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Abstract. Studies on financial markets have accumulated consistent evidences

of stylized facts and anomalies, which can be characterized by stochastic switch-

ing among different co-existing market states but yet difficult to reconcile with

traditionally rational expectation theory. When agents are heterogeneous and

boundedly rational, recent developments on the role of the adaptive behavior of

interacting heterogeneous agents in financial markets have provided a nonlinear

dynamics channel to such co-existence of different market states, shedding light

into these stylized facts and anomalies. This survey focuses on the nonlinear

dynamics approach to model the feedback of evolutionary dynamics of heteroge-

neous agents and to characterize the underlying mechanisms of the stylized facts

and anomalies in financial markets, of which the authors and several coauthors

have contributed in several papers.
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1. Introduction

The traditional view of homogeneity and perfect rationality in finance and eco-

nomics faces various theoretical limitations and empirical challenges. As suggested

by Heckman (2001), the 2000 Nobel Laureate in economics, “the most important

discovery was the evidence on pervasiveness of heterogeneity and diversity in eco-

nomic life. When a full analysis was made of heterogeneity in response, a variety

of candidate averages emerged to describe the average person, and the longstanding

edifice of the representative consumer was shown to lack empirical support.” Em-

pirically, financial markets show some common features, the so-called stylized facts1,

and market anomalies, including cross-section momentum, the short-run momentum

and long-run reversal. They are difficult to be accommodated and explained within

the standard paradigm of rational expectations.

Many market anomalies can be characterized by the coexistence of very often

puzzling and even controversial market phenomena, such as persistent high and

low volatility clusterings, momentum in the short run and reversal in the long run,

price bubbles and crashes, and more generally the controversial views on efficient

market hypothesis (Fama, 1970, 2014 and Shiller, 2003, 2014). Traditional rational

expectation equilibrium (REE) literature focuses on the role of homogeneous pri-

vate information (Grossman and Stiglitz, 1980 and Admati, 1985). However, with

increasing uncertainty in modern financial markets, information becomes so com-

plex and heterogeneous that some investors tend to have comparative advantages in

different types of information than others. Recent REE literature has pointed the

nature of interaction among heterogeneously informed investors as a key point in un-

derstanding how financial markets work (Admati and Pfleiderer, 1987 and Goldstein

and Yang, 2015). However this literature is mainly focused on a linear equilibrium

in a static setup. Though some recent studies have showed the possible existence of

multiple equilibrium static states, the characterization of the co-existence of differ-

ent market states and the endogenous switching mechanism among the states have

not be well explored. More importantly, the REE faces a great challenge to incor-

porate the evolutionary dynamics of price and market population of heterogeneous

investors.

With multidimensional information uncertainty and endogenous information, in-

vestors are prevented from forming rational expectation and solving life-time opti-

mization problems. Instead they are bounded rational when making their optimal

decision based on their limited information and beliefs (see, for example, Sargent

1993 and Shefrin 2005). Such bounded rationality and investor heterogeneity can

1They include excess volatility, excess skewness, fat tails, volatility clustering, long range de-

pendence in volatility, and various power-law behavior, see Pagan (1996), and Lux (2009).
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have profound consequences for the interpretation of empirical evidences and the for-

mulation of economic policies. Also, the uses of fundamental and non-fundamental

analyses such as trend extrapolation (or momentum trading) by financial market

professionals are well documented2. Over the last three decades, these empirical ev-

idences, unconvincing justification of the assumption of unbounded rationality and

investor psychology, have led to the incorporation of heterogeneity in information,

beliefs and bounded rationality into financial market modelling using the nonlinear

dynamics approach. This has led to fruitful development in financial economics,

empirical finance, and market practice.

The nonlinear dynamics approach goes back to the contributions of Day and

Huang (1990), Chiarella (1992), De Grauwe, Dewachter and Embrechts (1993), Lux

(1995), Brock and Hommes (1998), inspired by the pioneering work of Zeeman

(1974) and Beja and Goldman (1980). This approach views a financial market as a

result of nonlinear interaction of heterogeneous investors with different expectations

that are characterized by the expectation feedback mechanism. Namely, agents’

decisions are based upon the predictions of endogenous variables whose actual values

are determined by the expectations of agents. This results in the co-evolution of

population dynamics of investors with different beliefs and asset prices over time.

This modelling approach has led some nonlinear models to characterize various

endogenous mechanisms of market fluctuations, puzzling anomalies, and financial

market crisis.

This survey stresses the underlying mechanisms for some stylized facts and mar-

ket anomalies by focusing on the nonlinear dynamics approach developed in agent-

based models in financial markets. With different groups of traders having different

expectations about future prices3, asset price fluctuations can be caused endoge-

nously. For instance, by considering two types of traders, typically fundamental and

non-fundamental (such as trend following or momentum) investors, Beja and Gold-

man (1980), Day and Huang (1990), Chiarella (1992), Lux (1995) and Brock and

Hommes (1998) were amongst the first to have shown that the interaction of agents

with heterogeneous expectations, especially the population evolution and expecta-

tion feedback mechanism among them, may lead to market instability. Within this

framework, adaptation, evolution, heterogeneity, and even learning can be incorpo-

rated4. The resulting financial market models tend to have coexistence of different

2See, for example, Allen and Taylor (1990) for foreign exchange markets and Menkhoff (2010)

for fund managers.
3The heterogeneous expectations can be driven by heterogeneous information and market mi-

crostructure essentially. However, to highlight the nonlinear approach, the agent-based literature

often models the heterogeneous expectations through different trading behavior.
4See for example Hommes (2001), Chiarella and He (2002, 2003b), Chiarella, Dieci and Gardini

(2002), and Chiarella, He and Hommes (2006).
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market dynamics characterized by different stability and bifurcations of the under-

lying deterministic models. Triggered by noisy shocks, market dynamics can display

stochastic switching among different market states. This broadened framework has

successfully explained various types of market behavior, such as the long-term swing

of market prices from the fundamental price, asset bubbles and market crashes. It

also shows a potential to characterize and explain the stylized facts (see, for example,

Gaunersdorfer and Hommes 2007, LeBaron 2006) and various power law behavior

(for instance, Alfarano, Lux and Wagner 2005, He and Li 2008, and Zheng, Liu and

Li, 2018) observed in financial markets5.

This paper surveys the nonlinear dynamics approach in agent-based models for

the underlying mechanisms of generating various stylized facts and market anom-

alies in equity, housing, and exchange rate markets, of which the authors and several

coauthors have contributed in several papers. The coexistence of different market

states is through different types of bifurcations, such as Chenciner/Bautin, pitchfork

and saddle-node bifurcations. We illustrate that, triggering the endogenous switch-

ing among different market states, the interaction of multiple states (attractors) of

deterministic dynamics and noise processes can generate volatility clustering and

volatility spill-over in equity markets, booming and busting in housing markets, and

puzzling anomalies in foreign exchange rate markets.

The paper is organized as follows. We first discuss some discrete-time agent-

based financial market models in stock markets in Section 2 and in housing markets

in Section 3. We then extend the discussion to continuous-time models of stock and

foreign exchange markets in Sections 4 and 5, respectively. Section 6 concludes with

some discussion on future research.

2. Single Risky Asset Models in Discrete Time

Stochastic volatility clustering that large (small) price changes tend to be followed

by large (small) price changes of either sign is one of the most documented stylized

facts in financial markets. Though the widespread ARCH and GARCH models

have provided rich econometric techniques to characterize these features success-

fully, theoretical studies often rely on exogenous time-varying preference, informa-

tion arriving, even on specific volatility regime shifts. In this section, to illustrate

the nonlinear mechanism and explanatory power to the volatility clustering, we dis-

cuss a single risky asset pricing model of He, Li and Wang (2016) that has been

developed from Dieci, Foroni, Gardini and He (2006), provide some of the under-

lying mathematical and economic mechanisms to the volatility clustering. For the

5We refer to Hommes (2006), LeBaron (2006), Chiarella, Dieci and He (2009), Hommes and

Wagener (2009), Westerhoff (2009), Chen, Chang and Du (2012), Hommes (2013), He (2014), and

Dieci and He (2018) for surveys of these developments in this literature.
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estimation and empirical study of the model, see Li, Donkers and Melenberg (2010)

and He and Li (2015b, 2017). Most of this literature follows the seminal work of

Brock and Hommes (1997, 1998) and develops various heterogeneous agent models

(HAMs) to incorporate adaptive evolution, heterogeneity, and learning with both

Walrasian and market maker market clearing scenarios6.

