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ABSTRACT 

Guyots are large seamounts with a flat summit that is generally believed to form due to constructional 

biogenic and/or erosional processes during the formation of volcanic islands. However, despite their 

large abundance in the oceans, there are still very few direct constraints on the nature and formation 

of guyots, in particular those formed at high latitude that lack a thick cap of shallow-marine carbonate 

rocks. It is largely accepted based on geophysical constraints and surficial observations/sampling that 

the summit platform of these guyots is shaped by wave abrasion during post-volcanic subsidence of 

volcanic islands. Here we provide novel constraints on this hypothesis and the summit geology of 

guyots with a lithostratigraphic analysis of cores from three Louisville seamounts (South Pacific) 

collected during Expedition 330 of the Integrated Ocean Drilling Program (IODP). Thirteen lithofacies 

of sedimentary and volcanic deposits are described, which include facies not previously recognized on 

the top of guyots, and offer a new insight into the formation of high-latitude oceanic islands on a fast-

moving plate. Our results reveal that the lithostratigraphy of Louisville seamounts preserves a very 

consistent record of the formation and drowning of volcanic islands, with from bottom to top: (i) 

volcaniclastic sequences with abundant lava-fed delta deposits, (ii) submarine to subaerial shield lava 

flows, (iii) post-volcanic shallow to deeper marine sedimentary rocks lacking thick reef deposits, (iv) 

post-erosional rejuvenated volcanic rocks, and (v) pelagic sediments. Recognition of erosional 

boundaries between subaerial lava flows and shallow-marine sedimentary rocks provides novel 

support for post volcanic wave planation of guyots. However, the summit geology of Louisville 

seamounts is dissimilar to that of high-latitude Hawaiian-Emperor guyots that have emplaced in a 

similar tectonic and environmental setting and that include thicker lava stacks with apparently little 

lava-fed delta deposits. To explain observed lithostratigraphic discrepancy we propose that Louisville 

seamounts represent a distinct type of intraplate ocean volcano characterized by formation of a 

smaller island, with a central shield volcano surrounded by extended shallow-marine shelves formed 

by lava-fed deltas. In this interpretation the summit platform of Louisville-type guyots results from 

early (syn-volcanic) subaerial to shallow-marine constructional volcanic processes and marine erosion, 

enhanced by later (post-volcanic) wave planation. This contrasts with larger Hawaiian edifices that are 

capped by thicker shield volcanoes, and that develop an extended wave planation surface during post-

volcanic subsidence (in the absence of efficient coral growth). The difference between Hawaiian- and 

Louisville-type volcanic islands and guyots can be explained by contrasted dynamic disequilibrium 

between magmatic growth, erosion, and subsidence during the island-building stage. Unlike Hawaiian-
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type volcanoes, Louisville seamounts are characterized by alkaline magmatism that extends from the 

late seamount to island stages. This supports more limited magmatic growth during the formation of 

Louisville islands, and we hypothesize that this promotes the formation of ephemeral shallow-marine 

platforms and extended lava-fed deltas. Hawaiian-type volcanoes and guyots are unusually large in 

the population of intraplate ocean volcanoes. Louisville-type guyots as defined in this study could 

therefore represent a very common but yet poorly documented mode of oceanic island formation in 

the Pacific Ocean and other similar fast-moving plate settings. 

1. INTRODUCTION 
Millions of seamounts occur in the oceans that range in height from a few tens of meters to several 

kilometres, come in a very large range of shapes and forms, and preserve a ca. 180 m.yr. history of 

intraplate ocean volcanism (Schmidt and Schmincke, 2000; Staudigel and Clague, 2010; Buchs et al., 

2015; Staudigel and Koppers, 2015). In fastmoving (Pacific-like) plate settings where the lithosphere 

moves quickly above melting anomalies in the asthenosphere, it is generally accepted that the tallest, 

island-building intraplate ocean volcanoes grow predominantly through constructional submarine to 

subaerialshield volcanic phases dominated by tholeiitic magmatism. Shoaling of a seamount and 

emergence of an island can be marked by a particular phase of phreatomagmatic or “Surtseyan” 

volcanism. Incipient magmatic waning in the end of the shield-building stage of the island is 

accompanied by post-shield alkaline volcanism. Finally, fast drifting away from the melting region and 

rapid magmatic cessation are associated with relatively rapid (few m.yr.) subsidence and drowning of 

the island, with only minor and sporadic post-erosional, strongly alkaline volcanic activity (e.g., Clague 

and Dalrymple, 1987; Staudigel and Clague, 2010). On slow-moving (Atlantic-like) plates, oceanic 

islands develop through broadly similar processes, but slower migration away from the melting region 

results in longer-lived islands that can form primarily through alkaline magmatism. These volcanoes 

generally experience limited subsidence, with a prolonged phase of subaerial and shallow-marine 

erosion accompanied by sporadic volcanic activity (e.g. Staudigel and Schmincke, 1984; Carracedo, 

1999; Schmidt and Schmincke, 2002; Ramalho et al., 2013).  

The model of formation of Pacific islands, displayed in many geology textbooks, is well supported by 

studies of large volcanoes at Hawaii and along the Hawaiian-Emperor seamount chain (e.g., Clague 

and Dalrymple, 1987; Garcia and Davis, 2001; ODP Leg 197 Shipboard Scientific Party, 2002a, 2002b, 

2002c, 2002d; Garcia et al., 2007). However, it remains unclear whether these unusually large 

volcanoes are good analogues of much more abundant, but far less studied, flat topped seamounts or 

“guyots” that are commonly considered to represent drowned oceanic islands elsewhere in the Pacific 

(Hess, 1946; Menard, 1984). It is well documented that many guyots in the Pacific are capped by thick 

shallow-water carbonate deposits that reflect reef growth on top of a subsiding volcanic  

island/seamount (Darwin, 1842; Winterer et al., 1993; Dickinson, 1998; Wilson et al., 1998; Flood, 

1999, 2001). This biologically-controlled mechanism is particularly effective in lower latitudes where 

favorable environmental conditions facilitate compensation of subsidence by reef-building organisms 

and promote formation of long-lived atolls. In contrast, the morphology of high-latitude guyots devoid 

of a summit shallow-water carbonate platform is generally considered to reflect erosional processes 

with the formation of a marine planation surface during submergence of extinct volcanic islands (Hess, 

1946). Alternatively, the summit platform of these seamounts could be due to constructional volcanic 

processes with limited control by erosional mechanisms (Nayudu, 1962; Christensen and Gilbert, 

1964; Simkin, 1972; Natland, 1976). The constructional hypothesis has however received relatively 

little attention in the literature probably due to lack of clear supporting observations from guyots. Yet, 

it is significant to note that robust evidence for the more widely acknowledged existence of a wave 

planation surface on top of guyots remains equally elusive. The main direct support for this hypothesis 

is based on the occurrence of well-rounded clasts on top of these seamounts (e.g., Carsola and Dietz, 



Fig 1. Map of the northwestern end of the Louisville seamount chain showing the location of the guyots drilled during 

IODP expedition 330. Contours are every 500m.Map constructed using GeoMapApp (http://www.geomapapp.org, v. 

3.5.1, retrieved on 2 July 2015) and the Global Multi-Resolution Topography (GMRT) synthesis (Ryan et al., 2009). 



 1952; Hamilton, 1956; Budinger, 1967; Paduan et al., 2009), but these deposits are not incompatible 

with the possibility of the morphology of the guyots being controlled at least in part by earlier volcanic 

constructional processes.  

We provide here new direct constraints on the nature of the summit geology of three guyots of the 

Louisville seamount chain drilled to a depth of 183 to 522 m below sea floor (mbsf) during IODP 

Expedition 330 (Fig. 1). High (60–88%) recovery of drilled sequences offers a unique insight into 

geological processes that took place shortly before, during and after the island building stage of these 

volcanoes. We characterize these processes based on a sedimentary and volcanological 

lithostratigraphic analysis, including description of facies recognized for the first time on top of 

seamounts. The studied lithostratigraphic record offers a unique opportunity to test existing models 

of formation of high-latitude guyots in the Pacific. We show that our lithostratigraphic results and a 

large range of novel constraints from Louisville are partly at odds with the traditional model of 

formation of Hawaiian intraplate ocean volcanoes. We propose that this issue can be resolved by the 

introduction of a new model of formation of guyots applicable to Louisville-type volcanoes, in which 

the summit platform results from a complex interplay of constructional and erosional processes during 

formation of a small island in a fast-moving plate setting.  

2. GEOLOGICAL BACKGROUND 
The Louisville seamount chain is a 4300 km-long Late Cretaceous to Cenozoic chain of large, 

predominantly flat-topped intraplate ocean volcanoes that extends from the Kermadec trench to 

approximately 145°W in the South Pacific (Lonsdale, 1988). Age progression along the chain supports 

a hotspot origin with volcanoes progressively younger towards the east (Koppers et al., 2011). 

Apparent absence of an active hotspot at the eastern end of the chain suggests that most Louisville 

seamounts were produced during waning of a now extinct Louisville hotspot (Lonsdale, 1988). Basalts 

recovered by dredging and drilling on the seamounts have only yielded alkaline and transitional 

geochemical affinities, with so far no evidence for tholeiitic magmatism (Hawkins et al., 1987; Beier et 

al., 2011; Koppers et al., 2012a; Nichols et al., 2014; Vanderkluysen et al., 2014; Dorais, 2015). Drill 

cores considered in this study were collected during IODP Expedition 330 at the top of 3 guyots along 

the older (80–50 Ma) segment of the Louisville seamount chain (Koppers et al., 2012a) (Fig. 1). All 

seamounts formed on a Cretaceous oceanic plate between the Osbourne Trough that represents an 

extinct mid-ocean ridge (Worthington et al., 2006; Downey et al., 2007), and the west branch of the 

Wishbone Scarp that is considered to represent an inactive transform fault (Lyons et al., 2000; 

Mortimer et al., 2006). Guyots along the western segment of the Louisville seamount chain formed at 

high latitude ca. 51°S (Koppers et al., 2012b). With the exception of Guyot 168°W along the W 

Wishbone Scarp, there is no evidence for the development of thick shallow-marine carbonate deposits 

on the seamounts (Lonsdale, 1988; Ebuna, 2011; Koppers et al., 2012a; Vanderkluysen, pers. com. 

