
2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2900462, IEEE Access

VOLUME XX, 2017 1

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.Doi Number

Automatic classification method for software
vulnerability based on deep neural network

Guoyan Huang1, Yazhou Li1, Qian Wang1,*, Jiadong Ren1, Yongqiang Cheng3, Xiaolin Zhao2
1Computer Virtual Technology and System Integration Laboratory of Hebei Province, College of Information Science and Engineering, Yanshan University, Qinhuangdao, Hebei,

China, 066000
2Beijing Key Laboratory of Software Security Engineering Technology, School of computer Science and Technology, Beijing Institute of Technology, Beijing, China, 100081
3Computer Science, University of Hull, Hull, UK, HU6 7RX

Corresponding author: Qian Wang (e-mail: wangqianysu@163.com).

This work is supported by the National Key R&D Program of China under Grant No.2016YFB0800700, the National Natural Science Foundation of China
under Grant Nos.61472341, 61772449, 61572420, 61807028 and 61802332, the Natural Science Foundation of Hebei Province China under Grant
No.F2016203330. The authors are grateful to valuable comments and suggestions of the reviewers.

ABSTRACT Software vulnerabilities are the root causes of various security risks. Once a vulnerability is
exploited by malicious attacks, it will greatly compromise the safety of the system, and may even cause
catastrophic losses. Hence automatic classification methods are desirable to effectively manage the
vulnerability in software, improve the security performance of the system and reduce the risk of the system
being attacked and damaged. In this paper, a new automatic vulnerability classification model (TFI-DNN)
has been proposed. The model is built upon term frequency- inverse document frequency (TF-IDF),
information gain (IG) and deep neural network (DNN): the TF-IDF is used to calculate the frequency and
weight of each word from vulnerability description; the IG is used for feature selection to obtain an optimal
set of feature word; and the DNN neural network model is used to construct an automatic vulnerability
classifier to achieve effective vulnerability classification. The National Vulnerability Database (NVD) of
the United States has been used to validate the effectiveness of the proposed model. Compared to SVM,
Naive Bayes and KNN, the TFI-DNN model has achieved better performance in multi-dimensional
evaluation indexes including accuracy, recall rate, precision and F1-score.

INDEX TERMS Deep neural network, information gain, software security, vulnerability classification

I. INTRODUCTION

With the rapid development of information technology, the
impacts brought to industries by application of the Internet
and computers are twofold. They bring convenience but also
huge risks and hidden dangers. Recently, with the
improvement of the digitalization level of various industries,
information security issues have become increasingly
prominent. Vulnerabilities are defined as software and
hardware defects of the system being illegally exploitable by
unauthorized personnel. Once the vulnerability of
information system is exploited by malicious attack, the
security of information system will be at great risk and may
cause inestimable consequences. For example, in 2017,
hackers exploited Windows system vulnerabilities to expose
100,000 organizations worldwide to Bitcoin ransomware. In
the same year, Microsoft released a total of 372 Office
vulnerability patches. Hackers can use the office
vulnerabilities to conduct Advanced Persistent Threat (APT)

attacks, spread botnets, ransomware and so on. In recent
years, the number and variety of vulnerabilities have
gradually increased, so the management and analysis of
software vulnerabilities has become more and more
important.

If the vulnerability can be classified and managed
effectively, it can not only improve the efficiency of
vulnerability recovery and management, but also reduce the
risk of system being attacked and damaged, which is vitally
important for the security performance of the system. As
software security vulnerabilities play an important role in
cyber security attacks, more and more researches on
vulnerability classification are conducted by relevant security
researchers. The earlier vulnerability classification method
RISOS [1], which is aimed at the operating system of the
computer, mainly divides the operating system vulnerabilities
into seven categories from the perspective of attack, and
describes how to exploit the vulnerabilities instead of

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2900462, IEEE Access

VOLUME XX, 2017 9

triggering these vulnerabilities’ condition. The PA
vulnerability classification method in [2] not only studied the
vulnerabilities of the operating system, but also classified the
vulnerabilities existing in the application. Andy Gray
vulnerability classification method [3] proposed a
vulnerability classification system consisting of ten
categories according to the different analysis needs of the
vulnerability. However, as the complexity of vulnerabilities
increases, the limitations of traditional artificial vulnerability
classification methods become more and more obvious.
Therefore, researchers pay more attention to automatic
classification of vulnerabilities.

