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ABSTRACT Software vulnerabilities are the root causes of various security risks. Once a vulnerability is 
exploited by malicious attacks, it will greatly compromise the safety of the system, and may even cause 
catastrophic losses. Hence automatic classification methods are desirable to effectively manage the 
vulnerability in software, improve the security performance of the system and reduce the risk of the system 
being attacked and damaged. In this paper, a new automatic vulnerability classification model (TFI-DNN) 
has been proposed. The model is built upon term frequency- inverse document frequency (TF-IDF), 
information gain (IG) and deep neural network (DNN): the TF-IDF is used to calculate the frequency and 
weight of each word from vulnerability description; the IG is used for feature selection to obtain an optimal 
set of feature word; and the DNN neural network model is used to construct an automatic vulnerability 
classifier to achieve effective vulnerability classification. The National Vulnerability Database (NVD) of 
the United States has been used to validate the effectiveness of the proposed model. Compared to SVM, 
Naive Bayes and KNN, the TFI-DNN model has achieved better performance in multi-dimensional 
evaluation indexes including accuracy, recall rate, precision and F1-score. 

INDEX TERMS Deep neural network, information gain, software security, vulnerability classification

I. INTRODUCTION 

With the rapid development of information technology, the 
impacts brought to industries by application of the Internet 
and computers are twofold. They bring convenience but also 
huge risks and hidden dangers. Recently, with the 
improvement of the digitalization level of various industries, 
information security issues have become increasingly 
prominent. Vulnerabilities are defined as software and 
hardware defects of the system being illegally exploitable by 
unauthorized personnel. Once the vulnerability of 
information system is exploited by malicious attack, the 
security of information system will be at great risk and may 
cause inestimable consequences. For example, in 2017, 
hackers exploited Windows system vulnerabilities to expose 
100,000 organizations worldwide to Bitcoin ransomware. In 
the same year, Microsoft released a total of 372 Office 
vulnerability patches. Hackers can use the office 
vulnerabilities to conduct Advanced Persistent Threat (APT) 

attacks, spread botnets, ransomware and so on. In recent 
years, the number and variety of vulnerabilities have 
gradually increased, so the management and analysis of 
software vulnerabilities has become more and more 
important.  

If the vulnerability can be classified and managed 
effectively, it can not only improve the efficiency of 
vulnerability recovery and management, but also reduce the 
risk of system being attacked and damaged, which is vitally 
important for the security performance of the system. As 
software security vulnerabilities play an important role in 
cyber security attacks, more and more researches on 
vulnerability classification are conducted by relevant security 
researchers. The earlier vulnerability classification method 
RISOS [1], which is aimed at the operating system of the 
computer, mainly divides the operating system vulnerabilities 
into seven categories from the perspective of attack, and 
describes how to exploit the vulnerabilities instead of 
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triggering these vulnerabilities’ condition. The PA 
vulnerability classification method in [2] not only studied the 
vulnerabilities of the operating system, but also classified the 
vulnerabilities existing in the application. Andy Gray 
vulnerability classification method [3] proposed a 
vulnerability classification system consisting of ten 
categories according to the different analysis needs of the 
vulnerability. However, as the complexity of vulnerabilities 
increases, the limitations of traditional artificial vulnerability 
classification methods become more and more obvious. 
Therefore, researchers pay more attention to automatic 
classification of vulnerabilities. 