2015). The core of Louisville seamounts is considered to be composed of igneous intrusions 

(Contreras-Reyes et al., 2010), but the exact origin of their summit platform has remained difficult to 

constrain in the absence of direct subsurface observation.  

3. METHODS 
New lithological and stratigraphic observations were conducted using core and thin section 

observations from four drill sites on Canopus, Rigil and Burton guyots, for a total sequence thickness 

of 1003 m (Figs. 2–4). Cores considered in this study were collected at Site U1372 on Canopus Guyot 

(233 m-long, 60% recovery), Sites U1373 and 1374 on Rigil Guyot (66 and 522 m-long, 72% and 88% 

recovery, respectively), and Site U1376 on Burton Guyot (183 m-long, 75% recovery) (Koppers et al., 

2012a). In previous studies Canopus, Rigil and Burton guyots are sometimes described as seamounts  



Fig 2. Bathymetric map of Canopus Guyot (26.5°S Guyot) with location of IODP Site U1372, and seismic profile in red 

(modified from Koppers et al., 2010). (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.) 

26.5°S, 28.6°S, and 32.3°S, respectively. Core images were collected during IODP Expedition 330 on-

board R/V JOIDES Resolution using a line scan camera (Section Core Imaging Logger, SHIL) at intervals 

of 20 pixels/mmon archive half-core sections (Koppers et al., 2012a, all materials available through 

the IODP online portal). Minor tonal adjustments of original color were made to improve readability 

of lithological characteristics in poorly contrasted (e.g., dark colored) units. Lithologies were 

characterized based on the composition and fabric of volcanogenic and sedimentary rocks/deposits. 

Clast sorting and clast roundness subdivisions are from Jerram (2001) and Powers (1953), respectively. 

When volcaniclastic deposits have an unambiguous primary origin the nomenclature of White and 

Houghton (2006) was used. The classification of limestones is based on Dunham (1962), as revised by  



Fig 3. Bathymetric map of Rigil Guyot (28.6°S Guyot) with location of IODP Sites U1373 and U1374, and seismic profile in 

red (modified from Koppers et al., 2010). (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.) 

Embry and Klovan (1972). The modal abundance of fossils was determined using visual charts by 

Baccelle and Bosellini (1965). Qualitative characterization of the lithostratigraphic development of the 

guyots was conducted based on a unified catalogue of lithofacies developed from new core and thin 

section observations, which we applied to the stratigraphic subdivision developed on-board during 

IODP Expedition 330 (Koppers et al., 2012a). Due to large lithological variations observed at the 

studied seamounts this approach allowed us to reconstruct the lithostratigraphic evolution with a high 

degree of consistency across the drill sites. Process and palaeo-environmental interpretations of 

lithofacies integrate sedimentological, volcanological and palaeontological constraints from terrestrial 

to coastal and marine settings. Lithostratigraphic analysis from the four drill sites focused on the 

transition from syn-volcanic to post-volcanic processes. Given the scope of this study our approach  

 



 

Fig 4. Bathymetric map of Burton Guyot (32.3°S Guyot) with location of IODP Site U1376, and seismic profile in red 

(modified from Koppers et al., 2010). (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.) 

does not intend to resolve in detail the volcanological complexity expected to occur in the basement 

of the seamounts.  

4. LITHOFACIES DEFINITION AND PALAEO-ENVIRONMENTAL CONSTRAINTS 
Preliminary results from IODP Expedition 330 show that the upper part of Louisville guyots are 

composed of abundant primary and reworked volcanic breccias, with subordinate basaltic lava flows 

and intrusive igneous rocks, and rare non-volcanic sedimentary deposits (Koppers et al., 2012a). These 

lithologies are subdivided here into pelagic and hemipelagic sedimentary deposits, shallow-marine  



Table 1. Characteristics of the 13 lithofacies recognized on Louisville Guyots 

 

carbonate rocks, volcaniclastic deposits, and effusive and intrusive igneous rocks. These groups are 

subsequently subdivided into thirteen lithofacies to characterize volcano-sedimentary processes and 

palaeo-environmental conditions during the formation of the studied guyots (Table 1). 

4.1. Pelagic and hemipelagic sedimentary deposits 
Pelagic and hemipelagic sedimentary deposits can be subdivided into 3 lithofacies.  

Lithofacies 1 consists of black ferromanganese crusts and nodules that occur exclusively in the 

uppermost parts of the studied guyots, with a variable thickness of 1 to approximately 30 mm. Rarely, 

the crusts are associated with phosphatized limestone of lithofacies 3 (Fig. 5B). Although 

phosphatization can be significant on top of seamounts (Cullen and Burnett, 1986; Hein et al., 1993; 

Benninger and Hein, 2000; Jones et al., 2002), little phosphorite has been encountered on top of the 

studied guyots (Koppers et al., 2012a). Ferromanganese crusts are ubiquitous in the ocean (Hein and 

Koschinsky, 2014); on top of seamounts swept by oceanic currents their formation is very slow, with 

rates of approximately 1 to 5 mm/Ma (e.g., Puteanus and Halbach, 1988; Abouchami et al., 1997; Ling 

et al., 1997). Ferromanganese crusts on Louisville seamounts can therefore be used to recognize 

prolonged sedimentary and volcanic quiescence during the formation of the guyots.  

Lithofacies 2 is composed of loose planktic foraminiferal ooze/sand trapped in cavities or topographic 

lows on top of the guyots (Fig. 5A, Fig. S1). Sedimentary structures of this facies were not preserved  



 



Fig 5. Synthetic illustration of sedimentary lithofacies drilled in Louisville seamounts (imagewidth=5 cm). (A) Lithofacies 

2, winnowed foraminiferal sand (interval 330-U1372A-3R-2-A, 52–57 cm on Canopus Guyot). This facies corresponds to 

the youngest (loose) sediment capping Louisville guyots, which is interpreted as sand waves formed under the influence 

of deep sea currents. The foraminiferal sand locally includes darker material composed of drift pumices and fallout tuff. 

(B) Lithofacies 3, hemipelagic/pelagic limestone (interval 330-U1374A-3R-1-A, 67–72 cm on Rigil Guyot). Here includes a 

ferromanganese nodule of lithofacies 1 (i) and possible burrows filled by tuff of lithofacies 9 (ii). (C) Lithofacies 4, coralline 

algal boundstone to rudstone (interval 330-U1376A-4R-3-A, 112–117 cm).). This facies is restricted to an algal framework 

found at the summit of Burton Guyot. Illustrated example is composed of encrusting forms of coralline algae with boring 

by bivalves filled by basaltic sandstone and micrite that locally form geopetal structures (i). (D) Lithofacies 5, breccia with 

infill fabric, interpreted as a talus deposit on top of Canopus Guyot (interval 330-U1372A-5R-3-A, 68–73 cm). This facies 

includes secondary finer-grained and micrite deposits (“infills”) that form geopetal structures (i), and residual porosity (ii) 

between the largest clasts. (E) Lithofacies 7, matrix-supported breccia interpreted as debris flow deposit or lahar (interval 

330-U1373A-1R-2-A, 47–52 cm on Rigil Guyot). (F) Lithofacies 6, clast-supported conglomerate (interval 330-U1372A-6R-

3-A, 56–61 cm on Canopus Guyot). This facies includes abundant shallow-marine fossils and well-rounded clasts. It is 

interpreted as beachrock/coastal deposit. 

during core retrieval, but the sorting and lack of abundant finer fraction suggests pelagic deposition 

under winnowing conditions, as commonly observed on other seamounts of the Pacific (Lonsdale et 

al., 1972; Lonsdale and Malfait, 1974). Aminor fraction (b5%) of the sediment is composed of volcanic 

fragments (sand-sized feldspars, pyroxenes, opaques, glass, and basaltic grains) probably reworked 

from underlying seamount deposits. Rare pumices found in the foraminiferal sand probably record 

pumice rafts that have drifted on top of the seamounts from nearby supra-subduction zone volcanoes 

(e.g., Jutzeler et al., 2014).  

Lithofacies 3 consists of fossiliferous to packed wacke/packstone with minor (b10%) basaltic 

fragments and generally abundant planktonic and benthic foraminifers (Figs. 5B, 6A). Minor bioclasts 

include inoceramid and unidentified molluscan shell fragments and echinoderm fragments. This facies 

is interpreted to have deposited in hemipelagic to pelagic environments during periods of low current 

activity. 

4.2. Shallow-marine carbonate rocks 
Lithofacies 4 is a coralline algal boundstone to rudstone (Fig. 5C, Fig. S2). This limestone represents a 

biogenic framework (not forming rhodoliths) related to in situ growth of coralline red algae. It includes 

encrusting and branching forms of coralline algae,minor bryozoans, annelids, bivalves, echinoderms 

and solitary corals, with frequent borings by bivalves, dissolution features (cavities) and intraskeletal 

spaces in the algal framework which are filled with fossil-bearing micrite and/or volcaniclastic 

material. It is also characterized by the absence of rudists, colonial corals and larger foraminifers, 

which are typical for the low-latitude reefal environments. Mainly sand- to pebble-sized basaltic grains 

occur in the lower part of the limestone. This lithologyis indicative of a shallow-marine environment 

and represents an unusual record of high-latitude algal framework on the studied seamounts. Possible 

analogues are rare and could include, e.g., the Upper Limestone Member of the Sepultura Formation, 

Baja California, Mexico (Abbott et al., 1993).  