2.1. A HAM of Asset Prices with Heterogeneous Expectations. Consider a

financial market with one risky asset and one risk free asset. Let r be the constant

risk free rate, pt the price, and dt the dividend of the risky asset at time t. As-

sume that there are four types of agents, fundamental traders, trend followers, noise

traders, and a market maker. Let n3 be market fraction of the noise traders and n1

and n2 be the fractions of the fundamentals traders and trend followers respectively

among the market fraction of 1 − n3. To explore different mechanisms, we first

consider the fractions of the fundamentals traders and trend followers to be fixed

exogenously in this subsection and then be modeled endogenously in the following

subsection.

Let Rt+1 = pt+1 + dt+1 −Rpt be the excess return and R = 1 + r. The order flow

zh,t of type-h investors from t to t + 1 is modelled by7

zh,t =
Eh,t(Rt+1)

ahVh,t(Rt+1)
,

where Eh,t and Vh,t are the conditional expectation and variance at time t, respec-

tively, and ah is the risk aversion coefficient of type h traders; here h = 1 represents

fundamental traders and h = 2 trend followers. The order flow of the noise traders

ξt ∼ N(0, σ2
ξ ) is an i.i.d. random variable. Then the population weighted average

order flow is given by

Ze,t = (1 − n3)n1 z1,t + (1 − n3)n2 z2,t + n3ξt.

To simplify the analysis, the market price is determined by the market maker

(Chiarella and He (2003b)) via

pt+1 = pt + λZe,t = pt + µze,t + ζt, (2.1)

where ze,t = n1 z1,t + n2 z2,t, µ = λ(1 − n3), ζt ∼ N(0, σ2
ζ ) with σζ = λn3σξ and λ

denotes the price adjustment speed (and risk tolerance) of the market maker.

6For example, Farmer and Joshi (2002) and Chiarella and He (2003b) extend the framework to

a market maker scenario; Chiarella and He (2002, 2003a) consider the impact of heterogeneous risk

aversion and learning; Chiarella et al. (2006) examine the dynamics of moving averages (MA).
7The demand function can be motivated by maximizing the expected CARA utility directly or

investor behavior indirectly.
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For the beliefs of the fundamental traders, their conditional mean and variance

are assumed to follow

E1,t (pt+1) = pt + (1 − α)[Et(p
∗
t+1) − pt], V1,t (pt+1) = σ2

1 , (2.2)

where p∗t is the fundamental value of the risky asset following a random walk8 and

hence Et(p
∗
t+1) = p∗t . Here (1 − α) measures the speed of price adjustment towards

the fundamental price with 0 < α < 1. A higher α indicates less confidence on the

convergence to the fundamental price, leading to a slower adjustment of the market

price to the fundamental. For the trend followers, their beliefs follow

E2,t (pt+1) = pt + γ (pt − ut) , V2,t (pt+1) = σ2
1 + b2vt, (2.3)

where ut and vt are sample mean and variance respectively, γ ≥ 0 measures the

extrapolation of the trend, and b2 ≥ 0 measures the sensitivity to the sample vari-

ance9. We model the sample mean and variance as limiting mean and variance of

the geometric decay processes when the memory lag tends to infinity,

ut = δut−1 + (1 − δ) pt, vt = δvt−1 + δ (1 − δ) (pt − ut−1)
2 ,

where δ ∈ (0, 1) measures the geometric decay rate. For simplicity, it is assumed that

investors share a homogeneous belief about the dividend process dt, which is i.i.d.

and normally distributed with mean d̄ and variance σ2
d. Denote by p∗ = p∗0 = d̄/r

the long-run fundamental price.

Then the asset price dynamics are determined by the following random dynamic

system in discrete-time,










pt+1 = pt + µ(n1 z1,t + n2 z2,t) + ζt, ζt ∼ N (0, σ2
ζ ),

ut = δut−1 + (1 − δ) pt,

vt = δvt−1 + δ (1 − δ) (pt − ut−1)
2 .

(2.4)

2.2. Volatility Clustering via Neimark-Sacker Bifurcation. The above model

(2.4) was developed in Dieci et al. (2006). When there are no fundamental and

market noises, that is, σε = σζ = 0, then system (2.4) becomes a deterministic

dynamical system. Dieci et al. (2006) show that this deterministic model can exhibit

the following price dynamics, characterized by the local stability of the fundamental

price and its bifurcation.

8The random walk fundamental price can be modelled either by p∗t+1 = p∗t exp(−σ2

ε

2
+ σεεt+1)

or p∗t+1 = p∗t (1 + σεεt+1), where εt ∼ N (0, 1), σε ≥ 0 and p∗0 = p∗ > 0; εt is independent of the

noise process ξt, σ2
1 is constant. The specification is independent of the nonlinear mechanism of

the underlying deterministic model and the characterization of volatility clustering.
9With the specification in (2.3), the nonlinearity is introduced through the time-varying sample

variance and the demand function.
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Proposition 2.1. Denote ρ = a2/a1, Q = 2a2σ
2
1(1+r2), K = µ

Q
[n1ρ(α−R)+n2(1−

R)](< 0) and γ∗ = (R−1)+(Q(1−δ))/δµn2+ρn1(R−α)/n2. The underlying deter-

ministic system of (2.4) has a unique fundamental steady state (p, u, v) = (p∗0, p
∗
0, 0).

Assume −2 < K < 0. The fundamental steady state is locally asymptotically sta-

ble for γ ∈ (0, γ∗), and it undergoes a Neimark-Sacker bifurcation at γ = γ∗, that

is, there is an invariant curve near the fundamental steady state. Moreover, the

bifurcated closed invariant curve is forward and stable.

Proposition 2.1 shows that the fundamental steady state price p̄ is locally sta-

ble when the activity of the trend followers, measured by γ, is not strong (so that

γ < γ∗). That is, when the market is dominated by the fundamental traders, the

fundamental price is stabilized. However, when the market is dominated by the trend

followers, the steady state price is destabilized. The consequence of the changing

dominance is characterized by the Neimark-Sacker bifurcation, generating the local

stability of the fundamental price and periodic oscillation around the fundamen-

tal price. Essentially, on the parameter space of the deterministic model, near the

Neimark-Sacker-bifurcation boundary, the fundamental steady state can be locally

stable but globally unstable. Due to the nature of the Neimark-Sacker bifurcation,

such global instability leads to switching between the locally stable fundamental

price and the periodic oscillations around the fundamental price. Then triggered by

the fundamental and market noises, He and Li (2007) demonstrate that the inter-

action of fundamentalists and risk-adjusted trend chasing from the trend followers,

and the interplay of noisy fundamental and demand processes and the underlying

deterministic dynamics, can be the source of the stylized facts observed in financial

markets, including volatility clustering and power-law behavior.

2.3. Volatility Clustering via the Coexistence of Attractors and Chenciner

Bifurcation. To explore the second mechanism on volatility clustering, we intro-

duce the adaptive switching to endogenize the market fractions of the fundamental

and trend following traders.

