mocvd processes. Computers & chemical
engineering 35, 356-371.

Codetta-Raiteri, D., 2005. The conversion of dynamic fault trees to stochastic Petri nets, as a case of graph transformation.
Electronic Notes in Theoretical Computer Science 127, 45—60.

Codetta-Raiteri, D., 2015. Applying generalized continuous time Bayesian networks to a reliability case study. IFAC-
PapersOnLine 48, 676-681.

Codetta-Raiteri, D., Bobbio, A., 2005. Solving dynamic reliability problems by means of ordinary and fluid stochastic Petri
nets, in: Proceedings of the European Safety and Reliability Conference, pp. 381-389.

Codetta-Raiteri, D., Bobbio, A., Montani, S., Portinale, L., 2012. A dynamic bayesian network based framework to evaluate
cascading effects in a power grid. Engineering Applications of Artificial Intelligence 25, 683-697.

Codetta-Raiteri, D., Portinale, L., 2010. Generalized continuous time Bayesian networks and their GSPN semantics, in:
European Workshop on Probabilistic Graphical Models, pp. 105-112.

Codetta-Raiteri, D., Portinale, L., 2014. Approaching dynamic reliability with predictive and diagnostic purposes by exploiting
dynamic Bayesian networks. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability
228, 488-503.

Codetta-Raiteri, D., Portinale, L., 2015. Dynamic Bayesian networks for fault detection, identification, and recovery in au-
tonomous spacecraft. IEEE Transactions on Systems, Man, and Cybernetics: Systems 45, 13-24.

Codetta-Raiteri, D., Portinale, L., 2017. Generalized Continuous Time Bayesian Networks as a modelling and analysis formalism

26



for dependable systems. Reliability Engineering & System Safety 167, 639—651.

Coolen, F.P.; Coolen-Maturi, T., 2013. Generalizing the signature to systems with multiple types of components, in: Complex
systems and dependability. Springer, pp. 115-130.

Daemi, T., Ebrahimi, A., Fotuhi-Firuzabad, M., 2012. Constructing the Bayesian network for components reliability importance
ranking in composite power systems. International Journal of Electrical Power & Energy Systems 43, 474-480.

Dahl, O.M., 2005. Using coloured Petri nets in penetration testing. Master’s thesis. Gjgvik University College.

Davoudian, K., Wu, J.S., Apostolakis, G., 1994. Incorporating organizational factors into risk assessment through the analysis
of work processes. Reliability Engineering & System Safety 45, 85—105. doi:10.1016/0951-8320(94)90079-5.

Desrochers, A.A., Deal, T.J., Fanti, M.P., 2005. Complex-Valued Token Petri Nets. IEEE Trannsactions on Automation Science
and Engineering 2, 309-318.

de Dianous, V., Fiévez, C., 2006. ARAMIS project: A more explicit demonstration of risk control through the use of bow-tie
diagrams and the evaluation of safety barrier performance. Journal of Hazardous Materials 130, 220-233. doi:10.1016/j.
jhazmat.2005.07.010.

Distefano, S., Puliafito, A., 2009. Reliability and availability analysis of dependent—dynamic systems with DRBDs. Reliability
Engineering & System Safety 94, 1381-1393.

Ditlevsen, O., Madsen, H.O., 1996. Structural reliability methods. volume 178. Wiley New York.

Doguc, O., Ramirez-Marquez, J.E., 2009. A generic method for estimating system reliability using Bayesian networks. Reliability
Engineering & System Safety 94, 542-550.

Doguc, O., Ramirez-Marquez, J.E., 2012. An automated method for estimating reliability of grid systems using Bayesian
networks. Reliability Engineering & System Safety 104, 96-105.

Donat, R., Leray, P., Bouillaut, L., Aknin, P., 2010. A dynamic bayesian network to represent discrete duration models.
Neurocomputing 73, 570-577.

Dotoli, M., Fanti, M., Mangini, A., 2008. Fault detection of discrete event systems using Petri nets and integer linear program-
ming. IFAC Proceedings Volumes 41, 6554—6559.

Dotoli, M., Fanti, M.P., Mangini, A.M., Ukovich, W., 2009. On-line fault detection in discrete event systems by Petri nets and
integer linear programming. Automatica 45, 2665—2672.

Dugan, J.B., Bavuso, S.J., Boyd, M.A., 1990. Fault Trees and Sequence Dependencies, in: Proceedings of Annual Reliability
and Maintainability Symposium, pp. 286—-293. doi:10.1109/ARMS.1990.67971.

Dugan, J.B., Bavuso, S.J., Boyd, M.A., 1992. Dynamic fault-tree models for fault-tolerant computer systems. IEEE Transactions
on Reliability 41, 363-377. doi:10.1109/24.159800.

Dugan, J.B., Trivedi, K.S., Geist, R.M., Nicola, V.F., 1984. Extended Stochastic Petri Nets: Applications and Analysis.
Technical Report. WISCONSIN UNIV-MADISON MOTOR BEHAVIOR LAB.

Dunjé, J., Fthenakis, V., Vilchez, J.A., Arnaldos, J., 2010. Hazard and operability (HAZOP) analysis. A literature review.
Journal of Hazardous Materials 173, 19-32. doi:10.1016/j . jhazmat.2009.08.076.

Dutuit, Y., Chatelet, E., Signoret, J.P., Thomas, P., 1997. Dependability modelling and evaluation by using stochastic Petri
nets: application to two test cases. Reliability Engineering & System Safety 55, 117-124.

Dutuit, Y., Innal, F., Rauzy, A., Signoret, J.P., 2008. Probabilistic assessments in relationship with safety integrity levels by
using fault trees. Reliability Engineering & System Safety 93, 1867—1876.

Duval, C., Fallet-Fidry, G., Iung, B., Weber, P., Levrat, E., 2012. A bayesian network-based integrated risk analysis approach for
industrial systems: application to heat sink system and prospects development. Proceedings of the Institution of Mechanical
Engineers, Part O: Journal of Risk and Reliability 226, 488-507.

Eleye-Datubo, A.G., Wall, A., Wang, J., 2008. Marine and Offshore Safety Assessment by Incorporative Risk Modeling in a
Fuzzy-Bayesian Network of an Induced Mass Assignment Paradigm. Risk Analysis 28, 95-112.

Fanti, M.P., Iacobellis, G., Ukovich, W., 2015. A risk assessment framework for hazmat transportation in highways by colored
petri nets. IEEE Transactions on Systems, Man, and Cybernetics: Systems 45, 485-495.

Fard, M.J., Ameri, S., Hamadani, A.Z., 2015. Bayesian approach for early stage reliability prediction of evolutionary products,
in: Proceedings of the International Conference on Operations Excellence and Service Engineering, pp. 361-371.

Fenton, N., Neil, M., 2012. Risk assessment and decision analysis with Bayesian networks. Crc Press.

Fenton, N., Neil, M., Marquez, D., 2008. Using bayesian networks to predict software defects and reliability. Proceedings of
the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability 222, 701-712.

Fenton, N.E., Neil, M., 2014. Decision support software for probabilistic risk assessment using Bayesian networks. IEEE
software .

Filieri, A., Ghezzi, C., Grassi, V., Mirandola, R., 2010. Reliability Analysis of Component-Based Systems with Multiple Failure
Modes, in: International Symposium on Component-Based Software Engineering, Springer, Berlin, Heidelberg. pp. 1-20.
doi:10.1007/978-3-642-13238-4_1.