A large number of machine learning methods have been 
recently reported in the field of text classification [4]. 
Classifying them by vulnerability description is also a kind of 
text classification. Therefore, the problem of automatic 
classification of vulnerabilities can also be solved using 
machine learning methods. Davari M et al. proposed an 
automatic vulnerability classification framework based on 
conditions that activate vulnerabilities [5], different machine 
learning techniques (Random Forest, C4.5 Decision Tree, 
Logistic Regression, and Naive Bayes) are employed to 
construct a classifier with the highest F-measure. The 580 
software security flaws of the Firefox project were analyzed 
through experiments to evaluate the effectiveness of the 
classification. The SVM classification method based on LDA 
model [6] is applied in the domain of vulnerability 
classification by Bo Shuai et al. The SVM based on the topic 
model can make full use of the number of distributed 
vulnerabilities for classification. The experiment results 
indicated that SVM has achieved good results in 
vulnerability classification. Dumidu Wijayasekara et al. 
tested the Naïve Bayes classifier by using textual information 
from the error description [7]. The analysis illustrates the 
feasibility of the Naïve Bayes classifier to classify textual 
information based on the vulnerability description. Sarang 
Na et al. proposed a classification method for classifying 
CVE entries that could not provide enough information into 
vulnerability categories using the Naïve Bayes classifier [8]. 
Marian Gawron et al. applied Naive Bayes algorithm and 
simplify artificial neural network algorithm to vulnerability 
classification [9], and made comparison on the same data set. 
The experimental results showed that the artificial neural 
network algorithm was superior to Naive Bayes algorithm in 
vulnerability classification. A data-driven approach to 
machine learning for vulnerability detection was proposed by 
Harer J A et al. [10]. They also compare the application of 
deep neural network models with more traditional models 
such as random forests, and find that the best performance 
comes from combining the features of deep model learning 
with tree-based models. Finally, the highest performance 
model proposed in the paper achieves an area under the 
precision-recall curve of 0.49 and an area under the ROC 
curve of 0.87. It can be seen that a large number of machine 

learning algorithms have been well applied in the field of 
vulnerability classification. 

Although these machine learning classification algorithms 
have achieved promising results in many fields, due to the 
large amount of vulnerability data and short description, the 
generated word vector space presents the characteristics of 
high dimension and sparse. These machine learning 
algorithms are not very effective in dealing with high and 
sparse problems. At the same time, they ignore specific 
vulnerability information and the classification accuracy is 
not high. However, in recent years, deep learning has been 
applied in many fields and has achieved success [11], such as 
the field of speech and image recognition [12,13], the error 
rate in speech recognition is reduced by 20%-30% [14,15], 
and the error rate in the ImageNet evaluation task is reduced 
by 26%-15% [16]. For face image classification based on 
GoogLeNet network [17], the classification of age and 
gender is achieved with high precision. Deep learning also 
has a significant impact in the field of natural language 
[18,19]. Hwiyeol et al. studied the classification problem in 
the field of natural language, and applied convolutional 
neural networks (CNN) and recurrent neural networks (RNN) 
to the field of large-scale text classification and achieved 
success [20]. Aziguli W et al. proposed a novel text classifier 
using DNN model [21] to improve the computational 
performance of processing large text data with mixed outliers. 
Wu F et al. proposed a deep learning method for 
vulnerability detection [22], namely, convolution neural 
network (CNN), long short term memory (LSTM) and 
convolution neural network-long short term memory (CNN-
LSTM), and the vulnerability prediction accuracy reached 
83.6%, which is superior to the traditional method. Li Z et al. 
designed and implemented a deep learning-based 
vulnerability detection system [23], which alleviated the 
cumbersome and subjective tasks of human experts manually 
defining features. Therefore, deep learning can also be 
applied to the field of software vulnerability detection and 
achieved good results. 

Therefore, in order to better deal with the high and sparse 
word vector space and take advantage of the automatic 
feature extraction by deep learning, this paper proposes an 
automatic vulnerability classification model TFI-DNN based 
on term frequency-reverse document frequency (TF-IDF), 
information gain (IG) and deep neural network (DNN). In the 
model, we first use TF-IDF-IG (TFI) algorithm to extract the 
feature of the description text and reduce the dimension of 
the generated high-dimensional word vector space, then 
construct a DNN neural network model based on deep 
learning. The TFI-DNN model was trained and tested using 
vulnerability data from the National Vulnerability Database 
(NVD). The test results show that the automatic vulnerability 
classification model in this paper effectively improves the 
performance of vulnerability classification. 

The rest of this paper is arranged as follows. Section 2 
introduces the definition of relevant algorithms. In section 3, 
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the implementation details of our model are described. 
Experiment dataset and results are discussed in Section 4 
with comparative analysis. Section 5 outlines the conclusions 
of this paper and potential future research. 

II.  RELATED DEFINITION 

The automatic classification model of vulnerability (TFI-
DNN) is constructed in this paper. The relevant definitions 
are as follows. 