A large number of machine learning methods have been
recently reported in the field of text classification [4].
Classifying them by vulnerability description is also a kind of
text classification. Therefore, the problem of automatic
classification of vulnerabilities can also be solved using
machine learning methods. Davari M et al. proposed an
automatic vulnerability classification framework based on
conditions that activate vulnerabilities [5], different machine
learning techniques (Random Forest, C4.5 Decision Tree,
Logistic Regression, and Naive Bayes) are employed to
construct a classifier with the highest F-measure. The 580
software security flaws of the Firefox project were analyzed
through experiments to evaluate the effectiveness of the
classification. The SVM classification method based on LDA
model [6] is applied in the domain of vulnerability
classification by Bo Shuai et al. The SVM based on the topic
model can make full use of the number of distributed
vulnerabilities for classification. The experiment results
indicated that SVM has achieved good results in
vulnerability classification. Dumidu Wijayasekara et al.
tested the Naïve Bayes classifier by using textual information
from the error description [7]. The analysis illustrates the
feasibility of the Naïve Bayes classifier to classify textual
information based on the vulnerability description. Sarang
Na et al. proposed a classification method for classifying
CVE entries that could not provide enough information into
vulnerability categories using the Naïve Bayes classifier [8].
Marian Gawron et al. applied Naive Bayes algorithm and
simplify artificial neural network algorithm to vulnerability
classification [9], and made comparison on the same data set.
The experimental results showed that the artificial neural
network algorithm was superior to Naive Bayes algorithm in
vulnerability classification. A data-driven approach to
machine learning for vulnerability detection was proposed by
Harer J A et al. [10]. They also compare the application of
deep neural network models with more traditional models
such as random forests, and find that the best performance
comes from combining the features of deep model learning
with tree-based models. Finally, the highest performance
model proposed in the paper achieves an area under the
precision-recall curve of 0.49 and an area under the ROC
curve of 0.87. It can be seen that a large number of machine

learning algorithms have been well applied in the field of
vulnerability classification.

Although these machine learning classification algorithms
have achieved promising results in many fields, due to the
large amount of vulnerability data and short description, the
generated word vector space presents the characteristics of
high dimension and sparse. These machine learning
algorithms are not very effective in dealing with high and
sparse problems. At the same time, they ignore specific
vulnerability information and the classification accuracy is
not high. However, in recent years, deep learning has been
applied in many fields and has achieved success [11], such as
the field of speech and image recognition [12,13], the error
rate in speech recognition is reduced by 20%-30% [14,15],
and the error rate in the ImageNet evaluation task is reduced
by 26%-15% [16]. For face image classification based on
GoogLeNet network [17], the classification of age and
gender is achieved with high precision. Deep learning also
has a significant impact in the field of natural language
[18,19]. Hwiyeol et al. studied the classification problem in
the field of natural language, and applied convolutional
neural networks (CNN) and recurrent neural networks (RNN)
to the field of large-scale text classification and achieved
success [20]. Aziguli W et al. proposed a novel text classifier
using DNN model [21] to improve the computational
performance of processing large text data with mixed outliers.
Wu F et al. proposed a deep learning method for
vulnerability detection [22], namely, convolution neural
network (CNN), long short term memory (LSTM) and
convolution neural network-long short term memory (CNN-
LSTM), and the vulnerability prediction accuracy reached
83.6%, which is superior to the traditional method. Li Z et al.
designed and implemented a deep learning-based
vulnerability detection system [23], which alleviated the
cumbersome and subjective tasks of human experts manually
defining features. Therefore, deep learning can also be
applied to the field of software vulnerability detection and
achieved good results.

Therefore, in order to better deal with the high and sparse
word vector space and take advantage of the automatic
feature extraction by deep learning, this paper proposes an
automatic vulnerability classification model TFI-DNN based
on term frequency-reverse document frequency (TF-IDF),
information gain (IG) and deep neural network (DNN). In the
model, we first use TF-IDF-IG (TFI) algorithm to extract the
feature of the description text and reduce the dimension of
the generated high-dimensional word vector space, then
construct a DNN neural network model based on deep
learning. The TFI-DNN model was trained and tested using
vulnerability data from the National Vulnerability Database
(NVD). The test results show that the automatic vulnerability
classification model in this paper effectively improves the
performance of vulnerability classification.

The rest of this paper is arranged as follows. Section 2
introduces the definition of relevant algorithms. In section 3,

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2900462, IEEE Access

VOLUME XX, 2017 9

the implementation details of our model are described.
Experiment dataset and results are discussed in Section 4
with comparative analysis. Section 5 outlines the conclusions
of this paper and potential future research.

