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ABSTRACT

RANKL can promote the differentiation of osteoclast precursors into mature osteoclasts 

by binding to RANK expressed on the surfaces of osteoclast progenitor cells during 

bone remodelling. The NF-κB signalling pathway is downstream of RANKL and 

transmits the RANKL signal to nuclear promoter-bound protein complexes from cell 

surface receptors, which then regulates target gene expression to facilitate 

osteoclastogenesis. However, this important role of the NF-κB signalling pathway is 

usually ignored in published mathematical models of bone remodelling. This paper 

describes the construction of a mathematical model of bone remodelling in a normal 

bone microenvironment with inclusion of the NF-κB signalling pathway. The model 

consisted of a set of ordinary differential equations and reconstructed variations in the 

bone cells, resultant bone volume, and biochemical factors involved in the NF-κB 

signalling pathway over time. The model was used to investigate how the NF-κB 

pathway is activated in osteoclast precursors to promote osteoclastogenesis during bone 

remodelling. Model simulations agreed well with published experimental data. It is 

hoped that this model can improve our understanding of bone remodelling. It has the 

obvious potential to examine the influence of NF-κB dysregulation on bone 

remodelling, and even propose potential therapeutic strategies to combat related bone 

diseases in future research. 

Keywords: Bone remodelling; mathematical model; NF-κB signalling pathway 
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1. INTRODUCTION 

Bone is a special tissue that experiences continuous repair, renewal, and adaptation 

throughout its lifetime via bone remodelling processes [1]. Studies have revealed that 

the RANK-RANKL-OPG pathway is an essential regulator during bone remodelling 

[2]. The Receptor Activator of NF-κB Ligand (RANKL) [3], primarily secreted by 

immature osteoblasts, can bind to the Receptor Activator of NF-κB (RANK) expressed 

on the surfaces of osteoclast progenitors, thereby the promoting differentiation of 

osteoclast precursors into mature osteoclasts. On the other hand, RANKL-regulated 

osteoclastogenesis can be inhibited by osteoprotegerin (OPG), which is secreted 

primarily by active osteoblasts and serves as a soluble decoy receptor for RANKL [4].  

Nuclear factor-kappa B (NF-κB) refers to a transcription factor family containing 

five members: NF-κB1 (p50/p105), NF-κB2 (p52/p100), RelA (p65), RelB, and cRel 

[5]. NF-κB1 and NF-κB2 are produced as large precursors, initially as p105 and p100, 

which then form mature subunits, p50 and p52, respectively [6]. Because p50 and p52 

both lack a C-terminal transcription activation domain required for DNA binding, they 

dimerize RelA, RelB, and cRel to form heteromeric complexes. NF-κB is present in 

almost all cell types and plays an essential role in a number of physiological processes, 

including cytokine inflammation, immune response, cell proliferation, and survival [7]. 

NF-κB is tightly regulated and can be activated through two distinct signalling 

pathways: the canonical and non-canonical pathways. The canonical pathway, mediated 

by RelA/p50 heterodimers, is activated early in response to cytokines such as RANKL 

and TNF, and its activation is transient [8, 9]. By contrast, the non-canonical pathway, 

related to the differentiation of p100 into p52, activates several hours later and lasts for 

many hours [8]. Publications that mention NF-κB and NF-κB activity usually refer to 
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the NF-κB pathway.  

After the first discovery of NF-κB's role in bone cells in the mid-1990s, the 

following series of studies revealed that NF-κB serves as a downstream signalling 

pathway of RANKL [9-15] and is required for the formation of mature osteoclasts from 

their precursors rather than differentiation of myeloid cells into osteoclast precursors. 

After stimulation by RANKL, the canonical pathway is activated rapidly in osteoclast 

precursors [16] to promote the production of transcription factors necessary for 

osteoclastogenesis [17]. On the other hand, the non-canonical pathway is not needed 

for basal osteoclast formation [18] but is involved in enhancing osteoclastogenesis, for 

example, caused by metastatic cancer in bone and in inflammatory arthritis [9]. 