A. TF – IDF 

TF-IDF is a common weighted technology based on 
statistical methods [24]. Assume there are a set of files and 
each file contains a number of words. We define the 
importance of the word i in file j as follows. 

 tf�� =
��,�

∑ ��,��
                                                (1) 

Where both i and j  are positive integers, n�,�  denotes the 
frequency of word i in the file j  

The formula for IDF is as follows. 

 idf� = log
|�|

|{�:��∈��}|
                                         (2) 

Where |F| represents the total number of files in the 
corpus, f� is the jth file, and |{j: t� ∈ f�}| represents the number 
of files containing the word t� . 

The formula for TF-IDF is as follows. 
TF − IDF = tf�� ∗  idf�                                (3) 

TF-IDF is used to evaluate the importance of a word to a 
document in the document set or in a corpus. The importance 
of a word increases proportionally with the number of times 
it appears in the file, but it also decreases inversely with the 
frequency it appears in the corpus. 

B. INFORMATION GAIN (IG) 

IG [25] refers to that, if a feature X in class Y is known, the 
information uncertainty of class Y  will decrease, and the 
reduced uncertainty degree reflects the importance of feature 
X to class Y. Set the training data set to D, |D| indicates the 
number of samples in D. Suppose there are K classes C�, k 
=1, 2,…, K，|C�| is the number of samples belonging to class 
C� ,  ∑ |C�| = |D|�

���� . If feature A has n different 
values  {a�, a�, … , a�} , D will be divided into n subsets 
according to the values in feature A, denoted as D= 
(  D�, D�, …，D� ), where |D�|  is the number of samples 
in  D�, ∑ |D�|

�
��� = |D|. The set of samples belonging to class 

 C�  in  D�  is  D �� ,  D�� = D� ∩ D� , |D��|  is the number of 
samples of D��. 

The empirical entropy H (D) of data set D is calculated as 
follows. 

�(�) = − ∑
|��|

|�|
�
���                                   (4) 

The empirical conditional entropy H (D|A) of feature A for 
dataset D is calculated as follows. 

�(�|�) = − ∑
|��|

|�|

�
��� ∑

|���|

|��|
�
��� log�

|���|

|��|
             (5) 

The information gain calculation formula for each feature 
is as follows. 

�(�, �) = �(�) − �(�|�)                        (6) 
According to the feature selection method of the 

information gain criterion, the information gain of each 
feature is calculated, and the features with larger information 
gain value are selected. 

C. FORWARD PROPAGATION ALGORITHM 

The forward propagation algorithm uses a number of weight 
coefficient matrices W, the offset vector b  and the input 
value vector x to perform a series of linear operations and 
activation operations, starting from the input layer to the 
output layer to get the final output. The calculation formula is 
as follows. 

�� = �(�� ) = �(������ + ��                      (7) 
Where W is the matrix corresponding to the hidden layer 

and the output layer, b�  is the offset vector, x is the input 
value vector, l is the number of layers of the neural network, 
and x� is the output result. 

D. ACTIVATION FUNCTION 

softmax and tanh are commonly used activation functions in 
multiple classification problems，they can map the output of 
multiple neurons to the range of [0,1]. The calculation 
formulas are as follows. 

softmax(y�) =
���

∑ ����
���

                            (8) 

tanh(��) =
�������

�������
                                  (9) 

Where, y� represents output of the neural network. 

E. CROSS ENTROPY COST FUNCTION 

Cross entropy describes the distance between two probability 
distributions, i.e. the distance between the actual output and 
the expected output. The calculation formula is as follows. 

� = −
�

�
∑ |� ln(�) + (1 − �) ln(1 − �) |�        (10) 

Where, y is the desired output, a is the actual output of the 
neuron and  n is the number of categories. 

The smaller the value of the cross entropy, the closer the 
two probability distributions are. It is a widely used loss 
function in the classification problem. 

F. BATCH GRADIENT DESCENT ALGORITHM (BGD) 

The gradient descent algorithm is used on all the parameters 
to make the loss function reach a smaller value, and finally 
all the parameters of the model with the minimum loss are 
obtained. The calculation formula is as follows. 

��: = �� − � ∑ (ℎ� ���
(�)

, ��
(�)

, … ��
(�)

� − ��)�
��� ��

(�)
  (11) 

Where α  and θ�  represent the learning rate and the i th 
parameter,  θ  represents all parameters, m is the sample 
number, y�is the actual category and h� �x�

(�)
, x�

(�)
, … x�

(�)
� is 

the output of sample j on  θ.  x�
(�)

is ith feature of sample j. 