Flammini, F., Marrone, S., Mazzocca, N., Vittorini, V., 2006. Modelling system reliability aspects of ERTMS/ETCS by fault
trees and Bayesian networks, in: Proc. European Safety and Reliability Conference, ESREL, pp. 2675-2683.

Foulliaron, J., Bouillaut, L., Barros, A., Aknin, P., 2015. Dynamic Bayesian networks for reliability analysis: from a Markovian
point of view to semi-markovian approaches. IFAC-PapersOnLine 48, 694—700.

Franke, U., Flores, W.R., Johnson, P., 2009. Enterprise architecture dependency analysis using fault trees and bayesian
networks, in: Proceedings of the 2009 Spring Simulation Multiconference, Society for Computer Simulation International.
p. 55.

Garg, H., 2013. Reliability analysis of repairable systems using Petri nets and Vague Lambda-Tau methodology. ISA transac-
tions 52, 6-18.

Geist, R., Trivedi, K., Dugan, J.B., Smotherman, M., 1983. Design of the hybrid automated reliability predictor, in: Proceedings

27



IEEE/ATAA 5th Digital Avionics Systems Conference.

Genrich, H.J., Lautenbach, K., 1981. System modelling with high-level petri nets. Theoretical computer science 13, 109-135.

Gertman, D., Blackman, H., Marble, J., Byers, J., Smith, C., 2005. The SPAR-H human reliability analysis method. US
Nuclear Regulatory Commission .

Ghahramani, Z., Rasmussen, C.E., 2003. Bayesian monte carlo, in: Advances in neural information processing systems, pp.
505-512.

Ghasemieh, H., Remke, A., Haverkort, B.R., 2016. Survivability analysis of a sewage treatment facility using hybrid petri nets.
Performance evaluation 97, 36-56.

Ghazel, M., 2009. Using stochastic Petri nets for level-crossing collision risk assessment. IEEE transactions on intelligent
transportation systems 10, 668-677.

Ghosh, S., Ghosh, D., Mohanta, D.K., 2017. Impact assessment of reliability of phasor measurement unit on situational
awareness using generalized stochastic petri nets. International Journal of Electrical Power & Energy Systems 93, 75-83.

Gilks, W.R., Wild, P., 1992. Adaptive rejection sampling for gibbs sampling. Applied Statistics , 337-348.

Giua, A., Seatzu, C., 2005. Fault detection for discrete event systems using petri nets with unobservable transitions, in: 44th
IEEE Conference on Decision and Control and European Control Conference, IEEE. pp. 6323—6328.

Goerlandt, F., Montewka, J., 2014. A probabilistic model for accidental cargo oil outflow from product tankers in a ship—ship
collision. Marine pollution bulletin 79, 130-144.

Gokhale, S.S., Wong, W.E., Trivedi, K.S., Horgan, J., 1998. An analytical approach to architecture-based software reliability
prediction, in: Proceedings of IEEE International Computer Performance and Dependability Symposium, IEEE. pp. 13-22.

Gongalves, P., Sobral, J., Ferreira, L., 2017. Unmanned aerial vehicle safety assessment modelling through petri nets. Reliability
Engineering & System Safety 167, 383-393.

Gorkemli, L., Ulusoy, S.K., 2010. Fuzzy Bayesian reliability and availability analysis of production systems. Computers &
Industrial Engineering 59, 690-696.

Gran, B., Helminen, A., 2001. A bayesian belief network for reliability assessment. Computer Safety, Reliability and Security
, 35-45.

Gribaudo, M., Bobbio, A., Sereno, M., 2001a. Modeling physical quantities in industrial systems using fluid stochastic petri
nets, in: Fifth International Workshop on Performability Modeling of Computer and Communication Systems, pp. 81-85.
Gribaudo, M., Sereno, M., Horvath, A., Bobbio, A., 2001b. Fluid stochastic Petri nets augmented with flush-out arcs: Modelling

and analysis. Discrete Event Dynamic Systems 11, 97-117.

Groth, K.M., Mosleh, A., 2012. Deriving causal Bayesian networks from human reliability analysis data: A methodology
and example model. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability 226,
361-379.

Groth, K.M., Swiler, L.P., 2013. Bridging the gap between HRA research and HRA practice: A Bayesian network version of
SPAR-H. Reliability Engineering & System Safety 115, 33—42.

Gu, Y.K., Yang, Z.X., 2013. Reliability analysis of multi-state systems based on Bayesian network, in: International Conference
on Quality, Reliability, Risk, Maintenance, and Safety Engineering (QR2MSE), IEEE. pp. 332-336.

Guan, X., He, J., Jha, R., Liu, Y., 2012. An efficient analytical Bayesian method for reliability and system response updating
based on Laplace and inverse first-order reliability computations. Reliability Engineering & System Safety 97, 1-13.

Gulati, R., Dugan, J.B., 1997. A modular approach for analyzing static and dynamic fault trees, in: Proceedings of the Annual
Reliability and Maintainability Symposium, IEEE. pp. 57-63.

Guo, Y., Meng, X., Wang, D., Meng, T., Liu, S., He, R., 2016. Comprehensive risk evaluation of long-distance oil and gas
transportation pipelines using a fuzzy Petri net model. Journal of Natural Gas Science and Engineering 33, 18—29.

Habchi, G., Barthod, C., 2016. An overall methodology for reliability prediction of mechatronic systems design with industrial
application. Reliability Engineering & System Safety 155, 236—254.

Han, Z., 2015. Fault Diagnosis System of Wind Turbine Generator Based on Petri Net, in: Proceedings of the International
Conference on Applied Mechanics, Mechatronics and Intelligent Systems, World Scientific. pp. 311-318.

Héanninen, M., 2014. Bayesian networks for maritime traffic accident prevention: benefits and challenges. Accident Analysis &
Prevention 73, 305-312.

Hanninen, M., Banda, O.A.V., Kujala, P., 2014a. Bayesian network model of maritime safety management. Expert Systems
with Applications 41, 7837-7846.

Héanninen, M., Kujala, P., 2012. Influences of variables on ship collision probability in a Bayesian belief network model.
Reliability Engineering & System Safety 102, 27-40.

Hanninen, M., Mazaheri, A., Kujala, P., Montewka, J., Laaksonen, P., Salmiovirta, M., Klang, M., 2014b. Expert elicitation
of a navigation service implementation effects on ship groundings and collisions in the gulf of finland. Proceedings of the
Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability 228, 19-28.

Hei, X., Chang, L., Ma, W., Gao, J., Xie, G., 2011. Automatic transformation from UML statechart to Petri nets for safety
analysis and verification, in: International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering
(ICQR2MSE), IEEE. pp. 948-951.

Helmer, G., Wong, J., Slagell, M., Honavar, V., Miller, L., Wang, Y., Wang, X., Stakhanova, N., 2007. Software fault tree and
coloured petri net—based specification, design and implementation of agent-based intrusion detection systems. International
Journal of Information and Computer Security 1, 109—142.

Henry, M.H., Layer, R.M., Snow, K.Z., Zaret, D.R., 2009. Evaluating the risk of cyber attacks on SCADA systems via Petri
net analysis with application to hazardous liquid loading operations, in: IEEE Conference on Technologies for Homeland
Security, IEEE. pp. 607-614.

Henry, M.H., Layer, R.M., Zaret, D.R., 2010. Coupled Petri nets for computer network risk analysis. International Journal of

28



Critical Infrastructure Protection 3, 67-75.