Mathematical models have been utilized by a number of researchers to improve 

our understanding of complicated biological processes, including bone remodelling, 

based on fragmented experimental data [4, 19-28]. These studies have indeed obtained 

many useful findings and demonstrated that mathematical modelling is an effective way 

to investigate complicated biological processes. However, NF-κB, which plays a very 

important role in osteoclastogenesis in the downstream signalling of RANKL, has thus 

far not been considered in these models of bone remodelling [4, 19-25]. In this context, 

this paper describes the construction of a mathematical model of bone remodelling by 

including the NF-κB pathway mechanism and its function in bone remodelling. The 

model can not only simulate the coupling between osteoclastic and osteoblastic lineages, 

but also can investigate how the NF-κB pathway is activated in osteoclast precursors 

and then regulates osteoclastogenesis after activation by RANKL. The model can 

potentially be used to examine the influence of NF-κB dysregulation on bone 

remodelling. It may even suggest potential therapeutic strategies for mitigating bone 

diseases in future research.  
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2. MODEL DEVELOPMENT 

2.1 BASIC STRUCTURE OF THE MODEL 

A schematic diagram of the proposed model is shown in Figure 1, demonstrating how 

bone cells in the bone microenvironment cooperate during bone remodelling. The role 

of the NF-κB signalling pathway is included in the model. The canonical NF-κB 

pathway is activated in osteoclast precursors (OCp) by RANKL-RANK binding and 

then regulates osteoclastogenesis during bone remodelling, whereas the non-canonical 

pathway does not participate in basal osteoclast formation [18]. Thus, only the 

canonical pathway was considered in our model. For this reason, the NF-κB signalling 

pathway and NF-κB mentioned later in this paper refer only to the canonical pathway 

and the RelA/p50 heterodimer, respectively. 

Figure 1 consists of two parts: part A describes the coupling mechanism between 

the osteoblastic and osteoclastic lineages during bone remodelling cycles, and part B 

presents how the RANKL signal is transmitted to the osteoclast precursors to promote 

osteoclastogenesis through the NF-κB signalling pathway. Osteoclastic and osteoblastic 

lineages contain several intermediate stages; however, our model only considers the 

important stages described in the model of Pivonka et al. [4]. To be specific, these are: 

uncommitted progenitors (OBu), osteoblast precursors (OBp), active osteoblasts (OBa), 

and apoptotic osteoblasts (OBap) for the osteoblastic lineage; and osteoclast precursors 

(OCp), active osteoclasts (OCa), and apoptotic osteoclasts (OCap) for the osteoclastic 

lineage. The interaction between osteoblastic and osteoclastic lineages was discussed 

in previous work [4, 23] and will not be elaborated here. This paper focuses on a 

discussion of how RANKL affects osteoclastogenesis through the NF-κB signalling 

pathway in OCp during bone remodelling. 
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Part B presents the underlying mechanism by which the NF-κB signalling pathway 

is activated in OCp by RANKL, and then regulates osteoclastogenesis. In resting or un-

stimulated cells, NF-κB heterodimers are inactivated and kept in the cytoplasm by 

inhibitors of NF-κB signalling, IκBs [9]. IκBs, including IκBα, IκBβ, IκBγ, and IκBε, 

can bind to NF-κB heterodimers and disturb their nuclear localization signals [8]. In 

this model, only IκBα was considered because NF-κB (RelA/p50) heterodimers were 

held primarily by IκBα. The NF-κB signalling pathway is activated by the cytoplasmic 

IκBα kinase (IKK), a trimeric complex consisting of IKKα, IKKβ, and IKKγ [10]. In 

resting or un-stimulated OCp cells, IKK is neutral (denoted by IKKn). Upon stimulation 

of RANKL, IKK is activated (denoted by IKKa) and begins to phosphorylate IκBα, 

further leading to its polyubiquitination and degradation. This degradation releases NF-

κB heterodimers. The free NF-κB heterodimers then enter the nucleus from the 

cytoplasm and up-regulate transcription of c-Fos, NFATc1, and another two 

transcription factors required for osteoclastic precursor differentiation, as well as IκBα 

and A20, two inhibitors of the NF-κB signalling pathway [29]. These inhibitors can 

then limit subsequent NF-κB translocation and trigger a negative feedback loop. To be 

specific, the newly synthesized IκBα enters the nucleus, renders the NF-κB 

heterodimers inactive, and returns them to the cytoplasm, whereas newly expressed 

A20 promotes the transformation of active IKK to into its inactive form (denoted by 

IKKi), in which it is unable to phosphorylate IκBα [30]. 