Let Qi,t(i = 1, 2) be the market fractions of the fundamental and trend following

traders, respectively, having fixed components, n1 and n2, and time-varying compo-

nents, n1,t and n2,t = 1 − n1,t. That is, (1 − n3)(n1 + n2) represents the proportion

of traders who do not change their strategies over time, while (1−n3)[1− (n1 +n2)]

the proportion of traders who may switch between the two types. Therefore the

market fractions of fundamental and trend following traders (Q1,t, Q2,t) at time t

are expressed by Q1,t = (1−n3)[n1 +(1−n1 −n2)n1,t] and Q2,t = (1−n3)[n2 +(1−

n1 − n2)n2,t]. Denote n0 = n1 + n2, m0 = (n1 − n2)/n0 and mt = n1,t − n2,t. Then
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the market fractions at time t can be rewritten as
{

Q1,t = 1
2
(1 − n3) [n0 (1 + m0) + (1 − n0) (1 + mt)] ,

Q2,t = 1
2
(1 − n3) [n0 (1 − m0) + (1 − n0) (1 − mt)]

(2.5)

To characterize the adaptive switching behavior of traders, denote by πh,t+1 the

realized profit, or excess return, between t and t + 1 for type h traders: πh,t+1 =

zh,t(pt+1 + dt+1 −Rpt) = Wh,t+1 −RWh,t for h = 1, 2. Following Brock and Hommes

(1997, 1998), the proportion of “switching” traders at time t + 1 can be determined

by

nh,t+1 =
exp [β (πh,t+1 − Ch)]

∑2
i=1 exp [β (πi,t+1 − Ci)]

, h = 1, 2,

where Ch ≥ 0 is a fixed cost associated with strategy h, parameter β is the intensity

of choice measuring the switching sensitivity of the population of the adaptively

rational traders to the better profitable strategy. From mt+1 = n1,t+1 − n2,t+1, we

have

mt+1 = tanh

{

β

2
[(π1,t+1 − π2,t+1) − (C1 − C2)]

}

. (2.6)

Together with (2.5) the market fractions is determined by

mt = tanh

{

β

2
[(z1,t−1 − z2,t−1) (pt + Dt − Rpt−1) − (C1 − C2)]

}

.

Note that, in this case, Ze,t = q1,t z1,t + q2,t z2,t and q1,t = Q1,t/(1 − n3) = [n0(1 +

m0)+(1−n0)(1+mt)]/2 and q2,t = Q2,t/(1−n3) = [n0(1−m0)+(1−n0)(1−mt)]/2.

The corresponding adaptive model of asset pricing and population dynamics lead to

the following mechanism on the co-existence of a locally stable fundamental steady

state and a periodic cycle through a Chenciner bifurcation, see He, Li and Wang

(2016) for the details.

Proposition 2.2. The deterministic system has a unique fundamental steady state

(p, u, v, m) = (p̄, p̄, 0, m̄). Under some conditions (see Theorem 3.2 in He, Li and

Wang (2016)), the fundamental steady state (p̄, p̄, 0, m̄) is locally asymptotically sta-

ble for γ ∈ (0, γ∗∗), undergoes a Neimark-Sacker bifurcation at γ = γ∗∗, that is,

there is an invariant curve near the fundamental steady state. Moreover, the bifur-

cated closed invariant curve is forward and stable when the first Lyapunov coefficient

a2(0) < 0 and backward and unstable when a2(0) > 0, and a Chenciner bifurcation

takes place when a2(0) = 0.

He, Li and Wang (2016) provide some numerical simulations to illustrates two

different types of Neimark-Sacker bifurcation in Fig. 1 for the switching model.

Depending on the sign of the first Lyapunov coefficient a2(0), we observe a forward

and stable bifurcation when a2(0) < 0, meaning that the bifurcated invariant circle



HETEROGENEOUS AGENT MODELS 9

0.5 0.6 0.7 0.8 0.9 1 1.1
92

94

96

98

100

102

104

106

108

γ

p

γ
∗∗

0.5 0.6 0.7 0.8 0.9 1 1.1
85

90

95

100

105

110

115

γ

p

γ
∗∗

γ̂

Figure 1. The bifurcation diagrams of the market price with respect

to γ.
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Figure 2. Coexistence—The deterministic trajectories of price ver-

sus time for (p0, u0, v0, m0) = (p̄+1, p̄, 0, m̄) (left) and (p0, u0, v0, m0) =

(p̄ + 1, p̄ − 1, 0, m̄) (right).

occurring for γ > γ∗∗ is locally stable. In this case, as γ increases and passes

γ∗∗, the fundamental steady state becomes unstable and the trajectory converges to

an invariant circle bifurcating from the fundamental steady state. As γ increases

further, the trajectory converges to invariant circles with different sizes. This is

illustrated in Fig. 1 (left). However, when a2(0) > 0, the bifurcation is backward

and unstable, meaning that the bifurcated invariant circle occurring at γ = γ∗∗ is

unstable. This is illustrated in Fig. 1 (right), showing a continuation of the unstable

bifurcated circles as γ decreases initially until it reaches a critical value γ̂, which is

indicated by the two red curves of the bifurcating circles for γ̂ < γ < γ∗∗. Then

as γ increases from the critical value γ̂, the bifurcated circles becomes forward and

stable. This is illustrated by the two blue curves, which are the boundaries of the

bifurcating circles, for γ > γ̂. Therefore, the stable steady state coexists with the

stable ‘forward extended’ circles for γ̂ < γ < γ∗∗, in between there are backward

extended unstable circles. For γ̂ < γ < γ∗∗, even when the fundamental steady state
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Figure 3. The time series of the market price (red solid line) and the

fundamental price (blue dotted line) on the left panel and the market

returns on the right panel of the stochastic model.

is locally stable, prices need not converge to the fundamental value, while may settle

down to a stable limit circle, corresponding to ‘volatility clustering region’. Such

coexistence of locally stable fundamental price and bifurcated circle is illustrated in

Fig. 2 with different initial values.

When buffeted with noises, He, Li and Wang (2016) then show numerically that

the interaction of the deterministic dynamics and noise processes can endogenously

generate volatility clustering and long-range dependence in volatility observed in

financial markets, illustrated in Fig. 3. Economically, with strong trading activities

of either the fundamental investors or the trend followers, market price fluctuates

around either the fundamental value with low volatility or a cyclical price movement

with high volatility depending on market conditions. The fundamental noise and

noise traders then trigger irregular switchings between two volatility regimes and

therefore lead to volatility clustering.

He and Li (2015b, 2017) conduct econometric analysis via Monte Carlo simulations

and show that the autocorrelations of returns, absolute returns and squared returns

of the model developed above share the same pattern as those of the DAX 30. By

characterizing the power-law behavior of the DAX 30, they find that the estimates

of the power-law decay indices, the (FI)GARCH parameters, and the tail index of

the model closely match those of the DAX 30. Dieci and He (2018) summarize the

calibrated results of the model and provide some insights into investor behavior with

respect to the two mechanisms of the volatility clustering explored above. Therefore,

the model provides an economic explanation on the volatility clustering, shedding

light on the understanding of volatility clustering.



HETEROGENEOUS AGENT MODELS 11

3. Housing Market Models in Discrete Time

The coexistence of multi-attractors is not only generated by a Chenciner bifur-

cation, but also born from a saddle-node bifurcation, explored in Zheng, Wang,

Wang and Wang (2017). In this case, the fundamental steady state can be locally

stable but globally unstable because of the appearance of a new, nonfundamental

and stable steady state coming from a saddle-node bifurcation. In the following,

we analyze the underlying mechanism from a saddle-node bifurcation and provide a

policy implication on it (see Zheng et al., 2017 for the detail).

3.1. Nonlinear Dynamics of Housing Prices. Consider a housing market with

two types of property consumers, including house buyers and investors, and one

type of property developers who supply houses. At any given time, house buyers

and investors decide their property demands based on their own objectives and

budget constraints. In details, a house buyer really wants houses to live and his/her

demand is determined by his/her ability to make down payment at the time as

follows

PnhB
n = MB(> 0), (3.1)

where Pn is the housing price (without the rent) per unit of houses at time n, hB
n

denotes the consumption amounts of houses demanded by the house buyer at time

n and MB represents the down payment constraints facing by the house buyer.

For an investor, he/she is a myopic mean-variance maximizer with very deep

pockets and no budget or short selling constraints such that the investor’s demand

can be described as

hI
n = γI(P I

n+1 − Pn), (3.2)

where hI
n is the amount of houses the investor invests, P I

n+1 is his expectation about

the housing price at time n + 1, and γI(> 0) measures the reaction intensity of the

investor to his/her future expectation.