Herscheid, L., Troger, P., 2014. Specification of dynamic fault tree concepts with stochastic petri nets, in: Eighth International
Conference on Software Security and Reliability, IEEE. pp. 177-186.

Honari, B., Donovan, J., Murphy, E., 2009. Using Bayesian networks in reliability evaluation for an (r, s)-out-of-(m, n): F
distributed communication system. Journal of Statistical Planning and Inference 139, 1756—1765.

Hu, C., Wang, P., Youn, B.D., 2015a. Advances in System Reliability Analysis Under Uncertainty, in: Numerical Methods for
Reliability and Safety Assessment. Springer International Publishing, Cham, pp. 271-303. doi:10.1007/978-3-319-07167-1_
9.

Hu, J., Huo, L., Guo, L., Yin, J., Xie, Y., 2008. Reliability assessment of power systems based on element time sequential by
Bayesian networks, in: 3rd International Conference on Innovative Computing Information and Control, IEEE. pp. 579-579.

Hu, J., Zhang, L., Cai, Z., Wang, Y., Wang, A., 2015b. Fault propagation behavior study and root cause reasoning with
dynamic Bayesian network based framework. Process Safety and Environmental Protection 97, 25-36.

Huang, C.Y., Chang, Y.R., 2007. An improved decomposition scheme for assessing the reliability of embedded systems by
using dynamic fault trees. Reliability Engineering & System Safety 92, 1403-1412.

Huang, H.Z., Zuo, M.J., Sun, Z.Q., 2006. Bayesian reliability analysis for fuzzy lifetime data. Fuzzy Sets and Systems 157,
1674-1686.

Hura, G.S., Atwood, J.W., 1988. The use of Petri nets to analyze coherent fault trees. IEEE Transactions on reliability 37,
469-474.

Ibrahim, W., Beiu, V., 2011. Using Bayesian networks to accurately calculate the reliability of complementary metal oxide
semiconductor gates. IEEE Transactions on Reliability 60, 538-549.

Tonescu, D., Ulmeanu, A.P., Constantinescu, A., Rotaru, I., 2006. Reliability modelling of medium voltage distribution systems
of nuclear power plants using generalized stochastic petri nets. Computers & Mathematics with Applications 51, 285-290.

Jensen, K., 1981. Coloured petri nets and the invariant-method. Theoretical computer science 14, 317-336.

Jensen, K., 2013. Coloured Petri nets: basic concepts, analysis methods and practical use. volume 1. Springer Science &
Business Media.

Jiang, Y., Zhang, H., Song, X., Jiao, X., Hung, W.N., Gu, M., Sun, J., 2013. Bayesian-network-based reliability analysis of plc
systems. IEEE transactions on industrial electronics 60, 5325-5336.

Jiroveanu, G., Boel, R.K., 2006. A distributed approach for fault detection and diagnosis based on time Petri nets. Mathematics
and Computers in Simulation 70, 287-313.

Jiroveanu, G., Boel, R.K., Bordbar, B., 2008. On-line monitoring of large petri net models under partial observation. Discrete
Event Dynamic Systems 18, 323—-354.

John, A., Yang, Z., Riahi, R., Wang, J., 2016. A risk assessment approach to improve the resilience of a seaport system using
bayesian networks. Ocean Engineering 111, 136-147.

Kabir, G., Tesfamariam, S., Francisque, A., Sadiq, R., 2015a. Evaluating risk of water mains failure using a Bayesian belief
network model. European Journal of Operational Research 240, 220-234.

Kabir, S., 2016. Compositional Dependability Analysis of Dynamic Systems with Uncertainty. Ph.D. thesis. University of Hull.

Kabir, S., Papadopoulos, Y., 2018. A review of applications of fuzzy sets to safety and reliability engineering. International
Journal of Approximate Reasoning 100, 29-55.

Kabir, S., Papadopoulos, Y., Walker, M., Parker, D., Aizpurua, J.I., Lampe, J., Riide, E., 2017. A model-based extension to
HiP-HOPS for dynamic fault propagation studies, in: International Symposium on Model-Based Safety and Assessment,
Springer. pp. 163-178. doi:10.1007/978-3-319-64119-5_11.

Kabir, S., Walker, M., Papadopoulos, Y., 2014. Reliability Analysis of Dynamic Systems by Translating Temporal Fault Trees
into Bayesian Networks, in: Ortmeier, F., Rauzy, A. (Eds.), Model-Based Safety and Assessment. Springer International
Publishing, Cham. volume 8822 of Lecture Notes in Computer Science, pp. 96—-109. doi:10.1007/978-3-319-12214-4.

Kabir, S., Walker, M., Papadopoulos, Y., 2015b. Quantitative evaluation of Pandora Temporal Fault Trees via Petri Nets.
IFAC-PapersOnLine 48, 458-463. doi:10.1016/j.ifacol.2015.09.569.

Kabir, S., Walker, M., Papadopoulos, Y., 2018a. Dynamic system safety analysis in HiP-HOPS with Petri Nets and Bayesian
Networks. Safety Science 105, 55-70.

Kabir, S., Walker, M., Papadopoulos, Y., Riide, E., Securius, P., 2016. Fuzzy temporal fault tree analysis of dynamic systems.
International Journal of Approximate Reasoning 77, 20-37. doi:10.1016/j.ijar.2016.05.006.

Kabir, S., Yazdi, M., Aizpurua, J.I., Papadopoulos, Y., 2018b. Uncertainty-aware dynamic reliability analysis framework for
complex systems. IEEE Access 6, 29499 — 29515. doi:10.1109/ACCESS.2018.2843166.

Kachur, S., Shakhova, N., 2016. Turbine generator status diagnostic system based on Petri nets. Nuclear Energy and Technology
2, 81-84.

Kadri, F., Lallement, P., Chatelet, E., 2012. The Quantitative Risk Assessment of domino eff ect on Industrial Plants Using
Colored Stochastic Petri Nets , 1-12.

Kalantarnia, M., Khan, F., Hawboldt, K., 2009. Dynamic risk assessment using failure assessment and bayesian theory. Journal
of Loss Prevention in the Process Industries 22, 600—606.

Kalantarnia, M., Khan, F., Hawboldt, K., 2010. Modelling of bp texas city refinery accident using dynamic risk assessment
approach. Process Safety and Environmental Protection 88, 191-199.

Kanazawa, K., 1992. Reasoning about time and probability. Ph.D. thesis. Brown University.

Kang, C., Zhong, L., Haijun, Z., 2015. Research on probabilistic safety analysis approach of flight control system based on
Bayesian network. Procedia Engineering 99, 180-184.

Kelangath, S., Das, P.K., Quigley, J., Hirdaris, S.E., 2012. Risk analysis of damaged ships—a data-driven Bayesian approach.
Ships and Offshore Structures 7, 333-347.

29



Kelly, D.L., Smith, C.L., 2009. Bayesian inference in probabilistic risk assessment—the current state of the art. Reliability
Engineering & System Safety 94, 628-643.

Khakzad, N., 2015. Application of dynamic Bayesian network to risk analysis of domino effects in chemical infrastructures.
Reliability Engineering & System Safety 138, 263-272.

Khakzad, N., Khan, F., Amyotte, P., 2011. Safety analysis in process facilities: Comparison of fault tree and bayesian network
approaches. Reliability Engineering & System Safety 96, 925-932.

Khakzad, N., Khan, F., Amyotte, P., 2012. Dynamic risk analysis using bow-tie approach. Reliability Engineering & System
Safety 104, 36—44.