2.2   MODEL EQUATIONS 

The model utilized nineteen ordinary differential equations (ODEs) to simulate the 

interaction between the osteoclastic and osteoblastic lineages, including the role of the 

NF-κB signalling pathway, as shown in Figure 1. The first four ODEs (Eqs. (1) – (4)) 
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describe variations in the bone cells and bone volume over time, whereas the remaining 

fifteen ODEs (Eqs. (A1) – (A15)) represent the temporal variations of the biochemical 

factors involved in the NF-κB pathway. Following a series of models [4, 22, 23, 31] 

developed earlier for mimicking bone remodelling cycles, Eqs. (1) – (4), were 

constructed as follows:  

�
�� ��� = ���	 ∙ ���,��	

���� ∙ ��� − ���� ∙ ����,���
���� ∙ ���          (1) 

�
�� ��� = ���� ∙ ����,���

���� ∙ ��� −  ���� ∙ ���                 (2) 

�
�� ���  = ���� ∙ ���,���

��� ∙ ��� −  ���,���
���� ∙ ���� ∙ ���        (3) 

�
�� �� = −���� · ��� +  ����� ∙ ���                       (4) 

where: ��� , ��� , ��� , and ��  are four state variables, and ����
��   represents the 

temporal variations in ���, for example. The definition of variables and parameters 

used in Eqs. (1) – (4) are listed in Table 1 and Table 2. The model utilizes ‘Hill functions’ 

to simulate the functions of the ligand and receptor binding. ‘Hill functions’ are denoted 

by π functions in the forms of ��� and ����, which represent the stimulating and 

inhibiting functions of the ligand-receptor binding, respectively. The definitions of ‘Hill 

functions’ used in the model are all described in detail in the Appendix A. Following 

the model of Pivonka et al. [4], ���,��	
����  and ���,���

����  represent TGF-β stimulating 

���  differentiated into ���  and promoting the apoptosis of ���  respectively. 

����,���
����  describes that TGF-β suppresses the differentiation of ��� into ���. TGF-

β represents the concentration of TGF-β. The definitions of the TGF-β concentration 

and π functions are listed in Tables A1 and A2 of the Appendix A, respectively.  

As discussed above, NF-κB plays a pivotal role in osteoclastogenesis; however, it 

has been ignored in prior models [4, 22, 23, 31]. The distinct feature of our model is the 
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introduction of a new π function, denoted by TFs
OCact p, , which represents the stimulation 

of ��� differentiation into ��� by NF-κB-regulated transcription factors, including 

c-Fos, NFATc1, and other factors. The definition of TFs
OCact p, is as follows: 

���,���
��� = ���

������,���,���
                       (5) 

where  represents the concentration of NF-κB-regulated transcription factors and 

��,���,�� represents the activation coefficient related to  binding on ���. The 

calculation of the  concentration requires mathematical modelling of the NF-κB 

signalling pathway. Here, a mathematical model developed by Lipniacki et al. [29] was 

extended to mimic the NF-κB signalling pathway as depicted in Figure 1. The extended 

model consists of fifteen ODEs, including Eqs. (A1) – (A15) in the Appendix A, and 

describes the temporal variations in the biochemical factors involved in the NF-κB 

signalling pathway. For example, �
�� ���� ( ) indicates the variations in ����  over 

time. 

This extended model includes two important additional features: firstly, the effect 

of RANKL is included in Eqs. (A1) – (A3) to replace the effect of TNF, because NF-

κB signalling is activated rapidly in osteoclast precursors in response to RANKL [16]. 

Secondly, the model of Lipniacki et al. [29] only considered the presence or absence of 

TNF (represented by ‘1’ or ‘0’ respectively), but ignored the effects of its concentration. 

By contrast, our model considered the effects of the RANKL concentration, with ��

and �� in Eqs. (A1) – (A3) representing the role of RANKL in IKKn transformed 

into IKKa  and IKKa  transformed into IKKi , respectively. The definitions of ��

and �� are: 

�� = � ∗ ���,����
�����                            (6) 
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�� = � ∗ ���,����
�����                            (7) 

���,����
����� = �����

� �� �� ���� � ,�����,���
                      (8) 

���,����
����� = �����

� �� �� �����,�����,���
                      (9) 

���,����
�����  represents RANKL promoting IKKn  transformed into IKKa , while 

���,����
�����  denotes RANKL inducing IKKa  transformed into IKKi  through A20. The 

value of �   is 0 or 1, indicating the absence or presence of RANKL, respectively. 

RANKL represents the concentration of RANKL, the definition of which is included in 

Table A1 of the Appendix A. 

Thus, a new π function ���,���
��� , together with fifteen ODEs, are introduced into 

the model of bone remodelling to simulate the underlying mechanism in which the 

RANKL signal is transmitted and then affects osteoclastogenesis through the NF-κB 

signalling pathway. 

3. RESULTS 

The definitions and values of all parameters in the model equations are all described in 

detail in Table 2 and Table 3. Following the work of [25], a genetic algorithm (GA) was 

used to predict values of the model parameters lacking experimental data or without 

biological meaning based on the other related estimated or known parameter values. 