Equilibrium housing prices are derived by the market clearing condition

ϕBhB
n + ϕIhI

n = hD
n , (3.3)

where ϕj ≥ 0 (j = B, I) are constants representing the market populations of house

buyers and investors corresponding to a property developer, and hD
n is the supply

amount of the property developers, determined by

hD
n =

Pn

C
, (3.4)

where C > 0 is regarded as the development cost per unit of houses and the higher

development cost, the lower supply.
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Then the equilibrium price is determined by the market clearing condition given

by (3.3), satisfying

m0P
2
n − m1,nPn − m2 = 0, (3.5)

where

m0 =
1

C
+ ϕIγI , m1,n = ϕIγIP I

n+1 and m2 = ϕBMB . (3.6)

This generates a one-dimensional discrete dynamic system which can be described

as

Pn =
m1,n +

√

m2
1,n + 4m0m2

2m0

. (3.7)

When ϕI = 0, then the equilibrium price only depends on the behavior of the house

buyer and property developer, that is

Pn ≡ P = (CϕBMB)
1

2 (3.8)

which is determined by some fundamental economic factors, such as the development

cost and the down payment, and is called a benchmark price.

When ϕI 6= 0, similar to Dieci and Westerhoff (2012), two types of speculative

beliefs are considered among investors in the housing market, extrapolation (P E
n+1)

and mean-reversion (P MR
n+1 ). Extrapolative investors are confident in the continuation

of the price trend in the next period. Their belief under the extrapolative method

can be formalized as

P E
n+1 = Pn−1 + f(Pn−1 − P ), (3.9)

where f(> 0) is the extrapolative intensity to the housing price trend. Then (3.9)

implies that when the housing price is above (below) its benchmark value, trend

followers optimistically (pessimistically) believe in a further price increase (decrease).

Mean-reverting investors believe that the housing price cannot deviate far away from

its benchmark price in the long run. Then, the mean-reverting component can be

written as

P MR
n+1 = Pn−1 + g(P − Pn−1), (3.10)

where g ∈ (0, 1) measures the mean-reverting speed adopted by investors. Equation

(3.10) implies that if the housing price is above (below) its benchmark price, mean-

reverting investors believe that the price is overestimated (underestimated) and the

future price will decrease (increase).

Thus, the impact of investors’ speculative beliefs can be expressed as a nonlinear

mix of different forecasting rules

P I
n+1 = ωnP E

n+1 + (1 − ωn)P
MR
n+1 , (3.11)

where ωn and 1−ωn stand for the market fractions respectively of extrapolative and

mean-reverting investors.
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Different investors are assumed to have social interactions and they can switch

their forecasting rules with respect to market circumstances, following a formulation

by He and Westerhoff (2005) and Bauer, De Grauwe and Reitz (2009). Investors

seek to exploit price trends (that is, bull and bear markets). However, the more the

price deviates from its benchmark value, the more agents come to the conclusion

that a benchmark market correction is about to set in. As a result, an increasing

number of investors opt for the mean-reverting strategy. Furthermore, the relative

impact of extrapolators is formalized as

ωn =
1

1 + µ(Pn−1 − P )2
, (3.12)

where µ > 0 measures the speed of switching speed. The following proposition

characterizes the price dynamics of the above dynamic system.

Proposition 3.1. (Stabilities and Bifurcations) Let f ∗ denote a unique positive

solution of ∆ = 0 and f ∗∗ = 2(ϕIγIC)−1. Assume ∂2Pn/∂P 2
n−1|{Pn−1=P ∗

1
,f=f∗} < 0.

Then

(1) When 0 < f < f ∗, the benchmark price P is always stable.

(2) At f = f ∗, a saddle-node bifurcation occurs and two non-benchmark steady

states (P ∗
1 , P ∗

2 ) appear.

(3) When f ∗ < f < f ∗∗, P ∗
1 is unstable and P ∗

2 is stable while the stability of the

benchmark price P keeps invariant.

(4) At f = f ∗∗, a transcritical bifurcation occurs.

(5) When f > f ∗∗, the benchmark price P becomes unstable while both P ∗
1 and

P ∗
2 are stable.

Here P ∗
1 and P ∗

2 (> P ∗
1 ) are the solutions ofa(P ∗)3 + b(P ∗)2 + 
P ∗ + d = 0 (3.13)

where a =

[

ϕIγIg +
1

C

]

µ, b = −

[

2ϕIγIg +
1

C

]

µP,
 =
1

C
(1 − µP

2
) − ϕIγI(f − µgP

2
), d =

P

C
(1 + µP

2
).

Then the discriminant (∆) of (3.13) is

∆ = 27a2d2 − 18ab
d+ 4a
3 + 4b3d− b2
2.
3.2. Mechanism Analysis through Saddle-node Bifurcation. Proposition 3.1

shows that not only the benchmark price can be unstable but also system (3.7) can

have multi-attractors even when the benchmark price is stable. Here, the multi-

attractors comes from a saddle-node bifurcation when the extrapolative intensity
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Figure 4. Here take MB = 22.22, µ = 0.1, C = 0.1, γI = 21, g = 0.5

and ϕI = ϕB = 1 which correspond to the bifurcation points f ∗ =

0.8629 and f ∗∗ = 0.9524. Here in (b), the dash-dot lines correspond

to unstable steady states while stable steady states are given by solid

lines.

(f) of investors is not very strong, that is f ∗ < f < f ∗∗. In this situation, the stable

benchmark price and a stable non-benchmark price coexist in the simple evolutionary

model (3.7). The economic intuition is following: when investors’ extrapolative

intensity is relatively low (that is f ∗ < f < f ∗∗), for prices near the benchmark

level, investors’ extrapolative behavior is not strong enough to cause permanent

deviations from the benchmark price. In addition, because of the existence of real

demand and relatively low extrapolation, the prices cannot deviate downward from

the benchmark value very far and eventually converge back to it. For the upward

price trend that has deviated far away from the benchmark level, the extrapolative

trend-following behavior strengthens the upward deviation of prices with stronger

demands that feed back into price increases, which lets the price trend persistent and

predicable. However, this up trend cannot be sustained endlessly because of mean-

reverting investors in the market. As the prices deviate further from the benchmark

level, more and more investors form strong beliefs that the prices will mean revert.

As a result, an increasing number of investors opt for the mean-reverting strategy

and begin to sell houses, which increases the total house supply in the market.

This creates a balance between the buying and selling sides, which stabilizes the

equilibrium price at P ∗
2 . Therefore, the stable benchmark price (P ) and the stable

nonbenchmark price (P ∗
2 ) coexist in the whole system, separated by the unstable

nonbenchmark price (P ∗
1 ), as illustrated in Figure 4(a). However, if the extrapolative

intensity (f) of investors increases, then the stability of the benchmark price will

change at f = f ∗∗ because of a transcritial bifurcation. The nonbenchmark price
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P ∗
1 changes from unstable to stable. The whole system (3.7) still has two attractors,

that is two stable nonbenchmark prices. The coexistence of multi-attractors means

the evolutionary process of housing prices driven by investors’ speculative behavior

is path-dependent and depends on different initial market conditions, as illustrated

in Figure 4(b). Thus, if the determinants of initial prices were some local factors,

like local income, cultures, commodity prices and policy environment, then the

price changes would display the localization rather than national property. This

phenomenon can be used to explain one of the stylized facts in housing markets,

that is most variations in housing prices are local not national.

3.3. Policy implication. Figure 4 shows that the price trend persistent and pred-

icable. If the housing market is booming or busting, the model (3.7) shows some

fundamental factors can be used to adjust the housing prices, like the down pay-

ment ratio and the development cost. However, Proposition 3.1 shows that the down

payment adjustment has limited ability to affect the housing market with specula-

tive behavior because the down payment ratio mainly can affect the real demand of

house buyers. Comparatively, the development cost not only affects the supply of

developers but also determines the impact of investors on housing prices because f ∗

and f ∗∗ both depend on the development cost (C). Therefore, it is more effective

through adjusting the development cost. As follows, we use monthly Beijing housing

prices from February, 2002 to February, 2016 to test the explanation power of the

model (3.7) on the real housing market.

Note that system (3.7) is a deterministic nonlinear dynamic system while the real

data is a stochastic time series. To match this gap, based on the idea of He and Li

(2015b), a noise term is introduced in (3.7) as follows

Pn = G(Pn−1) =
m1,n(Pn−1) +

√

m2
1,n(Pn−1) + 4m0m2

2m0
+ εn, (3.14)

where εn ∼ N (0, σε) captures a market noise either driven by unexpected news

about fundamentals, or representing noise created by noise traders.