Khakzad, N., Khan, F., Amyotte, P., 2013a. Dynamic safety analysis of process systems by mapping bow-tie into Bayesian
network. Process Safety and Environmental Protection 91, 46-53.

Khakzad, N., Khan, F.; Amyotte, P., 2013b. Quantitative risk analysis of offshore drilling operations: A Bayesian approach.
Safety science 57, 108-117.

Khakzad, N., Khan, F., Amyotte, P., 2013c. Risk-based design of process systems using discrete-time Bayesian networks.
Reliability Engineering & System Safety 109, 5-17.

Khakzad, N., Khan, F., Amyotte, P., Cozzani, V., 2013d. Domino effect analysis using Bayesian networks. Risk Analysis 33,
292-306.

Kim, M.C., 2011. Reliability block diagram with general gates and its application to system reliability analysis. Annals of
Nuclear Energy 38, 2456-2461.

Kim, M.C., Seong, P.H., 2002. Reliability graph with general gates: an intuitive and practical method for system reliability
analysis. Reliability Engineering & System Safety 78, 239-246.

Kim, M.C., Seong, P.H., Hollnagel, E., 2006. A probabilistic approach for determining the control mode in cream. Reliability
Engineering & System Safety 91, 191-199.

Kleijn, H.C.M., Koutny, M., 2004. Process semantics of general inhibitor nets. Information and Computation 190, 18—69.

Kleyner, A., Volovoi, V., 2010. Application of petri nets to reliability prediction of occupant safety systems with partial
detection and repair. Reliability Engineering & System Safety 95, 606-613.

Knezevic, J., Odoom, E., 2001. Reliability modelling of repairable systems using petri nets and fuzzy lambda—tau methodology.
Reliability Engineering & System Safety 73, 1-17.

Kumar, V., Aggarwal, K., 1993. Petri net modelling and reliability evaluation of distributed processing systems. Reliability
Engineering & System Safety 41, 167-176.

Labeau, P., Smidts, C., Swaminathan, S., 2000. Dynamic reliability: towards an integrated platform for probabilistic risk
assessment. Reliability Engineering & System Safety 68, 219-254. doi:10.1016/S0951-8320(00)00017-X.

Langseth, H., Portinale, L., 2007. Bayesian networks in reliability. Reliability Engineering and System Safety 92, 92-108.
doi:10.1016/j.ress.2005.11.037.

Lee, A., Lu, L., 2012. Petri net modeling for probabilistic safety assessment and its application in the air lock system of a
CANDU nuclear power plant. Procedia Engineering 45, 11-20.

Lee, C., Lv, Y., Hong, Z., 2013. Risk modelling and assessment for distributed manufacturing system. International Journal
of Production Research 51, 2652-2666.

Lee, C.J., Lee, K.J., 2006. Application of Bayesian network to the probabilistic risk assessment of nuclear waste disposal.
Reliability Engineering & System Safety 91, 515-532.

Lefebvre, D., 2012. Diagnosis with Petri nets according to partial events and states observation. IFAC Proceedings Volumes
45, 1244-1249.

Leu, S.S., Chang, C.M., 2013. Bayesian-network-based safety risk assessment for steel construction projects. Accident Analysis
& Prevention 54, 122-133.
Leveson, N., Dulac, N., Marais, K., Carroll, J., 2009. Moving Beyond Normal Accidents and High Reliability Organizations:
A Systems Approach to Safety in Complex Systems. Organization Studies 30, 227-249. doi:10.1177/0170840608101478.
Leveson, N.G., Stolzy, J.L., 1987. Safety Analysis Using Petr Nets. IEEE Transactions on Software Engineering 13, 386-397.
Li, K., Yi, R., Ma, Z., 2016a. Reliability analysis of dynamic reliability blocks through conversion into dynamic Bayesian
networks, in: IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), IEEE. pp.
1330-1334.

Li, K.X., Yin, J., Bang, H.S., Yang, Z., Wang, J., 2014. Bayesian network with quantitative input for maritime risk analysis.
Transportmetrica A: Transport Science 10, 89—118.

Li, L., Wang, J., Leung, H., Jiang, C., 2010. Assessment of catastrophic risk using Bayesian network constructed from domain
knowledge and spatial data. Risk Analysis 30, 1157-1175.

Li, P.c., Chen, G.h., Dai, L.c., Zhang, L., 2012. A fuzzy bayesian network approach to improve the quantification of organiza-
tional influences in hra frameworks. Safety science 50, 1569-1583.

Li, W., Zuo, M.J., 2008. Reliability evaluation of multi-state weighted k-out-of-n systems. Reliability Engineering & System
Safety 93, 160-167. doi:10.1016/j.ress.2006.11.009.

Li, X., Chen, G., Zhu, H., 2016b. Quantitative risk analysis on leakage failure of submarine oil and gas pipelines using bayesian
network. Process Safety and Environmental Protection 103, 163—-173.

Li, X., Chen, G., Zhu, H., Zhang, R., 2017. Quantitative risk assessment of submarine pipeline instability. Journal of Loss
Prevention in the Process Industries 45, 108-115.

Li, Y., Chen, Y., Tang, N., Yang, L., 2016c. Modeling and analysis of failure mechanism dependence based on petri net, in:
Prognostics and System Health Management Conference, IEEE. pp. 1-7.

Li, Y.F., Mi, J., Liu, Y., Yang, Y.J., Huang, H.Z., 2015. Dynamic fault tree analysis based on continuous-time Bayesian
networks under fuzzy numbers. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and

30



Reliability , 1-12d0i:10.1177/1748006X15588446.

Limin, H., Yongli, Z., Gaofeng, F., 2002. Reliability assessment of power systems by bayesian networks, in: Proceedings of
International Conference on Power System Technology, IEEE. pp. 876-879.

Lisnianski, A., Levitin, G., 2003. Multi-State System Reliability: Assessment, Optimization and Applications. volume 6 of
Series on Quality, Reliability and Engineering Statistics. WORLD SCIENTIFIC. doi:10.1142/5221.

Liu, H.C., Lin, Q.L., Ren, M.L., 2013. Fault diagnosis and cause analysis using fuzzy evidential reasoning approach and
dynamic adaptive fuzzy Petri nets. Computers & Industrial Engineering 66, 899-908.

Liu, K.F.R., Lu, C.F., Chen, C.W., Shen, Y.S., 2012. Applying Bayesian belief networks to health risk assessment. Stochastic
environmental research and risk assessment 26, 451-465.

Liu, T., Chiou, S., 1997. The application of Petri nets to failure analysis. Reliability Engineering & System Safety 57, 129-142.

Liu, Z., Liu, Y., Cai, B., Zhang, D., Zheng, C., 2015. Dynamic Bayesian network modeling of reliability of subsea blowout
preventer stack in presence of common cause failures. Journal of Loss Prevention in the Process Industries 38, 58—66.

Lu, J.L., Yang, X.D., Li, R., Zhu, Y.L., 2004. Application of bayesian network in reliability evaluation of power distribution
system. Journal of North China Electric Power University 31, 16-19.

Lynn, N., Singpurwalla, N., Smith, A., 1998. Bayesian assessment of network reliability. STAM review 40, 202—227.

Maglogiannis, 1., Zafiropoulos, E., Platis, A., Lambrinoudakis, C., 2006. Risk analysis of a patient monitoring system using
Bayesian network modeling. Journal of Biomedical Informatics 39, 637-647.

Mahadevan, S., Rebba, R., 2005. Validation of reliability computational models using Bayes networks. Reliability Engineering
& System Safety 87, 223—-232.