II. RELATED DEFINITION

The automatic classification model of vulnerability (TFI-
DNN) is constructed in this paper. The relevant definitions
are as follows.

A. TF – IDF

TF-IDF is a common weighted technology based on
statistical methods [24]. Assume there are a set of files and
each file contains a number of words. We define the
importance of the word i in file j as follows.

 tf�� =
��,�

∑ ��,��
 (1)

Where both i and j are positive integers, n�,� denotes the
frequency of word i in the file j

The formula for IDF is as follows.

 idf� = log
|�|

|{�:��∈��}|
 (2)

Where |F| represents the total number of files in the
corpus, f� is the jth file, and |{j: t� ∈ f�}| represents the number
of files containing the word t� .

The formula for TF-IDF is as follows.
TF − IDF = tf�� ∗ idf� (3)

TF-IDF is used to evaluate the importance of a word to a
document in the document set or in a corpus. The importance
of a word increases proportionally with the number of times
it appears in the file, but it also decreases inversely with the
frequency it appears in the corpus.

B. INFORMATION GAIN (IG)

IG [25] refers to that, if a feature X in class Y is known, the
information uncertainty of class Y will decrease, and the
reduced uncertainty degree reflects the importance of feature
X to class Y. Set the training data set to D, |D| indicates the
number of samples in D. Suppose there are K classes C�, k
=1, 2,…, K，|C�| is the number of samples belonging to class
C� , ∑ |C�| = |D|�

���� . If feature A has n different
values {a�, a�, … , a�} , D will be divided into n subsets
according to the values in feature A, denoted as D=
(D�, D�, …，D�), where |D�| is the number of samples
in D�, ∑ |D�|

�
��� = |D|. The set of samples belonging to class

 C� in D� is D �� , D�� = D� ∩ D� , |D��| is the number of
samples of D��.

The empirical entropy H (D) of data set D is calculated as
follows.

�(�) = − ∑
|��|

|�|
�
��� (4)

The empirical conditional entropy H (D|A) of feature A for
dataset D is calculated as follows.

�(�|�) = − ∑
|��|

|�|

�
��� ∑

|���|

|��|
�
��� log�

|���|

|��|
 (5)

The information gain calculation formula for each feature
is as follows.

�(�, �) = �(�) − �(�|�) (6)
According to the feature selection method of the

information gain criterion, the information gain of each
feature is calculated, and the features with larger information
gain value are selected.

C. FORWARD PROPAGATION ALGORITHM

The forward propagation algorithm uses a number of weight
coefficient matrices W, the offset vector b and the input
value vector x to perform a series of linear operations and
activation operations, starting from the input layer to the
output layer to get the final output. The calculation formula is
as follows.

�� = �(��) = �(������ + �� (7)
Where W is the matrix corresponding to the hidden layer

and the output layer, b� is the offset vector, x is the input
value vector, l is the number of layers of the neural network,
and x� is the output result.

D. ACTIVATION FUNCTION

softmax and tanh are commonly used activation functions in
multiple classification problems，they can map the output of
multiple neurons to the range of [0,1]. The calculation
formulas are as follows.

softmax(y�) =
���

∑ ����
���

 (8)

tanh(��) =
�������

�������
 (9)

Where, y� represents output of the neural network.

E. CROSS ENTROPY COST FUNCTION

Cross entropy describes the distance between two probability
distributions, i.e. the distance between the actual output and
the expected output. The calculation formula is as follows.

� = −
�

�
∑ |� ln(�) + (1 − �) ln(1 − �) |� (10)

Where, y is the desired output, a is the actual output of the
neuron and n is the number of categories.

The smaller the value of the cross entropy, the closer the
two probability distributions are. It is a widely used loss
function in the classification problem.

F. BATCH GRADIENT DESCENT ALGORITHM (BGD)

The gradient descent algorithm is used on all the parameters
to make the loss function reach a smaller value, and finally
all the parameters of the model with the minimum loss are
obtained. The calculation formula is as follows.

��: = �� − � ∑ (ℎ� ���
(�)

, ��
(�)

, … ��
(�)

� − ��)�
��� ��

(�)
 (11)

Where α and θ� represent the learning rate and the i th
parameter, θ represents all parameters, m is the sample
number, y�is the actual category and h� �x�

(�)
, x�

(�)
, … x�

(�)
� is

the output of sample j on θ. x�
(�)

is ith feature of sample j.