By a genetic algorithm, the parameters in system (3.14) can be calibrated shown

in Table 1. It shows that during the period from February, 2002 to February, 2016,

the extrapolative intensity (f) of investors is very strong and is much bigger than

the saddle-node and transcritical bifurcation points (f ∗ and f ∗∗) both, which means

that the benchmark price is unstable and the price will deviate from it upwards

because its initial price is bigger than the benchmark price. This gives one of the

explanations to the booming phenomenon of the Beijing housing market from the

viewpoint of investors’ behavior.

For the continuously increasing trend of the Beijing housing prices, the Beijing

government has taken many measures to cool down the Beijing housing market. For
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Time period ϕIγI m2 µ g C f f ∗ f ∗∗

2002-2016 1.2486 0.1562 0.1002 0.0884 1.9378 0.9543 0.6236 0.8266

2002-2010 1.0617 0.1937 0.3497 0.0526 1.5714 1.5212 0.9982 1.1988

2010-2016 1.7090 1.8027 0.1925 0.4011 1.7454 0.9740 0.6392 0.6705
Table 1. Optimal parameters

example, from April, 2010, the government took steps to cool the housing market

by increasing the down payment ratio. However, the data discovers that these

measures have little impact on the Beijing housing prices. Using the model (3.14),

some insights about the ineffectivity of adjusting the down payment ratio can be

revealed. In fact, the parameters of (3.14) can be calibrated corresponding to the

situations before and after the housing policy adjustments. From Table 1, before the

policy change, the extrapolative behavior is very salient, which makes the benchmark

price unstable because of f > f ∗∗. By contrast, after increasing the down payment

ratio, the extrapolative intensity is decreased while the mean-reverting speed is

increased. It seems that it would cool the market down because the mean-revering

behavior has the role of stabilizing the housing price and the extrapolative behavior

is weakened. However, in the housing market, all the parameters, not just one,

play a part together. Hence, on the whole, the extrapolative and mean-reverting

behavior cannot cool the market down because the extrapolative intensity (f) is still

bigger than f ∗∗. This means after increasing the down payment ratio, the situation

of the Beijing housing market has not been obviously changed, and the housing

price cannot regress back to its benchmark price but rather deviate further away.

Thus, the control strategy of housing prices based on the down payment policy is

ineffective.

4. Cross Sectional Momentum Trading in Continuous Time

Financial markets display puzzling and even controversial anomalies and hypothe-

ses, such as the different views on efficient market hypothesis and the volatility

clusterings discussed in the previous section. Very often, we observe a time-varying

dominance among the two controversial views; markets are more efficient over cer-

tain time periods but less efficient in other time periods. On the other hand, the

profitability of cross sectional momentum is well documented empirically. By con-

sidering cross sectional momentum trading in a continuous-time heterogeneous agent

model of two risky assets based on either economic fundamentals or price momen-

tums, He, Li and Wang (2018) provide a general framework to characterize the

coexistence of such controversial views on market efficiency and their time-varying

dominance in financial markets. From a globally nonlinear dynamics point of view,
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they show that the investment constrains can cause the coexistence of two different

and locally stable market states. Corresponding to the discrete case, the continuous

models can also generate multi-attractors via a Bautin bifurcation, corresponding

to a Chenciner bifurcation in a discrete-time model. Together with random shocks,

the coexistence underlies the time-varying dominance of different market states in

financial markets. This section briefs the main findings in He et al. (2018).

4.1. Cross Sectional Momentum Trading. Consider a financial market of two

risky assets (A and B), traded by fundamental investors, extrapolators, and noise

traders. To have an intuitive and parsimonious model, the demand functions are

based on agents’ behavior directly by following Chiarella (1992), He and Li (2012,

2015a) and Di Guilmi, He and Li (2014).10 The fundamental investors trade based

on the (log) book-to-market ratio and their excess demands are given by

Di
f,t = tanh[βf (F

i
t − P i

t )], i = A, B, (4.1)

where F i
t and P i

t are the log fundamental price and log market price of asset i re-

spectively at time t, and βf(> 0) is a constant measuring the mean-reverting of

the market price to the fundamental price. The S-shaped demand function tanh(·)

reflects various constraints faced by agents, such as the wealth constraint (the up-

per bound) and the short-sale constraint (the lower bound). For simplicity, the

fundamental prices are assumed to satisfy
(

dFA
t

dFB
t

)

= ΣF dW F
t , ΣF =

(

σF
A,1 σF

A,2

σF
B,1 σF

B,2

)

,

(

F A
0

F B
0

)

=

(

F̄ A

F̄ B

)

, (4.2)

where ΣF is the variance-covariance matrix for fundamental returns and W F
t =

(W F
1,t, W

F
2,t)

′ are two independent Brownian motions.

The literature has extensively documented that many individual and institutional

investors extrapolate historical returns,11 and shown that both time series momen-

tum (or absolute momentum) and cross-sectional momentum (or relative momen-

tum) widely used in practice can generate persistent and sizeable profits.12 Ac-

cordingly, extrapolators are also considered in the economy, who trade on short-run

price trends. The extrapolators estimate price trend using a moving average of

historical returns
∫ t

t−τ
dP i

u = P i
t − P i

t−τ , where dP i
u is the (log) instantaneous re-

turn of asset i, and τ is the look-back period of the extrapolation. There are two

10The demands in the continuous-time setup are consistent with those deriving from heteroge-

neous expectations and utility maximization in discrete time heterogeneous agent models literature,

see, for example, Brock and Hommes (1997, 1998).
11See, e.g., Vissing-Jorgensen (2004), Bacchetta, Mertens and van Wincoop (2009), Barberis

(2013), Amromin and Sharpe (2014), Greenwood and Shleifer (2014) and Kuchler and Zafar (2016).
12See, e.g., Jegadeesh and Titman (1993) and Moskowitz, Ooi and Pedersen (2012) among many

others.
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types of extrapolators, based on time series momentum (or absolute momentum)

and cross-sectional momentum (or relative momentum) respectively. The demands

of the absolute momentum investors for assets A and B are given, respectively, by

Di
a,t = tanh[βa(P

i
t − P i

t−τ )], i = A, B, (4.3)

where βa(> 0) represents the extrapolation rate of the absolute momentum investors

on the future price trend.

The cross-sectional momentum strategy has been extensively documented in the

literature (e.g., Jegadeesh and Titman, 1993; 2001 and Daniel and Moskowitz, 2016,

among many others). It is typically conducted by longing the winners, that is, the

stocks have higher past returns relative to other stocks, and shorting the losers,

that is, the stocks have lower past returns relative to other stocks. Accordingly, the

demands of the cross-sectional momentum investors are given by

DA
c,t = tanh{βc[(P

A
t − P A

t−τ ) − (P B
t − P B

t−τ )]},

DB
c,t = tanh{βc[(P

B
t − P B

t−τ ) − (P A
t − P A

t−τ )]},
(4.4)

where βc > 0 is a constant. Equation (4.4) implies that the cross-sectional momen-

tum strategy is a zero-investment strategy by taking a long position in one asset

and short position in the other asset simultaneously. The time horizon τ is assumed

to be the same for both assets to be consistent with the cross-sectional momentum

literature.

Therefore, both fundamental and absolute momentum investors focus on only

individual asset, while the cross-sectional momentum investors trade on two assets

simultaneously. The market fractions of the three types of investors who trade on

asset i are αi
f , αi

a and αi
c respectively, satisfying αi

f +αi
a+αi

c = 1. Notice αi
c measures

the market fraction rather than the number of traders. So it can be different for the

two assets even though the cross-sectional momentum investors are the same group

of investors across the two risky assets.