Mahadevan, S., Zhang, R., Smith, N.,; 2001. Bayesian networks for system reliability reassessment. Structural Safety 23,
231-251.

Malhotra, M., Trivedi, K.S., 1995. Dependability modeling using Petri-nets. IEEE Transactions on Reliability 44, 428-440.

Manian, R., Dugan, J.B., Coppit, D., Sullivan, K.J., 1998. Combining various solution techniques for dynamic fault tree analysis
of computer systems, in: Proceedings of Third IEEE International High-Assurance Systems Engineering Symposium, IEEE.
pp. 21-28.

Mansour, M., Wahab, M.A., Soliman, W.M., 2013. Petri nets for fault diagnosis of large power generation station. Ain Shams
Engineering Journal 4, 831-842.

Marquez, D., Neil, M., Fenton, N., 2007. A new bayesian network approach to reliability modelling. Mathematical Methods in
Reliability (MMROT) .

Marquez, D., Neil, M., Fenton, N., 2008. Solving Dynamic Fault Trees using a New Hybrid Bayesian Network Inference
Algorithm, in: 16th Mediterranean Conference on Control and Automation, IEEE. pp. 609-614.

Marquez, D., Neil, M., Fenton, N., 2010. Improved reliability modeling using Bayesian networks and dynamic discretization.
Reliability Engineering & System Safety 95, 412—425.

Marsan, M.A., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G., 1996. Modeling With Generalized Stochastic Petri Nets.
Wiley, West Sussex. URL: http://www.di.unito.it/{~}greatspn/GSPN-Wiley/.

Marsan, M.A., Chiola, G., 1987. On Petri nets with deterministic and exponentially distributed firing times. Advances in Petri
Nets 266, 132—-145.

Martins, M.R., Maturana, M.C., 2013. Application of Bayesian Belief networks to the human reliability analysis of an oil
tanker operation focusing on collision accidents. Reliability Engineering & System Safety 110, 89-109.

McDermott, J.P., 2001. Attack net penetration testing, in: Proceedings of the 2000 workshop on New security paradigms,
ACM. pp. 15-21.

Mi, J., Li, Y., Huang, H.Z., Liu, Y., Zhang, X., 2012. Reliability analysis of multi-state systems with common cause failure
based on Bayesian networks, in: International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering
(ICQR2MSE), IEEE. pp. 1117-1121.

Mi, J., Li, Y.F., Yang, Y.J., Peng, W., Huang, H.Z., 2016. Reliability assessment of complex electromechanical systems under
epistemic uncertainty. Reliability Engineering & System Safety 152, 1-15.

Miyagi, P., Riascos, L.A.M., 2006. Modeling and analysis of fault-tolerant systems for machining operations based on Petri
nets. Control Engineering Practice 14, 397-408.

Mkrtchyan, L., Podofillini, L., Dang, V.N., 2015. Bayesian belief networks for human reliability analysis: A review of applica-
tions and gaps. Reliability engineering & system safety 139, 1-16.

Mkrtchyan, L., Podofillini, L., Dang, V.N., 2016. Methods for building Conditional Probability Tables of Bayesian Belief
Networks from limited judgment: An evaluation for Human Reliability Application. Reliability Engineering & System
Safety 151, 93-112.

Molloy, M.K., 1982. Performance analysis using stochastic Petri nets. IEEE Transactions on Computers c-31, 913-917.

Montani, S., Portinale, L., Bobbio, A., 2005. Dynamic Bayesian networks for modeling advanced fault tree features in depend-
ability analysis, in: Proceedings of the sixteenth European conference on safety and reliability, pp. 1415-22.

Montani, S., Portinale, L., Bobbio, A., Codetta-Raiteri, D., 2006a. Automatically translating dynamic fault trees into dynamic
Bayesian networks by means of a software tool, in: The First International Conference on Availability, Reliability and
Security, IEEE. pp. 1-6.

Montani, S., Portinale, L., Bobbio, A., Codetta-Raiteri, D., 2008. RADYBAN: A tool for reliability analysis of dynamic fault
trees through conversion into dynamic Bayesian networks. Reliability Engineering & System Safety 93, 922-932.

Montani, S., Portinale, L., Bobbio, A., Varesio, M., Codetta-Raiteri, D., 2006b. A tool for automatically translating dynamic
fault trees into dynamic Bayesian networks, in: Annual Reliability and Maintainability Symposium, IEEE. pp. 434-441.
Montewka, J., Ehlers, S., Goerlandt, F., Hinz, T., Tabri, K., Kujala, P., 2014. A framework for risk assessment for maritime

transportation systems—a case study for open sea collisions involving RoPax vessels. Reliability Engineering & System

31



Safety 124, 142-157.

Muppala, J.K., Lin, C., 1996. Dependability analysis of large-scale distributed systems using stochastic petri nets, in: IEEE
International Conference on Systems, Man, and Cybernetics, IEEE. pp. 3033-3038.

Mura, I., Bondavalli, A., 2001. Markov regenerative stochastic Petri nets to model and evaluate phased mission systems
dependability. IEEE Transactions on Computers 50, 1337-1351.

Murata, T., 1989. Petri nets: Properties, analysis and applications. Proceedings of the IEEE 77, 541-580.

Murphy, K.P., 2002. Dynamic Bayesian Networks: Representation, Inference and Learning. Ph.D. thesis. University of
California, Berkeley.

Musharraf, M., Bradbury-Squires, D., Khan, F., Veitch, B., MacKinnon, S., Imtiaz, S., 2014. A virtual experimental technique
for data collection for a Bayesian network approach to human reliability analysis. Reliability Engineering & System Safety
132, 1-8.

Musharraf, M., Hassan, J., Khan, F., Veitch, B., MacKinnon, S., Imtiaz, S., 2013. Human reliability assessment during offshore
emergency conditions. Safety science 59, 19-27.

Nannapaneni, S., Mahadevan, S., 2016. Reliability analysis under epistemic uncertainty. Reliability Engineering & System
Safety 155, 9-20. doi:10.1016/j.ress.2016.06.005.

Neapolitan, R.E., 2004. Learning Bayesian networks. volume 38. Pearson Prentice Hall Upper Saddle River, NJ.

Neil, M., Fenton, N., Forey, S., Harris, R., 2001. Using Bayesian belief networks to predict the reliability of military vehicles.
Computing & Control Engineering Journal 12, 11-20.

Neil, M., Littlewood, B., Fenton, N., 1996. Applying bayesian belief networks to system dependability assessment, in: Safety-
Critical Systems: The Convergence of High Tech and Human Factors. Springer, pp. 71-94.

Neil, M., Marquez, D., 2012. Availability modelling of repairable systems using bayesian networks. Engineering Applications
of Artificial Intelligence 25, 698—704.

Neil, M., Tailor, M., Marquez, D., Fenton, N., Hearty, P., 2008. Modelling dependable systems using hybrid Bayesian networks.
Reliability Engineering & System Safety 93, 933—939.

Németh, E., Bartha, T., Fazekas, C., Hangos, K.M., 2009. Verification of a primary-to-secondary leaking safety procedure in
a nuclear power plant using coloured petri nets. Reliability Engineering & System Safety 94, 942-953.

Nicholson, A.E., 1992. Monitoring discrete environments using dynamic belief networks. Ph.D. thesis. University of Oxford.

Nodelman, U., Shelton, C.R., Koller, D., 2002. Continuous time Bayesian networks, in: Proceedings of the Eighteenth conference
on Uncertainty in artificial intelligence, Morgan Kaufmann Publishers Inc.. pp. 378-387.