III. THE TFI-DNN ALGORITHM

The vulnerability automatic classification model TFI-DNN is
mainly composed of TFI and DNN. The original

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2900462, IEEE Access

VOLUME XX, 2017 9

vulnerability data is preprocessed first, then TFI is used to
extract the features of the vulnerability description text and
reduce the dimensionality of the generated higher-
dimensional word vector space, and then the DNN is
constructed to realize the automatic training and
classification of the vulnerability. TFI-DNN algorithm is
shown in Figure 1.

FIGURE 1. Framework of the Method.

A. FEATURE SELECTION USING TFI

TFI is mainly used to extract feature word set. The steps are
as follows.
Input: word list (word_list) formed by word segmentation, lemmatiation,
and stop word filtering.
Output: feature word set (feature_words).
1) Traversing each word in the word_list.
2)Word frequency statistics for word_list, stored in the doc_frequency list.
3) Traversing the word frequency list doc_frequency.
4) Calculate the TF value of each word according to (1) and store it in the
word_tf dictionary.
5) Calculate the IDF value of each word according to (2) and store it in the
word_idf dictionary.
6) Calculate the TF-IDF value of each word according to (3) and store it in
the word_tf_idf dictionary.
7) The word set is sorted in descending according to the TF-IDF value.
8) Select the first n words as an important feature set.
9) Save important words in the feature list (features_vocabSet).
10) Traverse features_vocabSet, divide features_vocabSet and store the
subset into the subDataSet.
11) Calculate probability of subDataSet.
12) Calculate the empirical conditional entropy of each word according to
(4) and (5) and store it in newEntropy.
13) Calculate the IG value of each word according to (6).
14) Save each word and the corresponding IG value in the dictionary.
15) The word set is sorted descending by IG value.
16) Select the first m words as features and store them in the
feature_words.
17) Return feature_words.

B. OPTIMIZATIONS USING DNN

DNN consists of one input layer, multiple hidden layers and
one output layer, whose input is the feature vector of instance
and output is the category of instance. It mainly includes two
propagation processes, forward propagation and back
propagation. The propagation process is as follows.
Input: training set after vectorization.
Output: coefficient matrix W and offset vector b of DNN.
1) Input training data set x, initialize weight coefficient matrix W and
offset vector b.
2) Perform a linear calculation for each neuron xi, the calculation formula
is z = ∑ W�

�
��� x� + b, use tanh for the activation operation, then calculate

the final output result layer by layer according to (7). The result output

is a� = σ�z�� = σ(W�a��� + b�).
3) Softmax is used to assign probabilities to different objects for the final
output, and the output of multiple neurons is mapped to the range of [0,1] .
4) The cross entropy is selected as the loss function to measure the loss
between the output calculated by the training sample and the actual
training sample output.
5) Select the batch gradient descent algorithm as the optimization
algorithm, minimize the loss function, set the batch size, iteration
threshold and learning rate α(0 < α ≤ 1), the DNN model was trained
iteratively.
6) Finally, output optimized DNN model parameters W and b.

IV. EXPERIMENTAL ENVIRONMENT AND DATA SET

A. ENVIRONMENT

The experiment was conducted on PC with Intel(R)
Core(TM) i5-4460 processor, 3.20 GHz and 8.00 GB
memory, running Windows 7 operating system.
Programming uses Pycharm 2017 on Anaconda3 version and
the TensorFlow framework.

B. DATA SET OF EXPERIMENT

In order to verify the effectiveness, we use the internationally
recognized National Vulnerability Database (NVD) [26] as
experimental data. The source file of this dataset is a series of
XML files, which contains comprehensive information about
the vulnerability, such as CVE number, vulnerability release
date, CVSS_version, CVSS_score, CVSS_vector,
vulnerability text description, and so on. The annual
vulnerability amount (2000-2016) of NVD vulnerability
database is shown in Figure 2, and the total number of
vulnerability records is 56,838.

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2900462, IEEE Access

VOLUME XX, 2017 9

FIGURE 2. Annual Vulnerability of NVD (2000-2016).

By the end of 2016, the NVD vulnerability database
contained 23 vulnerability categories and 1 “unknown”
vulnerability category. The number of vulnerabilities records
in each category is highly variable. For example, there are
11284 vulnerabilities records in the "unknown" category
whist there are only 5 vulnerabilities records in the
"environment conditions" category. As the "unknown"
category of vulnerability has no value for the model training,
the vulnerability in "unknown" category is excluded from the
experiment. The other 23 vulnerability categories with
clearly identified categories are included. The distribution of
vulnerability records in each category is shown in Figure 3.