III. THE TFI-DNN ALGORITHM 

The vulnerability automatic classification model TFI-DNN is 
mainly composed of TFI and DNN. The original 
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vulnerability data is preprocessed first, then TFI is used to 
extract the features of the vulnerability description text and 
reduce the dimensionality of the generated higher-
dimensional word vector space, and then the DNN is 
constructed to realize the automatic training and 
classification of the vulnerability. TFI-DNN algorithm is 
shown in Figure 1. 

 

FIGURE 1. Framework of the Method. 

A. FEATURE SELECTION USING TFI 

TFI is mainly used to extract feature word set. The steps are 
as follows. 
Input: word list (word_list) formed by word segmentation, lemmatiation, 
and stop word filtering. 
Output: feature word set (feature_words).  
1) Traversing each word in the word_list. 
2)Word frequency statistics for word_list, stored in the doc_frequency list. 
3) Traversing the word frequency list doc_frequency. 
4) Calculate the TF value of each word according to (1) and store it in the 
word_tf dictionary. 
5) Calculate the IDF value of each word according to (2) and store it in the 
word_idf dictionary. 
6) Calculate the TF-IDF value of each word according to (3) and store it in 
the word_tf_idf dictionary. 
7) The word set is sorted in descending according to the TF-IDF value. 
8) Select the first n words as an important feature set. 
9) Save important words in the feature list (features_vocabSet). 
10) Traverse features_vocabSet, divide features_vocabSet and store the 
subset into the subDataSet. 
11) Calculate probability of subDataSet. 
12) Calculate the empirical conditional entropy of each word according to 
(4) and (5) and store it in newEntropy. 
13) Calculate the IG value of each word according to (6). 
14) Save each word and the corresponding IG value in the dictionary. 
15) The word set is sorted descending by IG value. 
16) Select the first m words as features and store them in the 
feature_words. 
17) Return feature_words. 

B. OPTIMIZATIONS USING DNN 

DNN consists of one input layer, multiple hidden layers and 
one output layer, whose input is the feature vector of instance 
and output is the category of instance. It mainly includes two 
propagation processes, forward propagation and back 
propagation. The propagation process is as follows. 
Input: training set after vectorization. 
Output: coefficient matrix W and offset vector b of DNN. 
1) Input training data set x, initialize weight coefficient matrix W and 
offset vector b. 
2) Perform a linear calculation for each neuron xi, the calculation formula 
is z = ∑ W�

�
��� x� + b, use tanh for the activation operation, then calculate 

the final output result layer by layer according to (7). The result output 

is a� = σ�z�� = σ(W�a��� + b�). 
3) Softmax is used to assign probabilities to different objects for the final 
output, and the output of multiple neurons is mapped to the range of [0,1] . 
4) The cross entropy is selected as the loss function to measure the loss 
between the output calculated by the training sample and the actual 
training sample output. 
5) Select the batch gradient descent algorithm as the optimization 
algorithm, minimize the loss function, set the batch size, iteration 
threshold and learning rate α(0 < α ≤ 1), the DNN model was trained 
iteratively. 
6) Finally, output optimized DNN model parameters W and b. 

IV. EXPERIMENTAL ENVIRONMENT AND DATA SET 

A. ENVIRONMENT 

The experiment was conducted on PC with Intel(R) 
Core(TM) i5-4460 processor, 3.20 GHz and 8.00 GB 
memory, running Windows 7 operating system. 
Programming uses Pycharm 2017 on Anaconda3 version and 
the TensorFlow framework. 

B. DATA SET OF EXPERIMENT 

In order to verify the effectiveness, we use the internationally 
recognized National Vulnerability Database (NVD) [26] as 
experimental data. The source file of this dataset is a series of 
XML files, which contains comprehensive information about 
the vulnerability, such as CVE number, vulnerability release 
date, CVSS_version, CVSS_score, CVSS_vector, 
vulnerability text description, and so on. The annual 
vulnerability amount (2000-2016) of NVD vulnerability 
database is shown in Figure 2, and the total number of 
vulnerability records is 56,838. 

 



2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2900462, IEEE Access

 

VOLUME XX, 2017 9 

FIGURE 2. Annual Vulnerability of NVD (2000-2016). 