Nyvlt, O., Rausand, M., 2012. Dependencies in event trees analyzed by Petri nets. Reliability Engineering & System Safety
104, 45-57.

OMG, 2009. A UML Profile for Modeling and Analysis of Real Time Embedded Systems (MARTE), document ptc/09-11-02.
Technical Report.

Palshikar, G.K., 2002. Temporal fault trees. Information and Software Technology 44, 137-150.

Pearl, J., 1988. Probabilistic reasoning in intelligent systems: Networks of Plausible Inference. Morgan Kaufmann, San
Francisco, California.

Peterson, J.L., 1977. Petri nets. ACM Computing Surveys (CSUR) 9, 223-252.

Peterson, J.L., 1980. A note on colored petri nets. Information processing letters 11, 40—-43.

Peterson, J.L., 1981. Petri Net Theory and the Modeling of Systems. Prentice Hall PTR, Upper Saddle River, NJ, USA.

Pham, H., 1999. Reliability analysis for dynamic configurations of systems with three failure modes. Reliability Engineering
& System Safety 63, 13-23. do0i:10.1016/50951-8320(98)00006-4.

Pham, H., 2003. Reliability of Systems with Multiple Failure Modes, in: Handbook of Reliability Engineering. Springer-Verlag,
London, pp. 19-36. doi:10.1007/1-85233-841-5_2.

Pinna, B., Babykina, G., Brinzei, N., Pétin, J.F., 2013. Using coloured petri nets for integrated reliability and safety evaluations.
IFAC Proceedings Volumes 46, 19-24.

Podofillini, L., Dang, V.N., 2013. A bayesian approach to treat expert-elicited probabilities in human reliability analysis model
construction. Reliability Engineering & System Safety 117, 52—64.

Portinale, L., Bobbio, A., 1999. Bayesian networks for dependability analysis: an application to digital control reliability,
in: Proceedings of the fifteenth conference on uncertainty in artificial intelligence, Morgan Kaufmann Publishers Inc.. pp.
551-558.

Portinale, L., Codetta-Raiteri, D., Montani, S., 2010. Supporting reliability engineers in exploiting the power of dynamic
Bayesian networks. International journal of approximate reasoning 51, 179-195.

Portugal, P., Carvalho, A., Vasques, F., 2005. A model based on a stochastic petri net approach for dependability evaluation
of controller area networks. IFAC Proceedings Volumes 38, 150—-157.

Rathnayaka, S., Khan, F., Amyotte, P., 2011. SHIPP methodology: predictive accident modeling approach. Part II. Validation
with case study. Process safety and environmental protection 89, 75—88.

Reer, B., Dang, V.N., 2007. The commission errors search and assessment (CESA) method. Paul Scherrer Institute.

Reer, B., Dang, V.N., Hirschberg, S., 2004. The cesa method and its application in a plant-specific pilot study on errors of
commission. Reliability Engineering & System Safety 83, 187-205.

Reisig, W., 2012. Petri nets: an introduction. volume 4. Springer Science & Business Media.

Ren, J., Jenkinson, I., Wang, J., Xu, D., Yang, J., 2009. An offshore risk analysis method using fuzzy bayesian network. Journal
of Offshore Mechanics and Arctic Engineering 131, 041101.

Renganathan, K., Bhaskar, V., 2010. Observer based on-line fault diagnosis of continuous systems modeled as Petri nets. ISA
transactions 49, 587-595.

Renganathan, K., Bhaskar, V., 2013. Modeling, analysis and performance evaluation for fault diagnosis and Fault Tolerant

32



Control in bottle-filling plant modeled using Hybrid Petri nets. Applied Mathematical Modelling 37, 4842-4859.

Reza, H., Pimple, M., Krishna, V., Hildle, J., 2009. A safety analysis method using Fault Tree analysis and Petri Nets, in:
Sixth International Conference on Information Technology: New Generations, IEEE. pp. 1089-1094.

Robidoux, R., Xu, H., Xing, L., Zhou, M., 2010. Automated modeling of dynamic reliability block diagrams using colored Petri
nets. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans 40, 337-351.

Roshandel, R., Medvidovic, N., Golubchik, L., 2007. A bayesian model for predicting reliability of software systems at the
architectural level. Software architectures, components, and applications , 108-126.

Sachdeva, A., Kumar, D., Kumar, P., 2008. Reliability analysis of pulping system using petri nets. International Journal of
Quality & Reliability Management 25, 860-877.

Sadou, N., Demmou, H., 2009. Reliability analysis of discrete event dynamic systems with petri nets. Reliability Engineering
& System Safety 94, 1848-1861.

Salem, A.B., Muller, A., Weber, P., 2006. Dynamic Bayesian networks in system reliability analysis. IFAC Proceedings Volumes
39, 444-449.

Schneeweiss, W.G., 2001. Tutorial: Petri nets as a graphical description medium for many reliability scenarios. IEEE Trans-
actions on Reliability 50, 159—-164.

Seong, P.H. (Ed.), 2008. Reliability and risk issues in large scale safety-critical digital control systems. Springer Science &
Business Media.

Shafer, G., 1976. A mathematical theory of evidence. volume 1. Princeton university press Princeton.

Signoret, J.P., 2009. Dependability & safety modeling and calculation: Petri nets. IFAC Proceedings Volumes 42, 203-208.

Signoret, J.P., Dutuit, Y., Cacheux, P.J., Folleau, C., Collas, S., Thomas, P., 2013. Make your petri nets understandable:
Reliability block diagrams driven petri nets. Reliability Engineering & System Safety 113, 61-75.

Sigurdsson, J., Walls, L., Quigley, J., 2001. Bayesian belief nets for managing expert judgement and modelling reliability.
Quality and Reliability Engineering International 17, 181-190.

Simon, C., Weber, P., Evsukoff, A., 2008. Bayesian networks inference algorithm to implement Dempster Shafer theory in
reliability analysis. Reliability Engineering & System Safety 93, 950-963.

Simon, C., Weber, P., Levrat, E., 2007. Bayesian networks and evidence theory to model complex systems reliability. Journal
of Computers (JCP) 2, 33-43.

Singh, H., Cortellessa, V., Cukic, B., Gunel, E., Bharadwaj, V., 2001. A bayesian approach to reliability prediction and assess-
ment of component based systems, in: Proceedings of 12th International Symposium on Software Reliability Engineering
(ISSRE), IEEE. pp. 12-21.

Singh, K., Raj, N., Sahu, S., Behera, R., Sarkar, S., Maiti, J., 2017. Modelling safety of gantry crane operations using Petri
nets. International journal of injury control and safety promotion 24, 32-43.

Singh, L.K., Rajput, H., 2016. Ensuring safety in design of safety critical computer based systems. Annals of Nuclear Energy
92, 289-294.

Singh, L.K., Rajput, H., 2017. Dependability Analysis of Safety Critical Real-Time Systems by Using Petri Nets. IEEE
Transactions on Control Systems Technology , 1-17.

Stephenson, P.R., 2004. A formal model for information risk analysis using colored Petri nets, in: Proceedings of the Fifth
Workshop and Tutorial on Practical Use of Coloured Petri Nets and the CPN Tools, pp. 167-184.

Straub, D., Kiureghian, A.D., 2010. Bayesian network enhanced with structural reliability methods: methodology. Journal of
engineering mechanics 136, 1248-1258.