FIGURE 3. Vulnerability Distribution of different category.

The required vulnerability information are extracted from

the XML vulnerability files using program codes written in
Python, including CVE number, vulnerability text
description, and vulnerability category. All the text
information of vulnerabilities from 2000 to 2016 is collected
for statistics, 10,000 of them were selected as the training set,
and 1,000 of them were used as the test set. Samples of the
data are shown in Table I.

TABLE I
EXAMPLES OF DATASETS

CVE_ID Description Vulnerability category

CVE-2016-9997

SPIP 3.1.x suffers from a
Reflected Cross Site
Scripting Vulnerability

in involving the …

XSS

CVE-2016-9993

IBM Kenexa LCMS
Premier on Cloud 9.0,
and 10.0.0 is vulnerable
to SQL injection. A
remote attacker could
send specially-crafted
SQL statements, which

SQL Injection

could allow the attacker
to view, add, modify or
delete information in the
back-end database. IBM
Reference #: 1992067.

… … …

V. EXPERIMENTAL PROCEDURE

A. DATA PREPROCESSING

1) WORD SEGMENTATION

Word segmentation refers to the cutting of coherent
vulnerability text information into one word, which
transforms the entire vulnerability text information into the
smallest semantic unit that can be counted by statistics. This
is the first and most important step in the process of
vulnerability text preprocessing. For the text of the
vulnerability described in English, the word segmentation is
very simple. You only need to identify the entire
vulnerability description by dividing the space or punctuation
between the texts.

For example, the vulnerability text numbered CVE-2016-
9990 is described as: "IBM iNotes 8.5 and 9.0 is vulnerable
to cross-site scripting. This vulnerability allows users …".
After the word segmentation, you can get the word set as
["IBM", "iNotes", "8.5", "and", "9.0", "is", "vulnerable", "to",
"cross", "-" , "site", "scripting", ".", "This", "vulnerability",
"allows", "users",…].

2) LEMMATIZATION

Lemmatization refers to the transformation of non-root form
into root form in the word set, and that is the verb in English
description changing according to the person into the verb
prototype. Convert the plural form of a noun to the singular
form, convert gerund form to verb prototype, etc. From the
perspective of data mining, these words should belong to the
same category of semantically similar words. For example,
"attack", "attacking", and "attacked" can be divided into the
same word, which can be expressed as "attack" in the root
form.

Therefore, the set of words in the vulnerability text
numbered CVE-2016-9990 is converted by lemmatization:
["IBM", "iNote", "8.5", "and", "9.0", "is", "vulnerable", "to",
"cross", "-" , "site", "scripting", ".", "This", "vulnerability",
"allow", "user",…]. It can be seen that the following words in
the original description information, "iNotes", "allows",
"users" are restored to "iNote", "allow", "user", etc.

3) STOP WORD FILTERING

Stop word filtering refers to words that appear frequently in
text and contribute little or no contribution to the content or
classification of text information, it includes both public stop
words and professional stop words. We can download public
stop word list from the Internet[27], such as common
prepositions, articles, auxiliary words, modal verbs, pronouns,
and conjunctions, etc. In addition, some words such as
"information", "security", and "vulnerability" are
meaningless to the classification of vulnerability，so these

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2900462, IEEE Access

VOLUME XX, 2017 9

words should be filtered out. In this paper, each word of the
vulnerability text is arranged in descending order by word
frequency, and we set a threshold. Based on our experience,
we select words higher than the threshold value and
meaningless for classification of vulnerabilities as stop word
and add them into the stop word list to form a professional
stop word list.

B. FEATURE EXTRACTION

The candidate feature set composed of 17,935 words was
obtained from all experimental data through the above data
preprocessing operation. First, the weight of each word in the
vulnerability candidate feature set is calculated by TF-IDF,
and the results are arranged in descending order. The number
of feature words of the extracted feature subset is 1024. Part
of the arrangement is shown in Table II.

TABLE II
FEATURE WORDS BASED ON TF-IDF

Feature overflow SQL XSS XSS traversal …

TF-IDF 0.0215 0.0206 0.0198 0.0110 0.0109 …

According to the 1024 words selected in 1), IG is used to
calculate the information gain value of each word in the word
set, and the results are arranged in descending order. The
number of feature words extracted from the feature subset is
900. Part of the arrangement is shown in Table III.