4.3. Volcaniclastic deposits 
Volcaniclastic deposits form most of the units in the upper part of the Louisville seamounts. We have 

subdivided them into 5 lithofacies.  

Lithofacies 5 is composed of a poorly sorted, polymictic breccia with grains ranging in size from sand 

to cobble and, more rarely, boulder (Fig. 5D, Fig. S3). Clasts are generally very angular to sub-rounded, 

with occasional rounded to well-rounded grains. The breccia is grain-supported with frequent point 

contacts between the clasts. The matrix is composed of wacke/packstone (similar to lithofacies 3) or 

sandstone. Carbonate cements and residual porosity are also recognized. The composition of the 

clasts is essentially basaltic with rare occurrences of reworked shallow-marine bioclasts (e.g., coralline  



 



Fig 6. Thin section photographs of selected lithological features. (A) Foraminiferal wacke/packstone (lithofacies 3, 

pelagic/hemipelagic limestone, core section 330-U1372A-5R-1-W on Canopus Guyot). Contains abundant planktonic and 

benthic foraminifers (some broken) with minor rounded altered glass (i) and basalt clasts (ii). (B). Breccia with infill and 

current structures (lithofacies 5, core section 330-U1372A-5R-3-W on Canopus Guyot). Darker matrix is composed of 

wacke/packstone similar to (A), whereas white areas are composed of carbonate cements. The arrow outlines a geopetal 

structure formed by infill of wacke/packstone in a late stage fracture/void. (C) Beachrock/coastal deposit (lithofacies 6, 

core section 330-U1372A-8R-1-W on Canopus Guyot). The sample includes abundant well rounded fragments of red algae 

(i), and minor fragments of annelid tubes (ii), echinoderm spines (iii), basaltic rocks (iv) and minerals. (D) 

Beachrock/coastal deposit (lithofacies 6, core section 330-U1372A-7R-2-W on Canopus Guyot). Matrix is mostly composed 

of carbonate cements except where a large shell fragment (i) allowed preservation of wacke/packstone part (ii) from 

winnowing. (E) Beachrock/coastal deposit (lithofacies 6, core section 330-U1376A-5R-1-W on Burton Guyot), including 

micropeloidal cement (highlighted by arrows). (F) Beachrock/coastal deposit (lithofacies 6, core section 330-U1376A-5R-

1-W on Burton Guyot), including micropeloidal cement infill (i). (G) Micropeloidal cement in beachrock/coastal deposit 

(lithofacies 6, core section 330-U1376A-5R-1-W on Burton Guyot) (H) Vitric tuff (lithofacies 9, core section 330-U1374A-

2R-2-W on Rigil Guyot), including spheroidal cement (i) and vitric clasts with elongated vesicles (ii). 

red algae). Bottom currents at the time of sedimentation are recorded by cross-lamination. Calcite 

cementation is observed where fine particles were washed out from the sandstone between the larger 

clasts (Fig. 6B). A significant feature of this facies is the occurrence of an infill fabric produced by the 

percolation of finer (generally sandy)material between the larger clasts that form the framework of 

the breccia (Fig. S3). This clearly indicates that the facies formed incrementally, with large variation in 

the energy of transport of discrete sedimentation events. Analogy of this fabric with that of subaerial 

talus or screes (Tanner and Hubert, 1991; Salt and Ballantyne, 1997; Hinchliffe et al., 1998) suggest 

that lithofacies 5 represents submarine deposits avalanching down from a nearby cliff or escarpment, 

or submarine deposits reworked downslope during storms. Such deposits are rare on Louisville 

seamounts and to our knowledge have not been described yet at other seamounts.  

Lithofacies 6 consists of a poorly towell sorted, polymictic conglomerate with grains ranging in size 

from sand to cobble and, more rarely, boulder (Fig. 5F, Fig. S4). Clasts are sub-rounded to well-

rounded indistinctively of their size. The conglomerate is grain-supported but locally includes 

significantly larger clasts in a well sorted matrix. Crossbedding locally occurs in the sandier units. 

Interstitial space between the clasts includes primary porosity, carbonate cements and/or micrite (Fig. 

6C–D). The conglomerate is dominated by basaltic fragments but locally contains abundant (5 to 40%) 

shallow-marine bioclasts, including annelids, coralline red algae, echinoderms, bryozoans and 

mollusks. Annelids and algae often developed in situ encrustations on the basalt cobbles and boulders. 

Although significant recrystallization of carbonate cements occurred during late diagenesis, 

micropeloidal cements with micritic menisci have been observed in Site U1376 on Burton Guyot (Fig. 

6E–G). These cements are generally considered as an indicator of microbial activity (Sun and Wright, 

1989; Folk and Leo Lynch, 2001; Hillgärtner et al., 2001). Similar peloidal cements, generally identified 

as microbial in origin, have been described from reefal and slope deposits. For example Heindel et al. 

(2012) note that thick peloidal cements associated with coralgal frameworks from Tahiti developed in 

the shallow euphotic zone, 1.5 to 6 m below the living reef top, but can also  develop as depths 

exceeding 20 m and as much as 200 m on slopes (Seard et al., 2011). The presence of non-isopachous 

cement geometries such as menisci might suggest vadose conditions such as beachrock formation, 

but similar textures associated with microbial cements have been described from shallow-marine 

hardgrounds (e.g., Hillgärtner et al., 2001). However, the association with well-rounded clasts and 

stratigraphic occurrence under coralline framework at Site U1376 (see below) suggest a more likely 

shallow-water setting. Altogether, preceding characteristics are typical of beachrock/coastal deposit 

emplaced on oceanic islands and more generally along rocky shore environments (Felton, 2002). We 

consider therefore that lithofacies 6 records deposition in shallow-marine to possibly intertidal 

environments along a palaeo-coastline.  

 



 



Fig 7. Synthetic illustration of primary volcanic lithofacies drilled in Louisville seamounts (imagewidth=5 cm). (A) 

Lithofacies 8a, primary volcanic breccia (interval 330-U1372A-27R-1-A, 75–80 cm on Canopus Guyot). Selected interval 

shows a hyaloclastite with highly vesicular clasts. (B) Lithofacies 8b, primary volcanic breccia (interval 330-U1374A-64R-3-

A, 100–105 cm on Rigil Guyot), interpreted as a pillow breccia with cement (i) or hyaloclastite matrix (ii). (C) Lithofacies 

8b, primary volcanic breccia (interval 330-U1374A-35R-2-A, 39–44 cm on Rigil Guyot), with chilled clasts and pervasive 

oxidation. (D) Lithofacies 9, laminated breccia (interval 330-U1374A-7R-5-A, 9–14 cm on Rigil Guyot), interpreted as a 

pillow breccia with a hyaloclastite matrix. (E) Lithofacies 10, Blocky lava flow (interval 330-U1373A-2R-3-A, 82–87 cm on 

Rigil Guyot). (F) Lithofacies 12, Peperite (interval 330-U1372A-9R-3-A, 59–64 cm on Canopus Guyot). 

Lithofacies 7 is composed of a poorly sorted, polymictic breccia with grains ranging in size from sand 

to cobble and, more rarely, boulder (Fig. 5E, Fig. S5). Clasts are very angular to sub-angular (rarely 

rounded) and composed of basalt fragments. The breccia is matrix-supported with a matrix composed 

of variously-altered black to yellowish-brownish tuffaceous material, which does not react with HCl. 

Some of the breccia includes minor (b5%) shallow-marine bioclasts similar to those found in lithofacies 

6. Dispersion of large clasts in the matrix of lithofacies 7 indicates transport in a cohesive tuffaceous 

medium interpreted to be associated with debris flow, either torrential breccia or lahar (Walton and 

Palmer, 1988; Smith and Lowe, 1991; Hildenbrand et al., 2008). The absence of cataclastic 

fragmentation in this facies rules out emplacement as debris avalanches (Ui, 1983; Siebert, 1984). The 

grain size, matrix-supported fabric and strongly polymictic nature of the breccia are inconsistent with 

a Surtseyan deposit (e.g., Kokelaar, 1986; Thordarson, 2000; Jakobsson et al., 2009; Schipper 

andWhite, 2016).  

Lithofacies 8 includes poorly sorted to moderately sorted, predominantly monomictic breccias with 

grains ranging in size from ash to lapilli and more rarely, blocks (Fig. 7A–C, Figs. S6, S7). This lithofacies 

corresponds to primary volcanic breccias that can be subdivided into two sub-facies based on their 

relative abundance of glass fragments. Lithofacies 8a is a hyaloclastite predominantly composed of 

moderately sorted, vesicular glass fragments that can include larger vesicular basalt clasts with a 

chilled margin and broken or amoeboid textures (Fig. 7A, Fig. S6A-C). This facies is clearly indicative of 

submarine volcanic activity (Staudigel and Schmincke, 1984; Yamagishi, 1991; White and Houghton, 

2006). The clasts generally lack fluidal texture, and are poorly vesiculated and not welded (Fig. S6C 

shows a rare occurrence of fluidal/lobate juvenile clasts). These characteristics indicate they do not 

represent spatter deposits formed by submarine fountaining (Simpson and McPhie, 2001; Cas et al., 

2003) or magmatic fragmentation during submarine strombolian volcanism (Clague et al., 2009; 

Deardorff et al., 2011). Significantly, the absence of fine tuff, accretionary lapilli, composite 

bombs/lapilli lag deposits and winnowing structures indicates that lithofacies 8a did not form as a 

direct result of Surtseyan volcanism (e.g., Kokelaar, 1986; Thordarson, 2000; Jakobsson et al., 2009; 

Schipper and White, 2016). Instead, the large abundance of vesicular glass, which locally includes 

exfoliated margins of lava lobes/pillow lavas (e.g., Fig. 7A) and possible pillow fragments, suggest that 

thermal shock granulation and spall fragmentation at shallow depth, possibly coupled with impact 

shattering and “self-peperitization”, played a prominent role in the formation of this facies. These 

observations and stratigraphic relationships (see Section 5 below) suggest that lithofacies 8a deposits 

emplaced in a shallow-marine clastic apron with locally lava-fed deltas (e.g., Watton et al., 2013).  