Straub, D., Papaioannou, 1., 2014. Bayesian updating with structural reliability methods. Journal of Engineering Mechanics
141, 04014134.

Su, A., Fan, M., Li, Z., 2012. The reliability analysis of distribution system based on dynamic Bayesian network, in: China
International Conference on Electricity Distribution (CICED), IEEE. pp. 1-4.

Su, H., Che, Y., 2013. Reliability assessment of CTCS-3 using Bayesian networks, in: International Conference on Quality,
Reliability, Risk, Maintenance, and Safety Engineering (QR2MSE), IEEE. pp. 284-288.

Su, X., Mahadevan, S., Xu, P., Deng, Y., 2014. Inclusion of task dependence in human reliability analysis. Reliability
Engineering & System Safety 128, 41-55.

Sun, J., Qin, S.Y., Song, Y.H., 2004. Fault diagnosis of electric power systems based on fuzzy Petri nets. IEEE Transactions
on Power Systems 19, 2053—-2059.

Sunanda, B.E., Seetharamaiah, P., 2015. Modeling of safety-critical systems using petri nets. ACM SIGSOFT Software
Engineering Notes 40, 1-7.

Swain, A.D., Guttmann, H.E., 1983. Handbook of human-reliability analysis with emphasis on nuclear power plant applications.
Final report. Technical Report. Sandia National Laboratories (SNL). Albuquerque, NM, and Livermore, CA (United States).
URL: http://wuw.osti.gov/servlets/purl/5752058/, doi:10.2172/5752058.

Talebberrouane, M., Khan, F., Lounis, Z., 2016. Availability analysis of safety critical systems using advanced fault tree and
stochastic Petri net formalisms. Journal of Loss Prevention in the Process Industries 44, 193—-203.

Tierney, L., Kadane, J.B., 1986. Accurate approximations for posterior moments and marginal densities. Journal of the
american statistical association 81, 82-86.

Torres-Toledano, J., Sucar, L., 1998. Bayesian networks for reliability analysis of complex systems. Progress in Artificial
Intelligence — IBERAMIA 98 , 465—465.

Trivedi, K., Dugan, J.B., Geist, R., Smotherman, M., 1984. Hybrid reliability modeling of fault-tolerant computer systems.
Computers & electrical engineering 11, 87-108.

Trucco, P., Cagno, E., Ruggeri, F., Grande, O., 2008. A Bayesian Belief network modelling of organisational factors in risk
analysis: A case study in maritime transportation. Reliability Engineering & System Safety 93, 845-856.

33



Tuncel, G., Alpan, G., 2010. Risk assessment and management for supply chain networks: A case study. Computers in industry
61, 250-259.

Ur, R.K., Zubair, M., Heo, G., 2014. Reliability analysis of nuclear 1&C architecture using Bayesian networks, in: 11th
International Bhurban Conference on Applied Sciences and Technology (IBCAST), IEEE. pp. 169-174.

US Department of Defense, 1980. Procedures for Performing a Failure Mode, Effects, and Criticality Analysis (MIL-STD-
1629A). Technical Report. Washington DC, USA.

Vasilyev, A., Andrews, J.D., Jackson, L., Dunnett, S., 2017. Reliability modelling of PEM fuel cells with hybrid Petri nets, in:
Safety and Reliability — Theory and Application: ESREL 2017. CRC Press.

Vernez, D., Buchs, D., Pierrehumbert, G., 2003. Perspectives in the use of coloured petri nets for risk analysis and accident
modelling. Safety science 41, 445-463.

Vernez, D., Buchs, D.R., Pierrehumbert, G.E., Besrour, A., 2004. MORM-—A Petri net based model for assessing OH&S risks
in industrial processes: Modeling qualitative aspects. Risk analysis 24, 1719-1735.

Vesely, W., Dugan, J., Fragola, J., Minarick, J., Railsback, J., 2002. Fault Tree Handbook with Aerospace Applications.
Technical Report. NASA office of safety and mission assurance. Washington, DC.

Volovoi, V., 2004. Modeling of system reliability Petri nets with aging tokens. Reliability Engineering & System Safety 84,
149-161.

Walker, M., 2009. Pandora: A Logic for the Qualitative Analysis of Temporal Fault Trees. Ph.D. thesis. University of Hull.

Wang, C., Mosleh, A.; 2010. Qualitative-Quantitative Bayesian Belief Networks for reliability and risk assessment, in: Pro-
ceedings of Annual Reliability and Maintainability Symposium (RAMS), IEEE. pp. 1-5.

Wang, C.s., Xie, Y.h., 2005. A new Bayesian network model for distribution system reliability evaluation based on dual
isomorphic Bayesian network model. Power system technology 7, 009.

Wang, G.y., Ma, Z.j., Hu, Q.w., 2004. The fault tree analysis based on Bayesian networks. Systems Engineering-theory &
Practice 6, 78-83.

Wang, M., Lu, L., 2012. A transformation method from UML statechart to Petri nets, in: International Conference on
Computer Science and Automation Engineering (CSAE), IEEE. pp. 89-92.

Wang, Y.F., Xie, M., Ng, K.M., Habibullah, M.S., 2011a. Probability analysis of offshore fire by incorporating human and
organizational factor. Ocean Engineering 38, 2042-2055.

Wang, Y.F., Xie, M., Ng, K.M., Meng, Y.F., 2011b. Quantitative risk analysis model of integrating fuzzy fault tree with
Bayesian network, in: International Conference on Intelligence and Security Informatics (ISI), IEEE. pp. 267-271.

Warfield, J.N., 1973. On arranging elements of a hierarchy in graphic form. IEEE Transactions on Systems, Man, and
Cybernetics , 121-132.

Weber, P., Jouffe, L., 2003. Reliability modelling with dynamic Bayesian networks. IFAC Proceedings Volumes 36, 57-62.

Weber, P., Jouffe, L., 2006. Complex system reliability modelling with dynamic object oriented Bayesian networks (DOOBN).
Reliability Engineering & System Safety 91, 149-162.

Weber, P., Medina-Oliva, G., Simon, C., Iung, B., 2012. Overview on Bayesian networks applications for dependability, risk
analysis and maintenance areas. Engineering Applications of Artificial Intelligence 25, 671-682.

Weber, P., Munteanu, P., Jouffe, L., 2004. Dynamic Bayesian Networks modelling the dependability of systems with degrada-
tions and exogenous constraints. IFAC Proceedings Volumes 37, 207-212.

Wieland, C., Schmid, O., Meiler, M., Wachtel, A., Linsler, D., 2009. Reliability computing of polymer-electrolyte-membrane
fuel cell stacks through petri nets. Journal of Power Sources 190, 34-39.

Williams, J., 1986. Heart—a proposed method for assessing and reducing human error, in: 9th Advances in Reliability Technology
Symposium, University of Bradford.

Wilson, A.G., Huzurbazar, A.V., 2007. Bayesian networks for multilevel system reliability. Reliability Engineering & System
Safety 92, 1413-1420.

Wu, H.C., 2004. Fuzzy reliability estimation using bayesian approach. Computers & Industrial Engineering 46, 467-493.

Wu, H.C., 2006. Fuzzy bayesian system reliability assessment based on exponential distribution. Applied mathematical
modelling 30, 509-530.

Wu, J., Yan, S., Xie, L., 2011. Reliability analysis method of a solar array by using fault tree analysis and fuzzy reasoning
Petri net. Acta Astronautica 69, 960-968.