 

By the end of 2016, the NVD vulnerability database 
contained 23 vulnerability categories and 1 “unknown” 
vulnerability category. The number of vulnerabilities records 
in each category is highly variable. For example, there are 
11284 vulnerabilities records in the "unknown" category 
whist there are only 5 vulnerabilities records in the 
"environment conditions" category. As the "unknown" 
category of vulnerability has no value for the model training, 
the vulnerability in "unknown" category is excluded from the 
experiment. The other 23 vulnerability categories with 
clearly identified categories are included. The distribution of 
vulnerability records in each category is shown in Figure 3. 

 

FIGURE 3. Vulnerability Distribution of different category. 

 
The required vulnerability information are extracted from 

the XML vulnerability files using program codes written in 
Python, including CVE number, vulnerability text 
description, and vulnerability category. All the text 
information of vulnerabilities from 2000 to 2016 is collected 
for statistics, 10,000 of them were selected as the training set, 
and 1,000 of them were used as the test set. Samples of the 
data are shown in Table I. 

TABLE I 
EXAMPLES OF DATASETS 

CVE_ID Description Vulnerability category 

CVE-2016-9997 

SPIP 3.1.x suffers from a 
Reflected Cross Site 
Scripting Vulnerability 

in involving the … 

XSS 

CVE-2016-9993 

IBM Kenexa LCMS 
Premier on Cloud 9.0, 
and 10.0.0 is vulnerable 
to SQL injection. A 
remote attacker could 
send specially-crafted 
SQL statements, which 

SQL Injection 

could allow the attacker 
to view, add, modify or 
delete information in the 
back-end database. IBM 
Reference #: 1992067. 

… … … 

V. EXPERIMENTAL PROCEDURE 

A. DATA PREPROCESSING 

1) WORD SEGMENTATION 

Word segmentation refers to the cutting of coherent 
vulnerability text information into one word, which 
transforms the entire vulnerability text information into the 
smallest semantic unit that can be counted by statistics. This 
is the first and most important step in the process of 
vulnerability text preprocessing. For the text of the 
vulnerability described in English, the word segmentation is 
very simple. You only need to identify the entire 
vulnerability description by dividing the space or punctuation 
between the texts. 

For example, the vulnerability text numbered CVE-2016-
9990 is described as: "IBM iNotes 8.5 and 9.0 is vulnerable 
to cross-site scripting. This vulnerability allows users …". 
After the word segmentation, you can get the word set as 
["IBM", "iNotes", "8.5", "and", "9.0", "is", "vulnerable", "to", 
"cross", "-" , "site", "scripting", ".", "This", "vulnerability", 
"allows", "users",…]. 

2) LEMMATIZATION 

Lemmatization refers to the transformation of non-root form 
into root form in the word set, and that is the verb in English 
description changing according to the person into the verb 
prototype. Convert the plural form of a noun to the singular 
form, convert gerund form to verb prototype, etc. From the 
perspective of data mining, these words should belong to the 
same category of semantically similar words. For example, 
"attack", "attacking", and "attacked" can be divided into the 
same word, which can be expressed as "attack" in the root 
form. 

Therefore, the set of words in the vulnerability text 
numbered CVE-2016-9990 is converted by lemmatization: 
["IBM", "iNote", "8.5", "and", "9.0", "is", "vulnerable", "to", 
"cross", "-" , "site", "scripting", ".", "This", "vulnerability", 
"allow", "user",…]. It can be seen that the following words in 
the original description information, "iNotes", "allows", 
"users" are restored to "iNote", "allow", "user", etc.  

3) STOP WORD FILTERING 

Stop word filtering refers to words that appear frequently in 
text and contribute little or no contribution to the content or 
classification of text information, it includes both public stop 
words and professional stop words. We can download public 
stop word list from the Internet[27], such as common 
prepositions, articles, auxiliary words, modal verbs, pronouns, 
and conjunctions, etc. In addition, some words such as 
"information", "security", and "vulnerability"  are 
meaningless to the classification of vulnerability，so these 
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words should be filtered out. In this paper, each word of the 
vulnerability text is arranged in descending order by word 
frequency, and we set a threshold. Based on our experience, 
we select words higher than the threshold value and 
meaningless for classification of vulnerabilities as stop word 
and add them into the stop word list to form a professional 
stop word list.  