Lithofacies 8b is a glass-poor, poorly sorted, grain-supported basaltic breccia (Fig. 7B–C, Figs. 

S6D,S7A–D). The breccia is generally cemented by carbonates, but can locally preserve original 

interstitial porosity, and/or includes a basaltic/hyaloclastic coarse ash matrix. The clasts are mostly 

composed of angular basalt fragments devoid of vesicles and chilled margin, with locally a jigsaw fit 

texture (Fig. 7B, Figs. S6D, S7B–C). Oxidation of the clasts is locally significant, in particular where the 

breccia is cemented by carbonate minerals (Fig. 7C, Fig. S7A-C). Lithofacies 8b locally grades to the 

brecciated base of lava flows (lithofacies 10 below), which clearly supports a genetic link between the 

emplacement of the lavas and at least parts of the breccia. Preceding characteristics and stratigraphic 

relations (see Section 5 below), support formation of lithofacies 8b in lava-fed deltas or clastic aprons, 



with fragmentation primarily due to autobrecciation of subaerial lava flows entering the sea (e.g., 

Watton et al., 2013). 

Lithofacies 9 is composed of moderately to well-sorted fine tuff to breccia with a distinctive 

graded/layered structure (Fig. 7D, Fig. S8). The clasts are very angular to subrounded and composed 

of fresh to altered volcanic glass and lithics, with a monomictic to polymictic composition. 

Fragmentation and vesiculation of the clasts can locally be very high, with elongation of some of the 

vesicles and a fluidal texture (Fig. 6H). This suggests syn-eruptive derivation via submarine “fire 

fountaining” for at least parts of this facies (e.g., Cas et al., 2003; Clague et al., 2009). The breccias are 

cemented by silicate and carbonate minerals or include a finer grained tuff matrix. This lithofacies is 

rarely associated with molluscan debris (exceptionally ammonoids), compaction structures in the finer 

grained deposits, and/or erosional surfaces and cross-bedding. This volumetrically minor facies is 

believed to have deposited through several processes, including proximal, pyroclastic fall deposits 

from submarine eruptions (Fig. S8A, D), reworked submarine fall deposits (Fig. S8B), and 

hyperconcentrated flow deposits (Fig. 7D, Fig. S8C; Smith and Lowe, 1991; Pierson, 2005). Attribution 

to these processes is discussed below in stratigraphic context. 

4.4. Effusive and intrusive igneous rocks 
All the igneous rocks encountered during the expedition are mafic and they have been subdivided into 

four lithofacies. The definition of the facies is based on the texture and structure of lava 

flows/intrusions and does not take into account mineralogical variations. Mineralogy and petrology of 

individual units is described in Koppers et al. (2012a) and Fitton et al. (submitted).  

Lithofacies 10 is a fine grained, aphyric to highly phyric, variably vesicular, typically massive basalt. 

Vesicles may occur as subhorizontal bands. This lithofacies can occur as isolated sheets which can 

grade into brecciated or scoriaceous horizons at either the top or the base of the sheets. This 

lithofacies is interpreted to represent lava flows with thicknesses that varies between ~0.5 to over 21 

m. The scoriaceous/brecciated deposits (Fig. 7E) are autobrecciated margins typical of lava flows. 

Where these are red in colour and not in contact with carbonate sediments, this is interpreted to 

represent subaerial oxidation and emplacement. 

Lithofacies 11 is a fine-grained to glassy variably-brecciated basalt which is typically moderately to 

highly phyric. The clasts have fine grained cores, glassy chilled margins and are often lobate or curved 

in morphology. Each lobate body is typically surrounded by thin zones of red clay containing spalled 

chips of altered glass. This lithofacies is interpreted to represent pillow lavas. Some pipe vesicles in 

the larger lobate bodies are orientated vertically, and demonstrate that the pillows are typically in 

situ. Some large (N5 cm) basalt clasts embedded in lithofacies 8a (hyaloclastite) could represent 

fragments of pillow lava, but grain-supported basaltic breccia convincingly resulting from 

fragmentation of pillow lavas (e.g., pillow breccias in Staudigel and Schmincke, 1984) have not been 

observed.  

Lithofacies 12 is composed of fine-grained, often highly vesicular basalt and ranges from aphyric to 

highly-phyric. The basalt is mingled with sediments. The sediments often show squeezing features and 

compaction swales. In places, the contact is fluidal, sometimes brecciated and occasionally reddened 

from oxidation. This lithofacies often grades into lithofacies 10 and has been interpreted as peperites 

(Skilling et al., 2002) (Fig. 7F). This suggests that the lava flows were emplaced over or into wet 

sediment. 

Lithofacies 13 is composed of massive, fine-grained basalt. It is typically aphyric though some discrete 

patches of phenocrysts can be observed. Vesicles, when present, are aligned in vertical bands. 

Observed contacts have a cross-cutting relationship and typically dip at 50–60° but in some places are 



subvertical to vertical. Bands of vesicles are often observed parallel to the margins. In places a chilled 

margin runs parallel to the edge of the core and may be brecciated. This lithofacies is interpreted as 

intrusive sheets, most likely dykes, cross-cutting the other units. 

5. LITHOSTRATIGRAPHY OF THE GUYOTS 
This section describes the lithostratigraphic arrangement of the 4 cores collected at the 3 studied 

Lousiville seamounts. This arrangement is briefly discussed in terms of changes in volcano-

sedimentary processes and palaeo-environmental conditions during the latest stages of evolution of 

each of the guyots. The evolution patterns are further discussed and synthesized in the following 

section, with the introduction of an improved model of formation of guyots. 

5.1. Canopus Guyot (Site U1372) 
Site U1372 is located along the edge of the summit platformof Canopus Guyot (Fig. 2, Fig. S9A). The 

upper ~13 m of the cored interval are composed of a shallow-marine to deep-marine sedimentary 

sequence that rests unconformably on top of a volcanic/volcaniclastic basement that extends down 

to ~232 mbsf (Fig. 8). The volcaniclastic basement is composed of an assemblage of hyaloclastite 

(lithofacies 8a), lava flows (lithofacies 10), and peperites (lithofacies 12), with a clear increase in the 

abundance of lava flows up-section. The basement can be subdivided into four sequences of 

approximately 20 m thickness composed of hyaloclastites topped by thinner intervals of lava flows. 

This stratigraphic arrangement and the lithological characteristics of the deposits closely resemble 

those of lava-fed deltas and clastic aprons formed during the entry of subaerial lava flows into the sea 

(Moore et al., 1973; Yamagishi, 1991; Schmidt and Schmincke, 2002; Skilling, 2002; Watton et al., 

2013). The occurrence of a clastic apron and/or lava deltas in the volcanic basement is additionally 

supported by low volatile contents in the glass of the hyaloclastites, which indicate degassing in 

subaerial conditions or at shallow (b20 m) depth (Nichols et al., 2014). The volcanic basement above 

~94 mbsf becomes predominantly composed of massive and brecciated lava flows. Between 90 and 

54 mbsf basalts are red oxidized, which suggest emplacement in a subaerial environment (Koppers et 

al., 2012a). Subaerial lava flows are capped by a peperite unit below the sedimentary cover, which 

suggests subsidence of the island during the end of the shield building volcanic activity.  

The sedimentary cover rests on top of the peperites along an erosional contact (Fig. S10A) that marks 

a major lithostratigraphic discontinuity from primary volcaniclastic deposits and lava flows to 

epiclastic volcaniclastic deposits. The lower part of the sedimentary cover includes ~19mof near-

shore/littoral conglomerate (lithofacies 6, rich in shallow marine bioclasts) that rests on top of- and 

fills in cracks in- underlying peperites. The conglomerate is followed up-section by ~9 m of talus 

breccias (lithofacies 5, poor in shallow-marine bioclasts), and ~13 m of recent winnowed foraminiferal 

sand (lithofacies 2). Lithofacies 5 is interrupted at ~18 mbsf by a thin bed of foraminiferal 

wacke/packstone (lithofacies 3) capped by a 2 cm-thick ferromanganese crust (lithofacies 1). This 

indicates protracted erosion (probably several m.yr.) after the volcanic/constructional phase of the 

edifice.  

Lithostratigraphic changes at Site U1372 record the formation and drowning of an oceanic island with 

(1) a constructional volcanic, submarine to shield building phase preserved in the volcanic basement, 

and (2) an erosional and subsidence phase preserved in the sedimentary cover, following magmatic 

waning and formation of a major erosional unconformity. Although post-erosional magmatic 

rejuvenation is not documented in existing cores, it is supported by the occurrence of a cone of 

possible submarine volcanic origin on top of the guyot (Fig. S9A) (Ebuna, 2011). The life span of the 

island can be estimated to be b5 m.yr. based on a 74.2 ± 0.5 Ma Ar-Ar age from the volcaniclastic 

basement (Koppers et al., 2012b) and biostratigraphic data from the foraminiferal wacke/packstone 

in the sedimentary cover (Late Cretaceous, 69–73 Ma, Koppers et al., 2012a).  