Different combinations of these unknown model parameters corresponded to various 

model outputs. GAs are an effective approach to search for parameter values in 

parameter space corresponding to preferred model outputs [25]. In this work, model 

outputs refer to the concentrations of bone cells in the steady state under the normal 

bone microenvironment. Preferred values are listed in Table 4 in reference to the publish 

data (the detailed information of GA is described in detail in the Appendix A). The GA 
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was carried out using the genetic algorithm solver, and the model equations were solved 

using the ode23 solver in the Matlab software package (R2015b, Mathworks, Natick, 

USA).  

Figure 2A shows the temporal variations of RANKL during bone remodelling, 

while Figures 2B–2H and Figure 3 demonstrate the variations in concentrations of the 

fifteen biochemical factors involved in the NF-κB signalling pathway over time, after 

activation by RANKL. Figures 4–8 reveal how the variations of RANKL by injection 

(10 or 20 pM/day) or inhibition (by 5% or 10%) influenced free nuclear NF-κB, , 

bone cells, the OBa:OCa ratio, and bone volume, respectively. It is known that the 

OBa:OCa ratio has an important influence on the bone volume during bone remodelling. 

Figures 7 and 8 illustrate how that ratio and bone volume vary due to RANKL changes, 

respectively.  

4. DISCUSSION 

The model was constructed to analyze bone remodelling cycles by including the role of 

the NF-κB signalling pathway. It can not only reconstruct the variations in the bone cell 

concentrations, resultant bone volume and the biochemical factors involved in the NF-

κB signalling pathway in the bone microenvironment over time, but also investigate 

how variations in the RANKL concentration affected bone cells and the resultant bone 

volume through the NF-κB signalling pathway. Experimental observations 

demonstrated that the concentrations of bone cells and bone volume remained in a 

dynamic steady state under normal conditions [22, 32]. This steady state can be 

disturbed in bone-related diseases, such as metastatic bone disease. Simulation results 

based on the model presented in this paper indicated that concentrations of OBp, OBa, 

and OCa and bone volume all remained constant over time. These results agreed well 
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with the experimental observations. 

The binding of RANKL to RANK expressed on OCp stimulates the NF-κB 

signalling pathway in OCp, which then promotes the differentiation of OCp into OCa. 

The temporal variations in the biochemical factors involved in the NF-κB signalling 

pathway, as illustrated in Figures 2B – 2H and Figure 3, agreed well with the work of 

Lipniacki et al. [29]. Figures 4 – 8 help to explain the underlying mechanism in which 

how RANKL regulates osteoclastogenesis through the NF-κB signalling pathway and 

further influences osteoblast concentrations and the resultant bone volume during bone 

remodelling. As shown in Figure 4, the rising level of RANKL causes an initial rapid 

increase in the concentration of free nuclear NF-κB until it reaches a new stable state 

higher than its initial value. This simulation result was confirmed by experimental 

observations that the canonical NF-κB pathway is activated rapidly in OCp in response 

to RANKL, causing a quick and transient increase in NF-κB expression levels [9, 33].  

On the other hand, the inhibition of RANKL results in a rapid drop in the free 

nuclear NF-κB concentration, which then remains at a lower concentration. The 

increase or decrease in the free NF-κB in the nucleus thereafter promotes or inhibits 

transcription of  required for osteoclastic precursor differentiation, as shown in 

Figure 5, which again agrees with the experimental data of Takayanagi et al. [34]. The 

changes in the  concentrations directly trigger variations of osteoblastic cells as 

well as indirectly affecting osteoclastic cells, because the osteoblastic and osteoclastic 

lineages are tightly coupled [17]. These fluctuations in the bone cells are illustrated in 

Figure 6, confirming that increasing levels of RANKL lead to a rise in OBp and OCa, 

followed by a less pronounced increase in OBa. On the other hand, the drop in RANKL 

levels produces the opposite effects in the osteoblastic and osteoclastic cells. Figure 6 

also suggests that a given change in RANKL can produce different degrees of variations 
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in the different bone cell types.   

As shown in Figure 7, the OBa:OCa ratio undergoes an initial decrease (or increase) 

and then returns to a stable level that is lower (or higher) than its initial value in response 

to the injection (10 or 20 pM/day) or inhibition (by 5% or 10%) of RANKL, respectively. 