The market maker adjusts the market price according to the aggregated excess

demand

dP A
t = µA

[

αA
f tanh[βf(F

A
t − P A

t )] + αA
a tanh[βa(P

A
t − P A

t−τ )]

+ αA
c tanh{βc[(P

A
t − P A

t−τ ) − (P B
t − P B

t−τ )]}
]

dt + σM
A dW M

t ,

dP B
t = µB

[

αB
f tanh[βf(F

B
t − P B

t )] + αB
a tanh[βa(P

B
t − P B

t−τ )]

+ αB
c tanh{βc[(P

B
t − P B

t−τ ) − (P A
t − P A

t−τ )]}
]

dt + σM
B dW M

t ,

(4.5)

where µi(> 0) represents the adjustment speed of asset i’s price by the market

maker, ΣM =

(

σM
A

σM
B

)

=

(

σM
A,1 σM

A,2

σM
B,1 σM

B,2

)

is the variance-covariance matrix for
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the market returns, and W M
t = (W M

1,t , W
M
2,t )

′ represent two independent Brownian

motions, measuring the demands of noise traders or market noises. They can be

correlated with the fundamental shocks W F
t . Especially, if ΣM is a diagonal matrix,

then the conditional volatility of one asset cannot be affected by the other asset

and hence any spill-over effect in realized volatility cannot be introduced by this

term. However, the two assets are still linked via the fundamental correlation and

the relative momentum investors.

The asset price model (4.5) is characterized by a nonlinear stochastic delay differ-

ential system. The resulting returns are linear functions of three factors, including

a fundamental component and two momentum components, in addition to a noise

term.13

4.2. Co-existing Attractors via Bautin Bifurcation. By assuming a constant

fundamental price F i
t = F̄ i and no market noise ΣM = 0, system (4.5) becomes a

deterministic system of delay differential equations, representing the mean processes

of market returns of the two risky assets. By exporing the roles of different types of

traders, He et al. (2018) obtain the following Proposition 4.1.

Proposition 4.1. For the deterministic model,

(1) it has a unique fundamental steady state (P A, P B) = (F̄ A, F̄ B);

(2) the fundamental steady state is locally asymptotically stable for all τ ≥ 0

under condition C;

(3) the fundamental steady state is locally asymptotically stable for τ ∈ [0, τ0)

and becomes unstable for τ > τ0 under condition C;

(4) it undergoes a Hopf bifurcation at τ = τ0 under condition C. In addition,

if T
c1(0)

< 0 ( T
c1(0)

> 0), then the bifurcation is forward (backward), and the

bifurcated periodic solution is stable (unstable) when c1(0) < 0 (c1(0) > 0).

At c1(0) = 0, a Bautin bifurcation takes place.

Here C, C, T and the first Lyapunov coefficient c1(0) are defined in He et al. (2018).

Proposition 4.1 shows that the corresponding deterministic system has bistable

dynamics, that is, the coexistence of a stable fundamental steady state and a stable

cycle because of a Bautin bifurcation. It means the evolutionary process depends

on the market situation, which is used to explain the volatility clustering in the

previous section. However, with multi-assets, there exists integration effect among

the assets.

13In a consumption-based asset pricing model where sentiment investors extrapolate the ex-

pected returns using all historical returns, Barberis, Greenwood, Jin and Shleifer (2015) show that

the return process is linear in the dividend process and the extrapolators’ belief. Empirically, Grin-

blatt and Moskowitz (2004) and Heston and Sadka (2008), among others, find that the historical

average returns over a short-run horizon can positively forecast return in the cross-section.
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Figure 5. The branch of Hopf bifurcation in (τ, βc)-plane.

Fig. 5 illustrates the extension the Hopf branch bifurcated from the first bifur-

cation point in (βc, τ)-plane. The upper line is a Hopf bifurcation branch, and the

bifurcated periodic solution is unstable. The middle line separates the (τ, βc)-plane

into stable and unstable regions of the fundamental steady state, showing that the

bifurcation value for τ decreases when βc is increasing. Also τ tends to the bifurca-

tion value τ0 for decoupled model as βc approaches 0. Through this line, backward

or forward Hopf bifurcation occurs, depending on the value of βc. For any βc < β∗
c ,

there exists an interval for τ (as indicated by the red solid line), on which the system

has bistable dynamics characterized by the coexistence of a stable steady state and

a stable cycle.

To examine the impact of cross-sectional momentum trading on the bistable dy-

namics, He et al. (2018) compare three scenarios. In the first scenario, the two

separate risky asset prices have forward and stable bifurcations before introducing

cross-sectional momentum trading among two risky assets. By allowing the cross-

sectional momentum trading, the two assets are integrated into one market, gener-

ating forward and stable bifurcations. In the second scenario when the two prices

have backward and unstable bifurcations before integration, the integrated market

can have either backward (unstable) bifurcation or forward (stable) bifurcation. In

the third scenario when one risky price has backward (unstable) bifurcation and

the other has forward (stable) bifurcation, the integrated market can also have ei-

ther backward (unstable) bifurcation or forward (stable) bifurcation. These analyses

show that the momentum trading can enhance the local stability of the limit cycles

(meaning a larger parameter region or basin of the attraction for the bifurcated
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period solution). This provides another destabilizing channel of the cross-sectional

momentum trading on market prices, reducing the parameter region of the local sta-

bility and enhancing cyclical price oscillation around the fundamental steady state.

4.3. Volatility Spill-over and Empirical Implications. Intuitively, the bistable

dynamics is caused by the constraints faced by investors. The wealth and short-sale

constraints limit the activity and hence the stabilizing effect of the fundamental

traders, reducing the basin of the attraction of the fundamental steady state. When

the initial values are far away from the fundamental steady state, the prices tend to

depart further away. At the same time, the wealth and short-sale constraints also

limit the destabilizing role of the momentum investors. Consequently, the prices

cannot explode but settle down at a stable cycle around the fundamental steady

state. Therefore, the constraints limit the strengths of both local attractors (the

stable steady state and the stable limit cycle), resulting in bistable dynamics.

With the Bautin bifurcation, a locally stable fundamental steady state coexists

with a locally stable limit cycle around the fundamental, displaying two very dif-

ferent market states. With small deviations of market price from the fundamental

price, market prices tend to be more efficient; however with cyclical fluctuations

around the fundamental price, it enhances cross-sectional price momentum, leading

to less efficient markets. Triggered by random shocks, market prices then switch

stochastically between the two persistent market states. This characterizes the co-

existence of seemingly controversial efficient market and price momentum.

He et al. (2018) also provide some empirical implications. First, a strong integra-

tion via the cross-sectional momentum can result in comovements in asset prices in

opposite directions. Second, cross-sectional momentum trading can give rise to a

spillover effect in momentum, and can reduce the correlation of stock returns. More

interestingly, the model suggests that cross-sectional momentum trading tends to

be self-fulfilling in the sense that it destabilizes the market and generates additional

price trends in cross-section.

He et al. (2018) numerically examine the spillover effect for two assets by exploring

the joint impact of the integration intensity βc and the two noise processes on the

market price dynamics. This is illustrated in Fig. 6. Figs. 6 (a) and (b) show

that the stochastic price of asset A has greater fluctuations than asset B. Figs.

6 (c) and (d) illustrate the prices after the market integration (that is, βc > 0).

They illustrate that the market integration increases the volatilities for both assets,

however, the correlation is reduced comparing to (a) and (b). In fact, the cross-

sectional momentum trading leads to an opposite movements of the two assets, and

hence a smaller correlation after market integration. Therefore market integration

increases the volatilities for those two assets, but reduces return correlations. Based
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Figure 6. The spill-over effect—The time series of log market prices

and log fundamental prices for assets A and B.

on the data of S&P 100 index, NYSE, AMEX and NASDAQ stocks, He et al.

(2018) show that the real markets support the model implication that cross-sectional

momentum trading trends to reduce the correlations among stocks but destabilizes

the market and leads to more significant price trends in cross-section. The empirical

findings are consistent with the underlying dynamics.

5. Exchange Rate Models in Continuous Time

From the viewpoint of nonlinear dynamical systems, the appearance of multi-

attractors can be through a pitchfork bifurcation which can directly generates two

new stable attractors. This phenomenon is studied by Chiarella, He and Zheng

(2013) in a continuous-time model of exchange rates. The exchange rates depend

on not only on macroeconomic factors based on domestic-foreign interest rate dif-

ferential, but also the expectations of boundedly rational portfolio managers who

use a weighted average of the expectations of fundamental and trend extrapolation.