5.2. NE Rigil Guyot (Site U1373) 
Site U1373 is located on the north-eastern edge of the summit platform of Rigil Guyot (Fig. 3, Fig. S9B), 

where an interval of ~65 m was cored. This interval includes a ~34 m thick volcanic basement with lava 

flows and peperites (lithofacies 10 and 12), and a volcano-sedimentary cover with debris flow deposits 

(lithofacies 7), bioclast-rich conglomerate with cross-bedded poorly-cemented sandstone (lithofacies 

6), and brecciated lava flows (lithofacies 10) (Fig. 9). Lithofacies 6 includes remarkable examples of 

littoral sediments deposited along a volcanic island (Fig. S4C). Debris flow deposits have a tuffaceous 

matrix suggesting that they represent lahars (Fig. S5). Occurrence of these deposits and an unusually 

thick lava flow (Unit VII) indicates possible channelization of flows in/at the mouth of a palaeo-valley. 

The contact between the volcanic basement and the sedimentary cover was not recovered and, thus, 

it is unclear whether an erosional unconformity developed before deposition of the sediments. 

However, the occurrence of shoreline deposits and oxidized basalt clasts in the sedimentary rocks 

(e.g., Fig. 5 and Fig. S5) supports the existence of a nearby subaerial environment at the time of 

deposition. Lava interbeds in the sedimentary cover indicate synchronous volcanic and erosional 

processes, following the development of beaches along an island coast. Similarly to lithostratigraphic 

constraints at Canopus Guyot this evolution is consistent with subsidence of the island during the end 

of shield volcanism.  

5.3. SW Rigil Guyot (Site U1374)  
Site U1374 is located along the southwestern edge of the summit platform of Rigil Guyot (Fig. 3, Fig.  

S9B). The volcanic basement between approximately 523 and 38 mbsf includes abundant primary 

volcanic breccia (lithofacies 8a and 8b) with minor igneous dykes and sills (lithofacies 13), and intervals 

of lava flows (lithofacies 10) and peperites (lithofacies 12) (Fig. 10). The breccia is predominantly 

composed of lithofacies 8b, with coarse hyaloclastite (lithofacies 8a) restricted to the lower part of 

the hole. Lithofacies 8b is increasingly oxidized from 340 to 350 mbsf up-section. Prominent oxidation 

of the breccia broadly corresponds to the apparition up-section (from290mbsf) of thin intervals with 

shallow-marine bioclasts. This suggests that oxidation could be associated with decarbonation of 

sediment at the contact with the igneous breccia. In addition to lithological characteristics, several 

converging observations suggest that lithofacies 8b emplaced in lava-fed deltas and/or submarine 

clastic aprons. First, lava flows are commonly interbedded with compositionally similar, monomictic 

breccias and locally grade to breccias with a jigsaw-fit texture (Fig. S7B). This is consistent with 

autobrecciation such as that seen in lava-fed deltas (Watton et al., 2013). Second, the breccias are 

interbedded with sedimentary intervals that contain shallow-marine fossils and/or conglomerates 

(see below). This is clear evidence for emplacement of at least parts of the breccias in a shallow-marine 

environment. Third, bedding in the breccias is rare, but when present indicates N10° slopes (Fig. S7D) 

not observed in the lower, hyaloclastite sequence. Finally, the glass in the breccia is degassed, which 

is consistent with eruption in subaerial and/or shallow-marine environments (Nichols et al., 2014). 

Another significant observation at Site U1374 is that lithofacies 8b grades in the lower part of the hole 

to undegassed hyaloclastites that record an eruption depth of 300–550 m (Nichols et al., 2014). Thus, 

changes in lithofacies 8 distribution of shallow-marine fossils are best accounted for by lava 

fragmentation in a deep to shallow submarine clastic apron, with the source of the lavas changing 

from submarine to subaerial with time (i.e., emergence of a volcanic island).  

Additional constraints on the palaeoenvironment of the volcanic basement are provided by three main 

sedimentary intervals. The lowest interval,Unit XI (~110 to 116mbsf, Fig. 10), is composed of shallow-

marine bioclast-bearing conglomerate (lithofacies 6) that grades up-section to talus deposits with a 

bioclast-rich carbonate matrix (lithofacies 5). The abundance of shallow-marine bioclast (including 

large articulated bivalves in the conglomerate) and the lithological characteristics of the deposits 

document the development of a littoral environment in the volcanic basement, with possible  



 

Fig 8. Lithostratigraphic column of Site U1372 on Canopus Guyot (modified from Koppers et al., 2012a). Age data are from 

Koppers et al. (2012a, 2012b). 



development of sea cliffs. The second sedimentary interval, Unit IX (~85 to 64 mbsf) is predominantly 

composed of talus deposits (lithofacies 5) with minor shallow-marine bioclasts. This interval includes 

a 3.5 m-thick bed of hyperconcentrated flow deposit(s) (lithofacies 9) that record high energy gravity 

flows on the slope of the volcano. Finally, the third, uppermost sedimentary interval occurs between 

approximately 42 and 38 mbsf just below the lava flows at the top of the volcanic basement. This 

interval includes hyperconcentrated flow deposits similar to those exposed in Unit IX (lithofacies 9) 

(Fig. 7D). Interbedded sedimentary and volcanic intervals in the basement at Site U1374 clearly show 

that this sequence was produced by volcanic activity along the coast of an island.  

The volcanic basement is covered by an assemblage of sedimentary and volcanic deposits that rests 

upon lava flows along an erosional unconformity infilled by lithofacies 6 conglomerates (Fig. S10B). 

This unconformity closely resembles that observed at Site U1372 on Canopus Guyot and is also 

interpreted here as a major erosional unconformity, which formed after the main volcanic phase of 

the volcano. Overlying deposits include a conglomerate with abundant shallow-marine bioclasts 

(lithofacies 6), a thin interval of pelagic limestone (lithofacies 3) associated with reworked 

fragments/nodules of ferromanganese crust (lithofacies 1), reworked coarse lapilli vitric tuff with 

broken ammonoids (lithofacies 9, Fig. S8B), a primary vitric tuff with fluidal, vesicular clasts (lithofacies 

9, Fig. 6H and Fig. S8A) capped by a 1 cm-thick ferromanganese crust (lithofacies 1) and, finally, a 

summit deposit composed of winnowed foraminiferal sand (lithofacies 2).High vesiculation, flattened 

vesicles and grading structures in the juvenile tuff, together with undegassed glass that suggests 

emplacement at a depth of 250–550 mbsl (Nichols et al., 2014), are interpreted to reflect deposition 

from density currents proceeding from a nearby collapsing submarine eruption column (Simpson and 

McPhie, 2001; Cas et al., 2003). Deposition of pelagic limestone and ferromanganese nodules directly 

on top of the shallow-marine conglomerate and below the tuff indicates this submarine volcanism 

occurred several m.yr. after the island/shield stage of the seamount, therefore suggesting it 

represents a phase of rejuvenated, post-erosional magmatism. This interpretation is in good 

agreement with increased alkalinity of glass in the upper tuff unit (Nichols et al., 2014).  

Shipboard biostratigraphic data from the pelagic limestone suggest a 75.2–75.7Ma age of deposition 

(Koppers et al., 2012a) that is difficult to reconcile with 71.1 ± 0.9, 70.5 ± 0.7 Ma and 69.5 ± 0.4 Ma Ar-

Ar ages from lava flows in the volcanic basement at sites U1373 and U1374 (Koppers et al., 2012b). It 

is possible that biostratigraphic zonations used to constrain preliminary ages of the limestone are 

inaccurate in the South Pacific. In any case, biostratigraphic and geochronologic data are in broad 

agreement and, similarly to age data at Canopus Guyot, are consistent with rapid development of the 

upper Rigil Guyot. This development includes an early volcanic construction from submarine to 

subaerial conditions, followed by post-shield erosion, subsidence and drowning of the island, and 

finally short-lived volcanic rejuvenation in a deeper marine environment.  

5.4. Burton Guyot (Site U1376) 
Site U1376 is located close to the center of the summit platform of Burton Guyot and cross-cuts the 

southern side of a small conical feature that appears to have developed after formation of the flat 

summit (Fig. 4 and Fig. S9C). Similarly to previous drilling sites, the upper sequence of Burton Guyot 

includes abundant volcanic breccias, with minor lava flows, igneous intrusions and sedimentary 

deposits (Fig. 11). The volcanic basement (42 to 180 mbsf) is composed of vesicular hyaloclastites 

(lithofacies 8a) with lava flows (lithofacies 10) and subordinate crosscutting intrusive sheets 

(lithofacies 13). The basement above 57 mbsf includes rare, distinctive polymictic breccias and pillow 

lavas (lithofacies 11). The breccias include rare red-oxidized subrounded to rounded basalt clasts that 

attest for the occurrence of an emergent volcano during emplacement of the pillow lavas, but unlike 

drill sites at other seamounts no subaerial deposit has been preserved in the basement at Site U1376. 

Interbedded hyaloclastites and lava flows in the lower part of Site U1376 define a sequence similar to  



 

Fig 9. Lithostratigraphic column of Site U1373 on Rigil Guyot (modified from Koppers et al., 2012a). Age data are from 

Koppers et al. (2012a, 2012b). 

that found in the basement of Canopus Guyot. This sequence is best accounted for by submarine 

fragmentation of lava flows in lava-fed deltas and/or submarine slopes of the volcano. Similar to  



 

Fig 10. Lithostratigraphic column of Site U1374 on Rigil Guyot (modified from Koppers et al., 2012a). Age data are from 

Koppers et al. (2012a, 2012b). 



previous seamounts, degassing of the glass at Site U1376 suggests shallow, albeit poorly constrained 

(~10–400 m), depth of eruption (Nichols et al., 2014) that is consistent with subaerial eruption 

followed by lava fragmentation in a shallow-marine environment.  