TABLE III
FEATURE WORDS BASED ON IG

Feature overflow traversal SQL XSS buffer …

IG 0.6110 0.5168 0.4572 0.4225 0.3039 …

C. THE WORD VECTOR SPACE ESTABLISHMENT

In the application of this paper, each vulnerability description
is expressed as an m-dimensional vector (m is the number of
feature words in the feature word set) [28]. After all the
vulnerability text samples are vectorized through the m-
dimensional space, the vector representation of the
vulnerability is established. Each vulnerability sample can be
regarded as a point in the high-dimensional space, where the
representation of one vulnerability sample v� is v� = {t�, t�,
… , t�}. Among this formula, m is the number of feature
words, which is consistent with the dimension of the vector
space of vulnerability.

D. DNN MODEL CONSTRUCTION

After the vectorization representation of vulnerability
description, the vulnerability text data described by natural
language is transformed into the data structure that can be
recognized by the machine and expressed through statistical
learning. We use the deep learning framework TensorFlow to
construct the DNN model. Various configuration parameters
of the DNN model were tested, including the number of
hidden layers, the number of neurons in each layer, the
learning rate of the neural network and the number of
iterations. Finally, the parameters are set as empirical values
from experiment. The DNN model is shown in Figure 4.

FIGURE 4. The Model of DNN.

The parameters of the DNN model are set as follows.
1) Initialize the weight of DNN model with normal
distribution function with standard deviation of 0.1.
2) The offset values of the input layer and hidden layer are
set to 0.1.
3) The forward propagation of the input layer and hidden
layer uses tanh as the activation function, while the output
layer uses softmax as the activation function.
4) Use the dropout function in TensorFlow to prevent
overfitting.
5) The cross entropy function is used as the loss function to
measure the loss between the calculated output of the training
sample and the actual output of the training sample.
6) Optimize the DNN model using a batch gradient descent
algorithm with a batch size set to 100 and a learning rate set
to 0.2.
7) The number of iterations of DNN model training is 20.
Next, the training sample of the NVD data set is used to train
the TFI-DNN vulnerability automatic classification model,
and then the vulnerability test set is used to evaluate the
model performance.

VI. RESULT AND COMPARISONS

A. EVALUATION INDEX

In order to evaluate the performance of automatic
classification model (TFI-DNN) in this paper and to compare
the performance between different algorithms, unified
evaluation criteria are needed. According to the general
method of data mining theory, the most widely used
classification method for multi-class problem evaluation
model is multi-class confusion matrix. As shown in Table IV.

TABLE IV
MULTI-CLASS CONFUSION MATRIX

True category
Forecast category

Buffer Overflow Configuration Errors …

Buffer
Overflow

True Positive(���) False Negative(���) …

Configuration
Errors

False Positive(���) True Negative(���) …

… … … …

Where i represents a category of a vulnerability.
According to the confusion matrix, the accuracy, recall rate,
precision rate and F1-score are used as evaluation indexes of
TFI-DNN model. The calculation formulas of each index are
as follows.
Accuracy (�) indicates the ratio of the number of test
instances correctly classified by vulnerability � to the total
number of test instances. The calculation formula is below.

Accuracy(�) =
��� + ���

��� + ��� + ��� + ���

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2900462, IEEE Access

VOLUME XX, 2017 9

Recall(�) indicates the ratio of the number of the positive
examples correctly classified by vulnerability � to the number
of actual positive examples. The calculation formula is below.

Recall(i) =
TP�

TP� + FN�

Precision(�) represents the ratio of the number of positive
examples correctly classified by vulnerability � to the number
of instances classified as positive examples. The calculation
formula is below.

Precision(i) =
TP�

TP� + FP�

F1-score(�) combines the recall rate and the precision rate.
The calculation formula is below.

F1 − score(i) =
2 ∗ Recall(i) ∗ Precision(i)

Recall(i) + Precision(i)

The value of F1-score is between 0 and 1, and the higher
the value, the better the performance of the vulnerability
classification model.

B. COMPARISONS BETWEEM TF-DIF-DNN AND TFI-
DNN

In order to evaluate the effect of TFI for feature word
selection, we compare it with the method of TF-IDF without
IG, the same configured DNN model was iterated 20 times.
The evaluation results of the vulnerability classification in
the multidimensional evaluation index are shown in Figure 5.