By analyzing different roles of the macroeconomic factor and investor heterogeneity,
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they show that this simple model can generate very complicated market behavior,

including multiple steady state equilibria, deviations of the market exchange rate

from the fundamental, and market fluctuations. Numerical analysis demonstrates

that the corresponding stochastic model is able to generate typical time series and

volatility clustering patterns observed in exchange markets.

5.1. Nonlinear Dynamics of Exchange Rates. Consider an exchange market

populated by many portfolio managers who use a weighted average of the expecta-

tions of fundamentalists and chartists as specified below. Let R∗ and R respectively

be the foreign and domestic (nominal) rates of interest, E the logarithm of the

current exchange rate measured in units of domestic currency per unit of foreign

currency, P the logarithm of the domestic price level, M the logarithm of the do-

mestic nominal money supply, and Y the logarithm of the domestic real output.

Here R∗, M and Y are taken to be exogenous.

The fundamental traders believe that the depreciation of the spot rate should

regress to the fundamental value, determined by the interest rate parity condition.

That is, the expected rate of exchange depreciation of the fundamentalists (Xf) is

assumed to be mean-reverting to the nominal interest rate differential R − R∗,

Ẋf = βf

(

R − R∗ − Xf
)

, (5.1)

where βf(> 0) measures the adjustment speed of the mean-reverting process.

In contrast, the trend extrapolators believe that the change of the log-exchange

rate (Xc) follows a weighted average of past changes of the log-exchange rate,

Ẋc = βc(Ė − Xc), (5.2)

where βc(> 0) measures the adjustment speed to the change of the log-exchange

rate or the extrapolation rate to the log-exchange rate trend.

The portfolio managers, such as large financial institutions, make their decision

by taking a weighted average of the expectations of the fundamental traders and

trend extrapolators,

Xm = H
(

(1 − ω)Xf + ωXc
)

, ω ∈ [0, 1], (5.3)

where Xm is the expected rate of exchange depreciation of the portfolio managers,

ω and 1 − ω represent the market fractions that the portfolio managers attach to

the expectations of the trend followers and fundamental traders, respectively, and

H(x) = µh(x) is a function of the expectations mix that is nonlinear due to the

cautiousness of the portfolio managers, satisfying

h(0) = 0, h′(0) = 1, lim
x→±∞

h′(x) = 0, and h′′(x)x < 0 for x 6= 0. (5.4)
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Note that µ = H ′(0) = maxx H ′(x) measures the weight that the portfolio managers

put on the expectations when their expected rates of exchange depreciation are near

zero.

A general model of log-exchange rate adjustment is assumed to be determined by

portfolio managers and some macroeconomic fundamental factor as follows

Ė = Xm + Z, (5.5)

where Xm is defined by (5.3) and Z represents a macroeconomic fundamental factor

determined by the nominal interest rate differential,

Z = βR(R∗ − R), (5.6)

where βR(> 0) measures the impact of the fundamental factor on the exchange

depreciation in the market. The domestic interest rate is determined by the nominal

quantity of money, the real income and the goods price via

α1Y − α2R = M − P, where α1, α2 > 0. (5.7)

For the goods price, the specification in the original Dornbusch (1976) model is

adopted to assume that it follows a sluggish adjustment process according to which

the rate of the log-domestic price adjusts to excess demand, which is a decreasing

function of the output and domestic nominal interest rate and an increasing function

of the relative price E − P ,

Ṗ = ρ
[

β0 − β1Y − β2R + β3(E − P )
]

, (5.8)

where ρ > 0, β1 ∈ (0, 1), β2 > 0, β3 > 0 and β0 is a shift parameter.

To sum up, the model of exchange rate, price and the heterogeneous expectations

becomes


















Ė = H
(

(1 − ω)Xf + ωXc
)

+ βR(R∗ − R),

Ṗ = ρ
[

β0 − β1Y − β2R + β3(E − P )
]

,

Ẋf = βf (R − R∗ − Xf),

Ẋc = βc(Ė − Xc),

(5.9)

with R = (α1Y − M + P )/α2. Note that the classical Dornbusch model can be

recovered from (5.9) if, under the conditions µ = H ′(0) = βR + 1 and H(x) = µx,

it is assumed either ω = 0 and βf = ∞, or ω = 1 and βc = ∞. Also, by choosing

ω = 1, βc = ∞, H(x) = γx and βR = γ, the model (5.9) yields the Gray and

Turnovsky (1979) model with sluggish adjustment in the exchange rate.

Let S := (Ē, P̄ , X̄f , X̄c) be a steady state of system (5.9). Then S0 := (E∗, P ∗, 0, 0)

is the fundamental steady state in which the zero interest rate parity condition holds,

that is R̄ − R∗ = 0, where E∗ and P ∗ are defined by

P ∗ = M − α1Y + α2R
∗, E∗ =

1

β3

[−β0 + β1Y + β2R
∗ + β3P

∗]. (5.10)
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It corresponds to the classical equilibrium of the exchange rate in the Dornbusch

(1976) model. When µ(1 − ω) > βR, there are two other solutions, X̄f = X∗
±,

satisfying X∗
− < 0 < X∗

+. The condition µ(1 − ω) > βR can be interpreted as

either the portfolio managers giving a higher weight (relatively) to the expecta-

tions of the fundamentalists, or that they are having a greater impact relative to

the macro-environment factor. Correspondingly, system (5.9) has both the funda-

mental equilibrium and other non-fundamental equilibria, S± := (Ē, P̄ , X̄f , X̄c) =

(Ē±, P̄±, X∗
±, 0) with Ē± = E∗ + (β2

β3
+ α2)X

∗
± and P̄± = P ∗ + α2X

∗
±. Furthermore,

the following properties can be obtained.

Proposition 5.1. For the deterministic system (5.9), assume βp < βf = βc, and

µ = 1. Let φ := βf = βc and

ω∗ = 1 +
β2

p + βe(βR + 1) −
√

(

β2
p − βe(1 + βR)

)2
+ 4βpβe(βp + φβR)

2βpφ
.

(a) If βR ≤ 1, then 1 − βR < ω∗ < 1 and the fundamental equilibrium S0 (i)

is unstable for 0 < ω < 1 − βR; (ii) undergoes a pitchfork bifurcation at

ω = 1 − βR; (iii) is stable for 1 − βR < ω < ω∗; (iv) undergoes a Hopf

bifurcation at ω = ω∗; (v) is unstable for ω∗ < ω < 1.

(b) If βR > 1, then 0 < ω∗ < 1 and the fundamental equilibrium S0 (i) is stable

for 0 < ω < ω∗; (ii) undergoes a Hopf bifurcation at ω = ω∗; (iii) is unstable

for ω∗ < ω < 1.

Proposition 5.1 shows how changes in the weight ω lead to different market be-

havior. When ω = 0, S0 undergoes a pitchfork bifurcation at βR = µ. When ω = 1,

S0 undergoes a Hopf bifurcation at βp = βc. For 0 < ω < 1, the stability and the

induced bifurcations are illustrated by the bifurcation plot of the log-exchange rate

E in terms of the parameter ω in Figure 7. It shows different types of bifurcations

when the market expectation is dominated by either one of the expectation schemes.

When S0 loses its stability for ω < 1 − βR because of the appearance of two sta-

ble non-fundamental equilibria (S±) from a pitchfork bifurcation, the expectations

of the fundamentalists are responsible for the induced pitchfork bifurcation, while

the expectations of the chartists are responsible for the induced Hopf bifurcation at

ω = ω∗. Also, a mixture of the two expectations can stabilize an otherwise unstable

steady state S0 when ω ∈ (1 − βR, ω∗). This stabilizing effect of combining differ-

ent types of expectations is also shared by asset pricing models with heterogeneous

beliefs (see, for example, Chiarella and He, 2002).

5.2. Stochastic Dynamics and Mechanism Analysis. The model analyzed

above is entirely deterministic. However, in the real exchange market, there al-

ways exist some noise factors which have an important influence on the exchange
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Figure 7. The bifurcation of the log-exchange rate E in terms of the

parameter ω ∈ [0, 1] for µ = 1, βR = 0.85, βf = 0.8 and βc = 0.8.