B. FEATURE EXTRACTION 

The candidate feature set composed of 17,935 words was 
obtained from all experimental data through the above data 
preprocessing operation. First, the weight of each word in the 
vulnerability candidate feature set is calculated by TF-IDF, 
and the results are arranged in descending order. The number 
of feature words of the extracted feature subset is 1024. Part 
of the arrangement is shown in Table II. 

TABLE II 
FEATURE WORDS BASED ON TF-IDF 

Feature overflow SQL XSS XSS traversal … 

TF-IDF 0.0215 0.0206 0.0198 0.0110 0.0109 … 

According to the 1024 words selected in 1), IG is used to 
calculate the information gain value of each word in the word 
set, and the results are arranged in descending order. The 
number of feature words extracted from the feature subset is 
900. Part of the arrangement is shown in Table III. 

TABLE III 
FEATURE WORDS BASED ON IG 

Feature overflow traversal SQL XSS buffer … 

IG 0.6110 0.5168 0.4572 0.4225 0.3039 … 

C. THE WORD VECTOR SPACE ESTABLISHMENT  

In the application of this paper, each vulnerability description 
is expressed as an m-dimensional vector (m is the number of 
feature words in the feature word set) [28]. After all the 
vulnerability text samples are vectorized through the m-
dimensional space, the vector representation of the 
vulnerability is established. Each vulnerability sample can be 
regarded as a point in the high-dimensional space, where the 
representation of one vulnerability sample v� is v� = {t�, t�,
… , t�}. Among this formula, m is the number of feature 
words, which is consistent with the dimension of the vector 
space of vulnerability. 

D. DNN MODEL CONSTRUCTION 

After the vectorization representation of vulnerability 
description, the vulnerability text data described by natural 
language is transformed into the data structure that can be 
recognized by the machine and expressed through statistical 
learning. We use the deep learning framework TensorFlow to 
construct the DNN model.  Various configuration parameters 
of the DNN model were tested, including the number of 
hidden layers, the number of neurons in each layer, the 
learning rate of the neural network and the number of 
iterations. Finally, the parameters are set as empirical values 
from experiment. The DNN model is shown in Figure 4. 

 

 

FIGURE 4. The Model of DNN. 

 

The parameters of the DNN model are set as follows. 
1) Initialize the weight of DNN model with normal 
distribution function with standard deviation of 0.1. 
2) The offset values of the input layer and hidden layer are 
set to 0.1. 
3) The forward propagation of the input layer and hidden 
layer uses tanh as the activation function, while the output 
layer uses softmax as the activation function. 
4) Use the dropout function in TensorFlow to prevent 
overfitting. 
5) The cross entropy function is used as the loss function to 
measure the loss between the calculated output of the training 
sample and the actual output of the training sample. 
6) Optimize the DNN model using a batch gradient descent 
algorithm with a batch size set to 100 and a learning rate set 
to 0.2. 
7) The number of iterations of DNN model training is 20. 
Next, the training sample of the NVD data set is used to train 
the TFI-DNN vulnerability automatic classification model, 
and then the vulnerability test set is used to evaluate the 
model performance. 

VI.  RESULT AND COMPARISONS  

A. EVALUATION INDEX 

In order to evaluate the performance of automatic 
classification model (TFI-DNN) in this paper and to compare 
the performance between different algorithms, unified 
evaluation criteria are needed. According to the general 
method of data mining theory, the most widely used 
classification method for multi-class problem evaluation 
model is multi-class confusion matrix. As shown in Table IV. 

TABLE IV 
MULTI-CLASS CONFUSION MATRIX 

True category 
Forecast category  

Buffer Overflow Configuration Errors … 

Buffer 
Overflow 

True Positive(���) False Negative(���) … 

Configuration 
Errors 

False Positive(���) True Negative(���) … 

… … … … 

Where i  represents a category of a vulnerability. 
According to the confusion matrix, the accuracy, recall rate, 
precision rate and F1-score are used as evaluation indexes of 
TFI-DNN model. The calculation formulas of each index are 
as follows. 
Accuracy (�)  indicates the ratio of the number of test 
instances correctly classified by vulnerability �  to the total 
number of test instances. The calculation formula is below. 