The base of the sedimentary cover at Site U1376 is composed of shallow-marine conglomerate 

(lithofacies 6) that rests upon the volcaniclastic basement along a major erosional unconformity 

similar to those seen on top of the basement at other drilled seamounts (Fig. S10C). The conglomerate 

is rich in shallow-marine bioclasts and includes remarkable examples of micropeloidal cement (Fig. 

6E–G). 

Several hardgrounds/erosional surfaces are preserved in the conglomerate (Fig. S10C and Fig. 

11),which suggest sedimentation in a high-energy, beach or shallow platform environment. Directly 

resting on top of the conglomerate is a coralline algal boundstone to rudstone (lithofacies 4) 

associated with construction of a ~15 m-thick coralline algal framework on top of the seamount. Basalt 

detritus in the limestone decreases up-section (Fig. S2), which reflects reduced erosion or epiclastic 

influx. The framework is capped by an interval of reworked and primary tuffs with rare lithic-rich 

turbidites (lithofacies 9). Fine to coarse tuffs resting directly on top of the limestone in Unit ID have 

dewatering structures (Fig. S8D), but were not reworked by bottom/wave currents. Most of units IB 

and IC are composed of hyperconcentrated flow deposits composed of lithic to vitric lapilli tuff; several 

erosional unconformities occur in these deposits. This facies is similar to the vitric tuff encountered at 

the top of Site U1374 on Rigil Guyot. It is also interpreted here as primary volcanic deposit emplaced 

in a deeper marine environment after initial subsidence of the seamount (i.e., post-erosional 

submarine volcanic activity). The interpretation of this facies is further supported by the conical 

structure on top of the guyot (Fig. S9C), and ~120–350 m depth of eruption constrained by volatile 

contents in fresh glass fragments (Nichols et al., 2014). The uppermost sedimentary deposits 

recovered at Site U1376 include a succession of fine to coarse bioturbated tuff and sandy lithic 

turbidites (lithofacies 9)with four ferromanganese crusts of 1–2 cm thickness (lithofacies 1). These 

crusts suggest this sequence records a long interval of non-deposition punctuated by rare turbidity 

events and nearby influence from sporadic volcanic activity of undefined origin.  

Only limited age constraints are available for Burton Guyot. A dyke in the lower part of the basement 

was dated to 64.05 ± 0.45 Ma by Ar-Ar dating (Koppers et al., 2012b). Shipboard observations support 

the occurrence of a large gastropod possibly belonging to the Maastrichtian–Eocene, Januncia genus, 

in the lowermost part of the sedimentary sequence (Subunit IIB) (S. Sano and P.W. Skelton personal 

observation). Overall, preceding observations document a short period of shield/post-shield volcanic 

activity followed by (i) a more extended period of erosion and subsidence coupled with development 

of algal frameworks and (ii) post-erosional submarine volcanism after submergence of the island.  

6. DISCUSSION AND IMPLICATIONS FOR THE FORMATION OF GUYOTS 
Lithostratigraphic results from Canopus, Rigil and Burton guyots that formed between ca. 74 and 64 

Ma along the Louisville seamount chain depict a remarkably consistent geological evolution during the 

last ca.5 Ma of the main period of magmatic activity of the volcanoes and their subsequent drowning. 

Main lithological changes reflect a clear transition from (i) a predominantly constructional, volcanic 

stage associated with the emplacement of juvenile/primary volcaniclastic deposits and lava flows to 

(ii) a predominantly erosional stage, associated with the emplacement of sedimentary volcaniclastic 

deposits, and minor biogenic sediments and post-erosional submarine volcanic products. Although 

this broad evolution pattern is generally expected during the formation of oceanic islands globally 

(e.g., Schmidt and Schmincke, 2000; Staudigel and Clague, 2010; Staudigel and Koppers, 2015), the 

lithostratigraphy of the upper Louisville Seamounts offers a novel (direct) insight into the formation 

of high-latitude guyots on a fast-moving plate.  



 

Fig 11. Lithostratigraphic column of Site U1376 on Burton Guyot (modified from Koppers et al., 2012a). Age data are from 

Koppers et al. (2012a, 2012b). 



6.1. Erosional summit platform 
In the absence of summit carbonate platform (i.e., drowned atoll), the flat top of Pacific guyots is 

generally interpreted as the result of erosion at sea level with the development of extended wave 

planation surfaces (Hess, 1946). To date, observations that support this erosional interpretation 

consist essentially of the occurrence of well-rounded clasts collected by dredging or observed during 

submarine dives on summit platforms (e.g., Carsola and Dietz, 1952; Hamilton, 1956; Budinger, 1967; 

Paduan et al., 2009). In this context, the recognition of erosional surfaces in the uppermost 

stratigraphy of Louisville guyots is significant to characterize erosional processes at the end of the 

main volcanic phase of volcanic islands. Erosional surfaces are typical of rocky-shore environments, 

but poor stratigraphic preservation in this type of setting makes them particularly rare in the 

geological record (Felton, 2002; Sheppard, 2007). It is therefore remarkable that 3 of the 4 studied 

IODP drill sites (U1372, U1374 and U1376) expose a clear erosional boundary between a 

constructional effusive and intrusive igneous basement and a cover with shallow-water epiclastic 

deposits (Figs. 9-11, Fig. S10). Stacked lava flows directly below erosional boundaries and shallow-

marine coastal deposits support preservation of a subaerial shield building phase on at least 2 of the 

3 studied guyots. Occurrence of conglomerate and beach/coastal deposits just above the erosional 

boundary is clear evidence for post-shield coastal erosion on top of the volcanoes before 

submergence. Another erosional surface could occur at Site U1373 on top of Unit II, but it was 

probably not sampled due to poor recovery in this part of the seamount. The occurrence of post-shield 

erosional boundaries in the summit of Louisville seamounts is a significant observation that is 

consistent with wave planation of ancient islands. High wave energy conditions at high latitude could 

have facilitated strong marine erosion in the coastal environment of Louisville islands. Wave planation 

is also consistent with the stellate morphology of the seamounts, in which ridges that probably 

corresponds to rift zones are truncated by summit platforms (Figs. 2-4). The absence of paleosol in the 

lava stacks of Louisville seamounts could reflect limited weathering and terrestrial erosion in a high-

latitude cold and/or arid environment. However, debris and hyperconcentrated flow deposits as well 

as shallow-marine conglomerates in the studied sequences do attest for syn-volcanic and post-

volcanic subaerial and coastal erosion of islands. These erosional processes likely contributed to 

shaping the final morphology of the summit of the volcanoes (e.g., Smoot, 1995; Hildenbrand et al., 

2008; Woodroffe, 2014), before final wave planation and drowning. 

Due to evidence for erosion on top of shield lava flows, the pre-erosional size and shape of emergent 

Louisville volcanoes cannot be accurately reconstructed based on available data. However, volatile 

contents in glassy rims of intrusive sheets of Burton and Rigil guyots record emplacement at b170 m 

in the volcanic basement (Nichols et al., 2014; assuming that volcaniclastic piles were at or above sea 

level at the time of intrusion). This suggests that Louisville islands were formed by relatively small 

mergent edifices (possibly b500mabove sea level). A small island size is also consistent with the thin 

(b80 m) stacks of lava flows below interpreted planation surfaces. Interestingly, these stacks are 

thinner than those drilled during ODP Leg 197 on Detroit, Nintoku and Koko guyots along the northern 

part of the Hawaiian-Emperor seamount chain. Although these early Eocene-Cretaceous guyots 

formed in a tectonic and environment setting similar to that of Louisville seamounts (i.e., fast-moving 

plate with limited reef formation at high-latitude), the summit stratigraphy of these Hawaiian-

Emperor guyots down to 350 to 900 mbsf exhibits a ten-fold higher lava/volcaniclastic ratio than that 

at Louisville seamounts, with lava stacks commonly N120 m thick (ODP Leg 197 Shipboard Scientific 

Party, 2002a, 2002b, 2002c, 2002d). In addition, the summit platforms of Louisville guyots range in 

diameter between approximately 5 and 15 km (Figs. 2-4), whereas those of Hawaiian-Emperor guyots 

drilled during Leg 197 have diameters of approximately 40 to 80 km (Ryan et al., 2009). Overall these 

observations suggest that volcanic islands associated with the formation of Louisville guyots were 

much smaller than those of Hawaiian- Emperor guyots. We propose below that this was associated 



with two different modes of emergence of these volcanoes, with more abundant lava-fed deltas and 

the development of more extended shelves around emergent Louisville volcanoes.  

6.2. Constructional volcanic summit platform 
It has been hypothesized that the summit platform of guyots in the Pacific is not primarily shaped by 

erosional processes, but predominantly reflects constructional volcanic processes (Nayudu, 1962; 

Christensen and Gilbert, 1964; Simkin, 1972; Natland, 1976). Although some models date back to the 

early days of modern volcanology and have been disproved by more recent studies (e.g., Christensen 

and Gilbert, 1964; Murtagh and White, 2013), there are several volcanic mechanisms that could 

explain the formation of a mostly flat surface on top of an insular to submarine volcano. A first 

hypothesis is that guyots inherit their flat summit from subaerial effusive mechanisms associated with 

circumferential feeder vent systems similar to those of the modern Galapagos Islands (Simkin, 1972). 