FIGURE 5. The Value of Evaluation Indexes by Different Methods.

Figure 5 shows that the DNN model based on TFI at the
same number of iterations is superior to the DNN model
based on TF-IDF in accuracy, recall rate, precision and F1-
socre. Because TF-IDF is not comprehensive and it just
considers the word frequency to measure the importance of
words, and sometimes important words may not appear many
times. TFI not only considers the importance of word
frequency, but also takes into account the importance of
words to the category of vulnerability, so that a better word
set can be further extracted according to the IG value, which
makes better performance in various evaluation indexes.

B. COMPARISONS AMONG CLASSIFICATION
METHORDS

Many machine learning algorithms, such as SVM[29], Naive
Bayes(NB)[10], KNN[30] and so on have been widely used
in the field of text classification. However, due to the large
amount of vulnerability data and short description, the
generated word vector space presents the characteristics of
high dimension and sparse. But these machine learning
algorithms are not very effective in dealing with high and
sparse problems. Therefore, this paper proposes a
vulnerability automatic classification model TFI-DNN based
on deep learning. In order to evaluate the performance of
TFI-DNN in vulnerability classification, we compare and
evaluate it with the traditional machine learning algorithm
based on TFI in terms of accuracy, recall, precision, and F1-
score. The experimental results are shown in Table V.

TABLE V
RESULTS OF DIFFERENT CLASSIFICATION METHODS

Model Accuracy Recall Precision F1-score
TFI-SVM 0.68 0.68 0.61 0.63
TFI-NB 0.76 0.78 0.72 0.75

TFI-KNN 0.81 0.78 0.76 0.77
TFI-DNN 0.87 0.82 0.85 0.81

According to the experimental comparison results, we can
see that the TFI-DNN vulnerability automatic classification
model achieved an overall better performance than the other
three algorithms. Specifically TFI-DNN is 19%, 11% and 6%
higher in classification accuracy, and 18%, 6% and 4%
higher in F1-score comprehensive evaluation indexes
compared to SVM, Naive Bayes and KNN respectively. The
experiment results above have validated the effectiveness of
the TFI-DNN model in the automatic classification of
vulnerabilities.

VII. CONCLUSION

In order to better analyze and manage vulnerabilities
according to their belonging classes, improve the security
performance of the system, and reduce the risk of the system
being attacked and damaged, this paper applied deep neural
network to software vulnerability classification. The analysis
of the method and construction process of TFI and DNN are
discussed in detail. We compared the vulnerability
classification model TFI-DNN to TFI-SVM, TFI-Naïve
Bayes and TFI-KNN on the NVD dataset. The results show
that the proposed TFI-DNN model outperforms others in
accuracy, precision and F1-score and performs well in recall
rate. And it is superior to SVM, Naïve Bayes and KNN on
comprehensive evaluation indexes. The work in this paper
shows the effectiveness of TFI-DNN in vulnerability
classification, and provides a basis for our future research
using the benchmark vulnerability dataset.

ACKNOWLEDGEMENT

This work is supported by the National Key R&D Program
of China under Grant No.2016YFB0800700, the National
Natural Science Foundation of China under Grant

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2900462, IEEE Access

VOLUME XX, 2017 9

Nos.61472341, 61772449, 61572420, 61807028 and
61802332, the Natural Science Foundation of Hebei Province
China under Grant No.F2016203330. The authors are
grateful to valuable comments and suggestions of the
reviewers.

REFERENCES
[1] Abbott R, Chin J, Donnelley J, et al, "Security Analysis and

Enhancements of Computer Operating Systems." Washington DC,
USA: US Department of Commerce, 1976.

[2] Bisbey II R, Hollingworth D, "Protection Analysis: Final Report."
Marina Del Rey, USA: University of Southern California, 1978.

[3] A. Gray. An historical perspective of software vulnerability manageme
nt.Information Security Technical Report, 2003.8(4):34-44.

[4] Pan Jun Kim, "An Analytical Study on Automatic Classification of
Domestic Journal articles Based on Machine Learning." Journal of
the Korean Society for Information Management, vol.35, 2018(2):
37-62.

[5] Davari, Maryam , M. Zulkernine , and F. Jaafar . "An Automatic
Software Vulnerability Classification Framework." 2017
International Conference on Software Security and Assurance
(ICSSA) IEEE Computer Society, 2017: 44-49.