The fundamental steady state undergoes a pitchfork bifurcation at

ω = 1 − βR = 0.15, and a Hopf bifurcation at ω = ω∗ = 0.8286.

rate dynamics. To capture this effect, the first equation in (5.9) is replaced by the

stochastic differential equation

dE =
[

H
(

(1 − ω)Xf + ωXc
)

+ β
(

R∗ − R
)

]

dt + σEdWE, (5.11)

where WE , representing the market noise, is a Wiener process on a probability space

(Ω, F , P) with zero drift and unit variance per unit time and σE > 0 measures the

intensity of the market noise.

In addition, in order to capture the different dynamics induced by the change

in the weighting parameter in the deterministic model, the market fraction of the

fundamentalists or chartists (1−ω or ω) will not be treated as constant but allowed

to randomly change14. Let µ = 1, βR = 0.85, βf = 0.8 and βc = 0.8 as in Figure

7. Based on Proposition 5.1, it is uncovered that changes in ω lead to the existence

of three types of dynamics with a stable fundamental steady state (Case F , for

example ω = 0.25), two stable non-fundamental steady states (Case P, for example

ω = 0.1) and a stable limit cycle (Case H, for example ω = 0.85), see Figure 7. To

allow for all three types of behavior, the market fraction ω is assumed to follow a

simple discrete random choice process satisfying

dωt = (ξ − ωt−)dNt, (5.12)

14Another mechanism for changing weights could be based on some fitness measure, which has

been widely used in asset pricing models with heterogeneous beliefs following Brock and Hommes

(1998) and De Grauwe and Grimaldi (2006) in exchange markets.



HETEROGENEOUS AGENT MODELS 27

where Nt is a compound Poisson process with jump intensity λ. This means that

when dNt = 0, the market fraction remains at the original level ωt−, while when

dNt = 1, the market fraction ωt+ = ξ follows a Markov chain with three discrete

states {ωP , ωF , ωH} and the transition probability matrix P given by

P F H

P =







0.9 0.1 0

0.25 0.4 0.35

0 0.95 0.05







P

F

H

.

The size of the noises is given by σE = 0.0158 per trading period and λ = 0.05

(meaning that, on average, there is one jump for every 20 trading periods).

As discussed by De Grauwe and Grimaldi (2006), a great deal of empirical re-

search has uncovered many puzzles or anomalies in exchange markets, for example

disconnection from fundamental factors, excess volatility, volatility clustering and

fat tails. Based on the stochastic model with the deterministic skeleton (5.9) in

company with two noise processes (5.11) and (5.12), Figure 8(a) shows a typical

time series of the log-exchange rate and Figure 8(b) shows the corresponding re-

turn series. They display persistent deviation of the market exchange rate from

the (constant) fundamental exchange rate and irregular switching between phases

of low volatility with returns close to zero and phases of high volatility. This is be-

cause the weight between the fundamentalists and chartists changes stochastically,

as illustrated in Figure 9. For different weights, the exchange rate has different

stability properties. When ω = 0.25, the fundamental exchange rate converges to

the fundamental steady state equilibrium and the corresponding time series shows

such a converging tendency. However, when ω = 0.10, the fundamental equilibrium

is unstable and another two stable non-fundamental steady states co-exist. In this

case, the time series undergoes a deviation from the fundamental equilibrium. When

ω = 0.85, there is a stable limit cycle around the unstable fundamental equilibrium

for the deterministic model and the time series shows a fluctuation around the fun-

damental equilibrium level. Not surprisingly, adding the dynamical noise to the

system destroys the regularity of the exchange rate around the (non-)fundamental

steady state or the cycle, and leads to an irregular switching between phases of low

volatility (where the fundamental equilibrium is stable) and phases of high volatility

(where the fundamental equilibrium is unstable), and to deviation from the under-

lying fundamental equilibrium most of the time. Furthermore, the density of the

log-exchange rate is bimodal as observed in Figure 8(c) and the return of the ex-

change rate in Figure 8(b) shows volatility clustering. In addition, the absolute

and squared returns in Figures 8(g) and (h) display strong positive autocorrelations

(ACs), but the ACs of the return in Figure 8(f) are insignificant (except the first
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Figure 8. Statistical analysis of the simulation results.

few time lags). The distribution of the exchange rate return in Figures 8(d) and

(e) is non-normal with fat tails. These effects correspond to most of the stylized

facts observed in exchange markets. Overall the results indicate that heterogeneous

beliefs in exchange markets can potentially explain the puzzles and anomalies of

exchange rates to a certain extent and the interaction between the fundamental-

ists and chartists is a potential source of the mechanism generating some of those

characteristics.
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Figure 9. Time series of the log-exchange rate and the market frac-

tion of the chartists from Time 1000 to Time 2000.

6. Conclusion and Future Research

In the last twenty years, the literature on heterogeneous agent models (HAMs)

in finance has experienced significant growth. HAMs have proved their promising

perspectives and explanatory power of various market anomalies and, in particular,

the stylized facts of financial markets. Different from traditional empirical finance

and financial econometrics, HAMs provide insights into economic mechanisms and

driving forces of these stylized facts. This paper selectively reviews the latest devel-

opment of HAMs from a nonlinear dynamics approach perspective.

In a discrete time setting, a simple asset pricing model with two types of bound-

edly rational traders, fundamentalists and trend followers, and noise traders, can

provide the coexistence of two attractors, a locally stable steady state and a locally

stable invariant circle. The interaction of the deterministic dynamics and noise pro-

cesses can endogenously generate volatility clustering and long range dependence

in volatility markets. Economically, volatility clustering occurs when neither the

fundamental nor trend following traders dominate the market, which corresponds

to the coexistence of the two attractors, and when traders switch more often be-

tween the two strategies. The coexistence of multi-attractors can also be generated

when the fundamental steady state is locally stable but globally unstable because

of the appearance of a new, nonfundamental and stable steady state coming from a

saddle-node bifurcation. Zheng et al. (2017) explore this to model housing market

dynamics, which have only very recently been investigated from the perspective of

HAMs.

Compared with discrete time, a continuous time setting has advantages to be able

to provide a unified framework to deal with historical prices. In a continuous-time

multi-assets HAM, investment constraints can lead to the coexistence of a locally

stable fundamental steady state and a locally stable limit cycle around the fun-

damental, characterized by a Bautin bifurcation. This provides a mechanism for

market prices to switch stochastically between the two persistent but very different
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market states, leading to the coexistence and time-varying dominance of seemingly

controversial efficient market and price momentum over different time periods. The

rich dynamics of continuous time HAMs can be extended to model other financial

markets such as foreign exchange markets. Foreign exchange rates not only rely

on macroeconomic factors but also have an investor heterogeneity component. The

driving macroeconomic factor is the domestic-foreign interest rate differential, while

the investor heterogeneity is described by the expectations of boundedly rational

portfolio managers who use a weighted average of the expectations of fundamen-

talists and chartists. The simple model is able to generate complicated market

behavior, including the existence of multiple steady-state equilibria, deviations of

the market exchange rate from the fundamental one and market fluctuations.

The models reviewed in this paper can be developed further in future researches.

While the heterogeneity of investors in financial markets has been widely accepted

and documented in the literature, there is also large literature on social interactions

and social networks. Incorporating social interactions and social networks to HAMs

would be helpful for examining their impact on financial markets and asset pricing.

He, Li and Shi (2016) recently develop a simple evolutionary model of asset pricing

and population dynamics to incorporate social interactions among investors with

heterogeneous beliefs on information uncertainty. They show that social interactions

can lead to mis-pricing and coexistence of multiple steady state equilibria, generating

two different volatility regimes, bi-modal distribution in population dynamics, and

stochastic volatility. As pointed out by Hirshleifer (2015), [T]he time has come to

move beyond behavioral finance to social finance. This would provide a fruitful area

of research in the near future.

It is promising to study housing market dynamics from the perspective of HAMs.

The existing models are mainly aimed at qualitative or quantitative investigations

of the role of price extrapolation in generating house price fluctuations. One way to

expand this is to explain existing home sales. Existing home transaction in general

exceeds new home sales, hence is more important for both price and financing.

Another is to consider patterns of house price distributions because the prices of

some central places, such as Beijing, have a profound influence for house prices in

its neighborhood.
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