In this scenario, a summit promontory is formed by stacking of lava flowing inward from a ring feeder 

system at the center of the volcanic edifice. However, this hypothesis is in disagreement with the 

stellate morphology of Louisville guyots that suggests that the volcanoes developed with radial rift 

systems (Figs. 2-4). A second, broadly similar hypothesis is that volcanic terraces of large size (up to 

tens of kilometers wide) can develop on top of submarine volcanoes due to lava stacking. In this case, 

superposition of the lavas is controlled by deflation of lava flows with the formation of levees that will 

act as barriers and control the spatial extent of subsequent lava flows (Clague et al., 2000; Geist et al., 

2008). Similar structures could also possibly develop on the top of guyots due to submarine tube-fed 

lava deltas (Chaytor et al., 2007). Although it is not possible to completely rule out extensive lava 

stacking during early (pre-erosional) construction of partly eroded volcanic edifices, it is very unlikely 

that this process played a significant role among Louisville seamounts. Significant lava stacking seems 

at odd with the characteristics and stratigraphic context of lava intervals and individual lava flows 

preserved in the studied drill sites, which are very thin and are interbedded within a predominantly 

volcaniclastic basement with local evidence for shallow-marine environments. A third hypothesis that 

could account for the formation of a summit platform is the collapse and infill of calderas on the 

volcanoes (e.g., Portner et al., 2014). However, the absence of hydrothermal alteration, hydrothermal 

deposits and polymictic breccia in the uppermost volcanic basement of Louisville seamounts (Koppers 

et al., 2012a; this study) are not consistent with this interpretation.  

Another constructional hypothesis, which is surprisingly consistent with lithostratigraphic (volcanic 

and sedimentary) characteristics, palaeo-environmental conditions, and glass volatile contents of the 

studied Louisville seamounts, is that the development of a summit platform could be primarily 

controlled by construction of an emergent volcano with the establishment of extended lava-fed deltas 

in the coastal environment. The observation of hyaloclastite and isolated pillow lobes on top of guyots 

in the NE Pacific and along the Line Islands and Mid-Pacific Mountains nourished the early idea that 

lavas brecciating during their entry in the sea or during development of submarine terraces could 

control the formation of summit platforms (Nayudu, 1962; Natland, 1976). Our lithostratigraphic 

observations and the occurrence of degassed hyaloclastite and glass fragments (Nichols et al., 2014) 

in the predominantly volcaniclastic upper Louisville guyots clearly indicate that the uppermost 

hundred meters of the drilled volcanoes developed in subaerial to shallow-marine environments with 

locally unstable slopes and/or effective quench granulation and autobrecciation of basaltic lavas. As 

commented above, these characteristics and lithostratigraphic relations in the uppermost Louisville 

guyots are typical of lava-fed deltas. Shallow-marine shelves can extend at least several hundreds of 

meters around volcanically active islands in the Atlantic due to progradation of lava flows into the sea 

and formation of lava-fed deltas (e.g., Mitchell et al., 2008; Quartau et al., 2012). Similar deltas can 

also develop locally around the Hawaiian Islands (e.g., Moore et al., 1973; Mattox and Mangan, 1997; 

Tribble, 1991), and have been drilled in the upper part of Hawaiian-Emperor guyots (ODP Leg 197 

Shipboard Scientific Party, 2002a, 2002d). The development of lava-fed deltas is controlled by several  



 

Fig 12. Simplified lithostratigraphy of Louisville cores and models of evolution of Louisville-type and Hawaiian-type guyots. 

Island stage 2 is subdivided into a syn-volcanic stage 2a and post-volcanic stage 2b applicable to Louisville cores. 

interdependent factors such as coastal morphology, water depth, wave energy level, lava viscosity, 

and lava effusion rates (e.g., Watton et al., 2013). Unfortunately many of these factors cannot be 

constrained in the studied guyots, and this limits our ability to determine precisely in which context 

and under which conditions Louisville deltas emplaced. 

An alternate way to assess the role of lava-fed deltas during the formation of Louisville seamounts is 

to compare our results with the lithostratigraphy of volcanoes that emplaced in a similar tectonic 

setting and environment, such as high-latitude Hawaiian-Emperor guyots drilled during ODP Leg 197. 

A significant difference exists between these two classes of volcanoes: with the exception of the 



unusual case of ODP Site 1203 at the junction of two volcanic edifices on Detroit seamount, cores from 

Hawaiian-Emperor guyots do not contain thick lava-fed delta deposits (or other types of volcaniclastic 

deposits). It is possible that cores retrieved from Louisville and Hawaiian-Emperor guyots do not 

record exactly the same stages of formation of volcanic islands, but the larger abundance of lava-fed 

delta deposits in Louisville guyots and their occurrence below shield lava flows documents abundant 

emplacement of lava-fed deltas during the emergence of Louisville volcanoes. At Site U1374 on Rigil 

guyot, lava-fed delta deposits occur on top of undegassed hyaloclastites, and below shallow-marine 

deposits and shield lavas (Fig. 10). Although coastal erosion is commonly associated with the 

emplacement of lava-fed deltas (e.g., Quartau et al., 2015, 2016; Marques et al., 2016), stratigraphic 

relations at Site U1374 supports delta emplacement during long-term growth (not erosion) of an 

active, probably subsiding volcano. Therefore, given the particular volcaniclastic nature and 

stratigraphy of the studied Louisville sequences (compared to Hawaiian-Emperor guyots that formed 

in a similar setting), and the nature of the shelf of some modern volcanic islands, we propose that 

Louisville seamounts exemplify a particular mode of formation of guyots at high latitude on a fast-

moving plate. In this model, the summit platform of a guyot forms predominantly through: (1) a syn-

volcanic, pre-shaping phase during which a small-sized central shield volcano is surrounded by 

relatively extended lava-fed delta shelves, and (2) post-volcanic planation of the shield volcano due to 

subaerial and shallow-marine coastal erosion (Fig. 12). This new model is discussed below with a 

comparison to the well-accepted model of formation  of Hawaiian-type guyots that represent a class 

of volcano much larger than Louisville seamounts and the majority of other island-building volcanoes 

in the Pacific.  

6.3. Model of formation of guyots 
The formation of guyots can be broadly subdivided into 3 main geological stages that reflect 

fundamental changes in environmental (i.e., not necessarily volcanic or geochemical) conditions and 

lithological characteristics associated with the growth and subsidence of volcanoes: (1) a seamount 

stage; (2) an island stage; and (3), a guyot stage. This subdivision is illustrated and correlated to a 

lithostratigraphic synthesis of the studied Louisville sequences in Fig. 12.  

6.3.1. Seamount stage 
The seamount stage reflects growth of the volcano in submarine conditions, before emergence of a 

durable island. This stage can be further subdivided into lower and upper seamount stages. The lower 

seamount stage is associated with eruption in deep water and limited exsolution of magmatic  volatiles 

and magma fragmentation. This stage is comparable to the Loihi Seamount for Hawaiian volcanoes 

(e.g., Clague and Dalrymple, 1987) and probably the majority of small-sized seamounts globally. Its 

main lithological characteristic is the occurrence of abundant pillow lavas with subordinate 

volcaniclastic deposits. To our knowledge the lower seamount stage has only been observed at the 

core of a large volcano during the Hawaiian Drillling Scientific Project 2 in Mauna Kea at a depth of 

nearly 2 km (e.g., Garcia et al., 2007) and in the uplifted basement of La Palma  Island (Staudigel and 

Schmincke, 1984). It is not documented by sequences drilled in the upper 500 m of Louisville 

seamounts.  

The upper seamount stage is associated with lithostratigraphic transition from lava-dominated to 

breccia-dominated volcanic deposits. This transition reflects increase in magmatic degassing during 

shallowing of the volcano, with promotion of magma fragmentation and formation of more abundant 

primary volcaniclastic deposits. In Louisville seamounts this phase has only been recognized at Site 

U1374 on Rigil Guyot (Fig. 12), where an eruption depth of 300–550 m is supported by undegassed 

hyaloclastites (Fig. 10; Nichols et al., 2014).  



The end of the seamount stage is marked by Surtseyan volcanism during breaching of the sea level by 

the seamount. Although this type of activity is generally considered to be associated with the 

formation of volcanic islands, clear primary Surtseyan deposits have not been recovered/preserved in 

the studied Louisville sequences. Missing evidence for Surtseyan activity is in fact common in the 

geological record of oceanic islands (e.g., Buchs et al., 2011; Ramalho et al., 2015). We propose here 

that this apparent lack of evidence is an observational bias resulting from the very small volume of 

Surtseyan volcanic products expected to be emitted at the transition between the upper seamount 

and island stages. Surtseyan activity, although being temporally and spatially very limited, marks a 

fundamental moment in the evolution of a guyot because it corresponds to the establishment of an 

embryonic island and the beginning of a very distinct, subaerial regime of volcanism with the 

development of a shield volcano.  

From a lithostratigraphic perspective, the seamount stage of Louisville guyots is anticipated to closely 

resemble that of larger Hawaiian volcanoes (Fig. 12). However, geochemical data from Louisville 

indicate that basalts and hyaloclastites from the upper seamount and island stages have alkaline to 

transitional tholeiitic affinities (Hawkins et al., 1987; Beier et al., 2011; Koppers et al., 2012a; Nichols 

et al., 2014; Vanderkluysen et al., 2014; Dorais, 2015). This contrasts with the upper seamount and 

island stages of Hawaiian volcanoes that have a predominant tholeiitic composition (e.g., Feigenson 

et al., 2003; Rhodes and Vollinger, 2004). This clearly indicates that fundamental petrological 

differences accompany the formation of islands in Louisville-type and Hawaiian-type volcanoes. 

Significantly, this cannot be accounted for without modification of the traditional model of oceanic 

island formation. 

6.3.2. Island stage 
The beginning of the island stage of guyots is associated with initiation of a durable subaerial shield 

volcano. Establishment of the island occurs only when the rate of volcanic growth supersedes that of 

shoreline retreat. Island formation is in fact intrinsically controlled by a complex, dynamic interplay 

between effusive volcanism at the top of the volcano, inflation of the volcano by subvolcanic 

intrusions, coastal and subaerial erosion, possible flank collapses, sea level change and subsidence of 

the volcano (e.g., as well documented in the Atlantic Ocean setting, Mitchell et al., 2008; Quartau et 

al., 2012, 2014; Ramalho et al., 2013, 2015). We introduce here the idea that two main types of insular 

volcanoes (and ultimately guyots) can develop on a fast-moving plate depending on the efficiency of 

constructional magmatic processes to overcome erosional and/or subsidence effects (Fig. 12).  