[6] Shuai, Bo, et al. "Automatic classification for vulnerability based on
machine learning." IEEE International Conference on Information
and Automation IEEE, 2014:312-318.

[7] Wijayasekara, Dumidu, M. Manic, and M. Mcqueen. "Vulnerability
identification and classification via text mining bug
databases." Industrial Electronics Society, IECON 2014 -,
Conference of the IEEE, 2015:3612-3618.

[8] Na, Sarang, T. Kim, and H. Kim. "A Study on the Classification of
Common Vulnerabilities and Exposures using Naïve Bayes."
Advances on Broad-Band Wireless Computing, Communication and
Applications. Springer International Publishing, 2016:657-662.

[9] Gawron, Marian, C. Feng, and C. Meinel. "Automatic Vulnerability
Classification Using Machine Learning." International Conference on
Risks and Security of Internet and Systems Springer, Cham, 2017:3-
17.

[10] Harer, Jacob A., et al. "Automated software vulnerability detection
with machine learning." arXiv preprint arXiv:1803.04497(2018).

[11] Du, Xuedan , et al. "Overview of deep learning." Chinese Association
of Automation IEEE, 2017:27-51.

[12] Deng, Jia, et al. "ImageNet: A large-scale hierarchical image
database." Computer Vision and Pattern Recognition, 2009. CVPR
2009. IEEE Conference on IEEE, 2009:248-255.

[13] Russakovsky, Olga, et al. "ImageNet Large Scale Visual Recognition
Challenge." International Journal of Computer
Vision 115.3(2015):211-252.

[14] Xiong, W, et al. "Achieving Human Parity in Conversational Speech
Recognition." IEEE/ACM Transactions on Audio Speech &
Language Processing, 2016: 99.

[15] Xiong W, Droppo J , Huang X , et al. Toward Human Parity in
Conversational Speech Recognition[J]. IEEE/ACM Transactions on
Audio, Speech, and Language Processing, 2017, 25(12):2410-2423.

[16] Krizhevsky, Alex, I. Sutskever, and G. E. Hinton. "ImageNet
classification with deep convolutional neural networks." International
Conference on Neural Information Processing Systems Curran
Associates Inc. 2012:1097-1105.

[17] Liu, Xuan , et al. "Deep convolutional neural networks-based age and
gender classification with facial images." First International
Conference on Electronics Instrumentation & Information
Systems IEEE, 2018: 1-4.

[18] Silver, D, et al. "Mastering the game of Go with deep neural networks
and tree search." Nature, 2016, 529(7587):484-489.

[19] Iyyer, Mohit, et al. "Deep Unordered Composition Rivals Syntactic
Methods for Text Classification." Meeting of the Association for
Computational Linguistics and the, International Joint Conference on
Natural Language Processing, 2015, 1681-1691.

[20] Jo, Hwiyeol, et al. "Large-Scale Text Classification with Deep Neural
Networks." Korea Computer Congress, 2016.

[21] Aziguli, Wulamu, et al. "A Robust Text Classifier Based on
Denoising Deep Neural Network in the Analysis of Big
Data." Scientific Programming, 2017:1-10.

[22] Wu, Fang , et al. "Vulnerability detection with deep learning." IEEE
International Conference on Computer & Communications IEEE,
2018: 1298-1302.

[23] Li, Zhen , et al. "VulDeePecker: A Deep Learning-Based System for
Vulnerability Detection." arXiv preprint arXiv:1801.01681 (2018).

[24] Zhang, Hao, K. Lv, and C. Hu. "An Automatic Vulnerabilities
Classification Method Based on Their Relevance." International
Conference on Network and System Security Springer, Cham,
2017:475-485.

[25] Berrar, Daniel, and W. Dubitzky. "Information Gain." Springer New
York, 2013.

[26] National Vulnerability Database. http://nvd.nist.gov/
[27] Stop word list. https://pypi.org/project/stop-words/
[28] Turney P D , Pantel P. "From Frequency to Meaning: Vector Space

Models of Semantics." Journal of Artificial Intelligence Research,
2010, 37(1):141-188.

[29] Sun A, Lim E P, Liu Y. "On strategies for imbalanced text
classification using SVM: A comparative study." Decision Support
Systems, 2009, 48(1):191-201.

[30] Shi, Kansheng, et al. "An improved KNN text classification algorithm
based on density." IEEE, International Conference on Cognitive
Informatics & Cognitive Computing IEEE Computer Society,
2017:92-95.