Accuracy(�) =
��� + ���

��� + ��� + ��� + ���
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Recall(�) indicates the ratio of the number of the positive 
examples correctly classified by vulnerability � to the number 
of actual positive examples. The calculation formula is below. 

Recall(i) =
TP�

TP� + FN�

 

Precision(�) represents the ratio of the number of positive 
examples correctly classified by vulnerability � to the number 
of instances classified as positive examples. The calculation 
formula is below. 

Precision(i) =
TP�

TP� + FP�

 

F1-score(�) combines the recall rate and the precision rate. 
The calculation formula is below. 

F1 − score(i) =
2 ∗ Recall(i) ∗ Precision(i)

Recall(i) + Precision(i)
 

The value of F1-score is between 0 and 1, and the higher 
the value, the better the performance of the vulnerability 
classification model. 

B. COMPARISONS BETWEEM TF-DIF-DNN AND TFI-
DNN 

In order to evaluate the effect of TFI for feature word 
selection, we compare it with the method of TF-IDF without 
IG, the same configured DNN model was iterated 20 times. 
The evaluation results of the vulnerability classification in 
the multidimensional evaluation index are shown in Figure 5. 

 

FIGURE 5. The Value of Evaluation Indexes by Different Methods. 

Figure 5 shows that the DNN model based on TFI at the 
same number of iterations is superior to the DNN model 
based on TF-IDF in accuracy, recall rate, precision and F1-
socre. Because TF-IDF is not comprehensive and it just 
considers the word frequency to measure the importance of 
words, and sometimes important words may not appear many 
times. TFI not only considers the importance of word 
frequency, but also takes into account the importance of 
words to the category of vulnerability, so that a better word 
set can be further extracted according to the IG value, which 
makes better performance in various evaluation indexes. 

B. COMPARISONS AMONG CLASSIFICATION 
METHORDS 

Many machine learning algorithms, such as SVM[29], Naive 
Bayes(NB)[10], KNN[30] and so on have been widely used 
in the field of text classification. However, due to the large 
amount of vulnerability data and short description, the 
generated word vector space presents the characteristics of 
high dimension and sparse. But these machine learning 
algorithms are not very effective in dealing with high and 
sparse problems. Therefore, this paper proposes a 
vulnerability automatic classification model TFI-DNN based 
on deep learning. In order to evaluate the performance of 
TFI-DNN in vulnerability classification, we compare and 
evaluate it with the traditional machine learning algorithm 
based on TFI in terms of accuracy, recall, precision, and F1-
score. The experimental results are shown in Table V. 

TABLE V 
RESULTS OF DIFFERENT CLASSIFICATION METHODS 

Model Accuracy Recall Precision F1-score 
TFI-SVM 0.68 0.68 0.61 0.63 
TFI-NB 0.76 0.78 0.72 0.75 

TFI-KNN 0.81 0.78 0.76 0.77 
TFI-DNN 0.87 0.82 0.85 0.81 

According to the experimental comparison results, we can 
see that the TFI-DNN vulnerability automatic classification 
model achieved an overall better performance than the other 
three algorithms. Specifically TFI-DNN is 19%, 11% and 6% 
higher in classification accuracy, and 18%, 6% and 4% 
higher in F1-score comprehensive evaluation indexes 
compared to SVM, Naive Bayes and KNN respectively. The 
experiment results above have validated the effectiveness of 
the TFI-DNN model in the automatic classification of 
vulnerabilities. 

VII. CONCLUSION 

In order to better analyze and manage vulnerabilities 
according to their belonging classes, improve the security 
performance of the system, and reduce the risk of the system 
being attacked and damaged, this paper applied deep neural 
network to software vulnerability classification. The analysis 
of the method and construction process of TFI and DNN are 
discussed in detail. We compared the vulnerability 
classification model TFI-DNN to TFI-SVM, TFI-Naïve 
Bayes and TFI-KNN on the NVD dataset. The results show 
that the proposed TFI-DNN model outperforms others in 
accuracy, precision and F1-score and performs well in recall 
rate. And it is superior to SVM, Naïve Bayes and KNN on 
comprehensive evaluation indexes. The work in this paper 
shows the effectiveness of TFI-DNN in vulnerability 
classification, and provides a basis for our future research 
using the benchmark vulnerability dataset. 
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