Hawaiian-type volcanoes are associated with very efficient magmatic growth relative to erosional 

and/or subsidence effects, which ultimately results in a large, several km-thick shield volcano on top 

of seamount sequences (e.g., ODP Leg 197 Shipboard Scientific Party, 2002a, 2002b, 2002c, 2002d; 

Garcia et al., 2007). This type of island forms a large rocky promontory surrounded by a submarine 

volcaniclastic apron of primary volcanic and sedimentary deposits, as commonly depicted in the 

archetypal model of formation of Hawaiian Islands (e.g., Staudigel and Clague, 2010). Syn- and post-

volcanic flank collapses can contribute to significant reduction of the size of the volcanic edifice 

(Moore et al., 1989). Formation of a similar (albeit not identical) type of insular volcano could occur 

with both lower magmatic growth and subsidence. Such conditions can notably be met by hotspot 

volcanoes formed on slow-moving (Atlantic-like) plates, e.g., the Canary Islands (Carracedo, 1999).  

In contrast, our model hypothesizes that the island stage of Louisville-type guyots is characterized by 

lower magmatic growth relative to subsidence and/or erosion than Hawaiian-type volcanoes. Two 

main arguments support this idea: (1) alkaline magmatism such as that observed in the late seamount 

and island stages of Louisville seamounts is generally indicative of incipient magmatic  waning in large 

intraplate ocean volcanoes on a fast-moving plate (e.g., Clague and Dalrymple, 1987; Staudigel and 

Clague, 2010; Staudigel and Koppers, 2015); and (2) Louisville islands were most likely smaller than 



those of the Hawaiian-Emperor guyots that formed in a similar tectonic and environment setting (see 

discussion above). Lower magmatic growth in the island stage of Louisville seamount means that the 

effects of erosion and/or subsidence were relatively stronger compared to Hawaiian-type volcanoes, 

and this could have triggered high frequency coastal retreats and the formation of ephemeral shallow-

marine erosional platforms (e.g., Ramalho et al., 2013) during the early stages of island formation. In 

our model, such platforms are considered to have helped promote the development of shallow-

marine lava-fed deltas and, ultimately, the establishment of relatively extended constructional 

volcaniclastic shelves around a small emergent shield volcano  (Fig. 12). Ephemeral shallow-marine 

erosional platforms are expected to be difficult to recognize in the lithostratigraphic record. In the 

studied sequences, they could be associated with recurrent volcanoclastic deposits that include 

reworked shallow-marine bioclasts and/or oxidized/rounded basalt clasts in the basement at Sites 

U1374 and U1376. Sequences dominated by degassed,  shallow-marine to subaerial juvenile 

volcaniclastic deposits and lava flows can be used to define a syn-volcanic sub-stage during the island 

stage of Louisville-type guyots (stage 2a in Fig. 12). Stratigraphic relations observed between lava-fed 

delta deposits, shallow-marine conglomerates, and lava flows at Sites U1372 and U1374 (Figs. 8 and 

10) suggest general progradation of the shield volcano on top of deltas and coastal deposits during 

this stage, before development of major, post-shield wave planation surfaces. In contrast, Sites U1373 

and U1376 suggest that protracted phases  of coastal retreat could have locally occurred before the 

end of the shield volcanic phase (Figs. 9 and 11). These contrasting lithostratigraphic patterns are best 

accounted for by a dynamic syn-volcanic coastal environment controlled by closely competing 

constructional and destructive processes as proposed here for a fast-moving plate setting, and similar 

to models of island formation in a slow-moving plate setting (e.g. Ramalho et al., 2013).  

The end of the island stage in both Hawaiian- and Lousiville-type guyots is associated with increased 

erosional processes after magmatic cessation. Very tall (several km-high) subaerial shield volcanoes in 

Hawaiian-Type islands means that subaerial erosion and wave planation will probably be the dominant 

processes controlling the formation of the summit guyot platform in a high-latitude environment. In 

comparison, subsiding small shield volcanoes surrounded by submarine volcanic shelves at Louisville-

type islands will undergo more limited erosion and post-volcanic planation before submergence. Post-

volcanic erosional processes are associated in the lithostratigraphic record with distinctive shallow-

marine conglomerates and talus deposits, which can be used to define a post-volcanic sub-stage 

during the island stage of Louisville-type (and probably also Hawaiian-type) guyots (stage 2b in Fig. 

12). 

Although beyond the main scope of this study on the formation of high-latitude guyots, an important 

aspect of the end of the island stage is the development of reefs/organic frameworks on the subsiding 

volcanic basement. Thick shallow-marine carbonate rocks at the top of a guyot could be used to define 

a final reef-building phase at the end of the island stage. Such a stage has not been documented on 

drilled Louisville seamounts and seems to be restricted to Guyot 168.0°W along Louisville seamount 

chain (Lonsdale, 1988; Ebuna, 2011). In favourable (e.g. tropical) environmental conditions reef-

building organisms can form atolls and thick promontories that will have a predominant control on 

the final shape of the summit platform of guyots (Winterer et al., 1993). Coralline red algal framework 

in Subunit IIA at Site U1376 (Fig. 11) represents a relatively thin and probably local deposit that is 

unlikely to be associated with the development of an extended biogenic platform on top of Burton 

Guyot. Reef development can affect erosion during syn-volcanic and post-volcanic island stages by 

promoting dissipation of the swell and the energy of waves along the coastal environment (e.g., 

Ramalho et al., 2013). Limited organic framework development in the high-latitude environment could 

therefore have been another factor controlling the budget of magmatism growth versus erosion of 

the studied Louisville guyots. However, reliably assessing the mode and extent of reef/organic 

framework development and its link to environmentally-controlled coastal erosional processes would 



require drilling/sampling of the sedimentary cover and volcanic basement of a larger population of 

Louisville-type and Hawaiian-type guyots that formed in a large range of latitudes.  

6.3.3. Guyot stage 
The guyot stage starts after complete drowning of the volcanic island or atoll. This stage is associated 

with pelagic biogenic and detrital sedimentary deposits and formation of ferromanganese crusts. In 

Louisville-type seamounts a phase of post-erosional (rejuvenated) volcanism is well documented by 

juvenile volcaniclastic deposits (this study, Sites U1374 and U1376), which are emplaced at a depth of 

several hundred of meters and are characterized by strongly alkaline affinities (Nichols et al., 2014). 

Hawaiian volcanoes differ from these observations in that they lack post-erosional rejuvenated 

volcanism after submergence of the island (e.g., Clague and Dalrymple, 1987). However, seamount 

chains in the Pacific document a complicated history of magmatic rejuvenation with sometimes 

multiple cycles of renewed activity (e.g., Natland and Winterer, 2005). Although the exact causes for 

this magmatism remain unclear, new constraints from Louisville seamounts and their comparison with 

Hawaiian volcanoes confirm that considerable variability can occur regarding the timing and, possibly, 

origins of late stage volcanic activity along seamount chains. 

7. CONCLUSIONS 
The lithostratigraphy of the summit of Canopus, Rigil and Burton guyots of the Louisville seamount 

chain offers a novel insight into the formation of volcanic islands and guyots. The nature and 

stratigraphic distribution of 13 sedimentary and volcanic lithofacies reveal fundamental 

environmental and volcanic differences in the formation of high-latitude Louisville seamounts and 

Hawaiian-Emperor guyots that formed in similar tectonic and environmental conditions. This suggests 

that Louisville guyots represent a new class of island-building volcano in a fast-moving plate context, 

in which the island stage is associated with the formation of a smaller island composed of a central 

shield volcano surrounded by relatively large shallow-marine shelves with lava-fed deltas. We propose 

that the difference between Louisville-type volcanoes and Hawaiian-type volcanoes reflects dynamic 

competition between magmatic growth, erosion and/or subsidence during the island stage of these 

volcanoes, with a lower ratio of magmatic growth versus erosion and/or subsidence at Louisville-type 

volcanoes. This model is in good agreement with existing lithological and geochemical constraints 

from Louisville and the Hawaiian-Emperor seamount chains as well as surficial observations of 

numerous other guyots and volcanic islands in the Pacific and Atlantic Oceans. Considering the 

unusually large magma production at the Hawaii hotspot, Louisville-type volcanoes could therefore 

represent the most common mode of formation of guyots in the Pacific. Recognition of post-shield 

erosional boundaries at Louisville is consistent with formation of the summit platform of high-latitude 

guyots by post-volcanic wave planation. However, new lithostratigraphic constraints suggests that, on 

small volcanic islands formed in a fast-moving plate setting, a significant fraction of the summit 

morphology could be inherited from the formation of shelves with lava-fed deltas. Because our 

definition of Louisville-type volcanoes is based on lithostratigraphic criteria, the validity of our model 

could be relatively easily tested through additional drilling of guyots and/or investigation of circum-

Pacific accreted oceanic islands (e.g., Buchs et al., 2011). In addition, determining the nature of 

volcaniclastic aprons around Pacific guyots could help better characterize the effects of constructional 

vs erosional processes during the formation of a summit platform. Significantly, our study shows that 

the evolution of island building volcanoes is best described in a framework reflecting changes of 

environmental conditions, e.g. using following stages: (i) early seamount; (ii) late seamount; (iii) island; 

and (iv) guyot. New IODP constraints from Louisville seamounts clearly show that geochemical criteria 

(e.g. alkaline vs tholeiitic magmatism) can be misleading in terms of volcanic and geological evolution 

of volcanic islands.  



Supplementary data to this article can be found online at 
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