Wu, J., Yan, S., Xie, L., Gao, P., 2012. Reliability apportionment approach for spacecraft solar array using fuzzy reasoning
petri net and fuzzy comprehensive evaluation. Acta Astronautica 76, 136—144.

Wu, J., Zhou, R., Xu, S., Wu, Z., 2017. Probabilistic analysis of natural gas pipeline network accident based on bayesian
network. Journal of Loss Prevention in the Process Industries 46, 126—-136.
Wu, W.S., Yang, C.F., Chang, J.C., Chateau, P.A., Chang, Y.C., 2015. Risk assessment by integrating interpretive structural
modeling and Bayesian network, case of offshore pipeline project. Reliability Engineering & System Safety 142, 515-524.
Wu, X.y., Wu, X.Y., 2015. Extended object-oriented Petri net model for mission reliability simulation of repairable PMS with
common cause failures. Reliability Engineering & System Safety 136, 109-119.

Xijaowei, Y., 2010. Common cause failure model of system reliability based on Bayesian networks. International Journal of
Performability Engineering 6, 255-268.

Xiaowei, Y., Wenxue, Q., Liyang, X., 2008. A Method for System Reliabiltiy Assessment Based on Bayesian Networks. Acta
Aeronautica Et Astronautica Sinica 6.

Xie, M., Wohlin, C., 1995. An additive reliability model for the analysis of modular software failure data, in: Proceedings of
Sixth International Symposium onSoftware Reliability Engineering, IEEE. pp. 188—-194.

Xing, L., Shrestha, A., Dai, Y., 2011. Exact combinatorial reliability analysis of dynamic systems with sequence-dependent
failures. Reliability Engineering & System Safety 96, 1375-1385. doi:10.1016/j.ress.2011.05.007.

34



Yan, R., Jackson, L.M., Dunnett, S.J., 2017. Automated guided vehicle mission reliability modelling using a combined fault
tree and Petri net approach. The International Journal of Advanced Manufacturing Technology , 1-13.

Yang, B.S., Jeong, S.K., Oh, Y.M., Tan, A.C.C., 2004. Case-based reasoning system with Petri nets for induction motor fault
diagnosis. Expert Systems with Applications 27, 301-311.

Yang, Z., Bonsall, S., Wang, J., 2008. Fuzzy rule-based Bayesian reasoning approach for prioritization of failures in FMEA.
IEEE Transactions on Reliability 57, 517-528.

Yazar, Z., 2002. A qualitative risk analysis and management tool-cramm. SANS InfoSec Reading Room White Paper .

Yazdi, M., Kabir, S., 2017. A fuzzy bayesian network approach for risk analysis in process industries. Process Safety and
Environmental Protection 111, 507 — 519. doi:10.1016/j.psep.2017.08.015.

Yevkin, O., 2011. An improved modular approach for dynamic fault tree analysis, in: Proceedings of the Annual Reliability
and Maintainability Symposium, IEEE. pp. 1-5.

Yin, X.w., Qian, W.x., Xie, L.y., 2008. Application of Bayesian network to reliability assessment of mechanical systems. Journal
of Northeastern University Natural Science 29, 557.

Yingkui, G., Jing, L., 2012. Multi-State System Reliability: A New and Systematic Review. Procedia Engineering 29, 531-536.
doi:10.1016/j.proeng.2011.12.756.

Yongli, Z., Limin, H., Liguo, Z., Yan, W., 2008. Bayesian network based time-sequence simulation for power system reliability
assessment, in: Seventh Mexican International Conference on Artificial Intelligence, IEEE. pp. 271-277.

Yontay, P., Pan, R., 2016. A computational bayesian approach to dependency assessment in system reliability. Reliability
Engineering & System Safety 152, 104-114.

Yu, D.C., Nguyen, T.C., Haddawy, P., 1999. Bayesian network model for reliability assessment of power systems. IEEE
Transactions on Power Systems 14, 426-432.

Yuan, Z., Khakzad, N., Khan, F., Amyotte, P., 2015. Risk analysis of dust explosion scenarios using Bayesian networks. Risk
analysis 35, 278-291.

Zafra-Cabeza, A., Ridao, M.A., Camacho, E.F., 2004. An algorithm for optimal scheduling and risk assessment of projects.
Control Engineering Practice 12, 1329-1338.

Zahra, F.Z., Khouas-Oukid, S., Assoul-Semmar, Y., 2013. Dynamic bayesian networks in dynamic reliability and proposition
of a generic method for dynamic reliability estimation, in: Modeling Approaches and Algorithms for Advanced Computer
Applications. Springer, pp. 409-418.

Zareiee, M., Dideban, A., Orouji, A.A., 2014. Safety analysis of discrete event systems using a simplified petri net controller.
ISA transactions 53, 44-49.

Zeng, R., Jiang, Y., Lin, C., Shen, X., 2012. Dependability analysis of control center networks in smart grid using stochastic
Petri nets. IEEE Transactions on Parallel and Distributed Systems 23, 1721-1730.

Zhang, D., Yan, X., Yang, Z.L., Wall, A., Wang, J., 2013. Incorporation of formal safety assessment and Bayesian network in
navigational risk estimation of the Yangtze river. Reliability Engineering & System Safety 118, 93—105.

Zhang, L., Wu, X., Skibniewski, M.J., Zhong, J., Lu, Y., 2014. Bayesian-network-based safety risk analysis in construction
projects. Reliability Engineering & System Safety 131, 29-39.

Zhang, X., Miao, Q., Fan, X., Wang, D., 2009. Dynamic fault tree analysis based on Petri nets, in: 8th International Conference
on Reliability, Maintainability and Safety(ICRMS), IEEE, Chengdu. pp. 138-142.

Zhang, Y., Zhang, Y., Wen, F., Chung, C.Y., Tseng, C.L., Zhang, X., Zeng, F., Yuan, Y., 2016. A fuzzy petri net based
approach for fault diagnosis in power systems considering temporal constraints. International Journal of Electrical Power &
Energy Systems 78, 215-224.

Zhao, L., Wang, X., Qian, Y., 2012. Analysis of factors that influence hazardous material transportation accidents based on
bayesian networks: A case study in china. Safety science 50, 1049-1055.

Zhou, J., Reniers, G., Zhang, L., 2017. A weighted fuzzy Petri-net based approach for security risk assessment in the chemical
industry. Chemical Engineering Science 174, 136—-145.

Zhou, K.Q., Zain, A.M., 2016. Fuzzy petri nets and industrial applications: a review. Artificial Intelligence Review 45, 405-446.

Zhou, S., Qin, Z., Zhang, F., Zhang, X., Chen, W., Liu, J., 2003. Colored Petri net based attack modeling. Rough Sets, Fuzzy
Sets, Data Mining, and Granular Computing , 583-583.

Zhou, Z., Jin, G., Dong, D., Zhou, J., 2006a. Reliability analysis of multistate systems based on Bayesian networks, in: 13th
Annual IEEE International Symposium and Workshop on Engineering of Computer Based Systems, IEEE. pp. 1-6.

Zhou, Z.b., Dong, D.d., Zhou, J.1., 2006b. Application of Bayesian networks in reliability analysis. Systems Engineering-Theory
& Practice 6, 95-100.

Zio, E., 2009. Reliability engineering: Old problems and new challenges. Reliability Engineering & System Safety 94, 125-141.
d0i:10.1016/j.ress.2008.06.002.

Zurawski, R., Zhou, M., 1994. Petri nets and industrial applications: A tutorial. IEEE Transactions on industrial electronics
41, 567-583.

35