These changes lead to a corresponding gradual decrease (or increase) in bone volume 

(shown in Figure 8). These simulation results agreed with experimental observations 

[35, 36]. The simulation results shown in Figures 4 – 8 also suggested that the effect of 

the injection or inhibition of RANKL on free nuclear NF-κB, , cell concentrations, 

bone volume and the OBa:OCa ratio is positively linked to the injection or inhibition 

rate (e.g., a 20 pM/day RANKL injection rate leads to greater variations in the cell 

concentrations, bone volume, and OBa:OCa ratio than a 10 pM/day injection rate). In 

addition, the simulation results also showed that NF-κB, , cell concentrations, and 

the OBa:OCa ratio, but not the bone volume, all achieved a new state of equilibrium 

that was higher or lower than their initial levels after a rapid and transient increase or 

decrease due to the injection or inhibition of RANKL, respectively. 

5. CONCLUSION  

Bone remodelling is a very important biological process, and its dysregulation is related 

to several bone diseases. Improving our understanding of bone remodelling and the 

complex cellular interactions involved would be helpful for the development of new 

strategies for combating bone-related diseases. Mathematical modelling, supported 

with partial experimental findings, is an effective approach to analyze this type of multi-

layered biological system, and several mathematical models of bone remodelling have 

been constructed. To our knowledge, however, mathematical models published to date 

have failed to consider the role of the NF-κB signalling pathway in bone remodelling. 

Here, a mathematical model was developed to reconstruct the bone remodelling process 
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under normal conditions by including the effects of the NF-κB signalling pathway.                                                                                                        

In addition to predicting bone cell concentrations and the bone volume, the model 

also reconstructed the temporal behaviors of the biochemical factors involved in the 

NF-κB signalling pathway during bone remodelling. The simulation results agreed well 

with the published experimental data. This model investigated the underlying 

mechanisms of the NF-κB pathway effects in RANKL-regulated osteoclastogenesis by 

observing the influence of the variations of RANKL concentration on the bone cells 

and the resultant bone volume through the NF-κB signalling pathway. This observation 

helps explain how the NF-κB signalling pathway is activated by RANKL in OCp and 

then transmits signals emanating from cell surface receptors to nuclear promoter-bound 

protein complexes, thereby further regulating target gene expression during bone 

remodelling cycles.  

Abnormalities in NF-κB are found in several bone diseases, and it is hoped that 

this model can serve as a collaborative tool, in combination with experimental findings, 

to evaluate potential therapeutic interventions and even propose new therapeutic targets 

for bone-related diseases caused by the dysregulation of the NF-κB pathway. For 

example, dehydroxymethylepoxyquinomicin (DHMEQ) was designed as an NF-κB 

inhibitor [37] and has been shown to limit RANKL-induced osteoclast differentiation. 

Its mechanism was initially unknown, although biochemical analysis now indicates that 

the inhibition of NF-κB suppresses osteoclastogenesis by down-regulating NFATc1 

[38]. However, according to our model simulations, we find that NF-κB, being 

downstream of RANKL, has a direct influence on RANKL-regulated 

osteoclastogenesis by regulating transcription factors, which explains why DHMEQ 

inhibits osteoclastogenesis so well.  
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Table 1: Definitions of variables used in the model. 

Parameter Description

��� Uncommitted osteoblast progenitors 

��� Osteoblast precursors

��� Active osteoblasts

��� Osteoclast precursors 

��� Active osteoclasts

�� The normalized bone volume

�		
 Cytoplasmic concentration of neutral �		  kinase

�		� Cytoplasmic concentration of active �		  kinase

�		� Cytoplasmic concentration of inactive �		  kinase

 � � � Cytoplasmic concentration of  � � �

 �� � � Nuclear concentration of  � � �

�20 Cytoplasmic concentration of �20

�20�
Concentration of �20  mRNA transcript calculated per 
cytoplasmic volume

���� Cytoplasmic concentration of ����

�� � α� Nuclear concentration of ����

��� α�
Concentration of ����   mRNA transcript calculated per 
cytoplasmic volume

�		� |���� Cytoplasmic concentration of complexes of �		�  and ����

���� | � � � Cytoplasmic concentration of complexes of ����  and  � � �

� �� α�| �� � � Nuclear concentration of complexes of  �� �  and � �� α

�		� |�� �� | ��� Cytoplasmic concentration of complexes of � 		� , ���� and 
 � � �

Concentration of NF-κB regulated transcription factors
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Table 2: Definitions of model parameters used in the model. 

Parameter Description Parameter Description 

����
Differentiation rate of osteoblast 
progenitors 

α 
TGF-β content stored in 
bone matrix 

����
Differentiation rate of osteoblast 
precursors 

������
Rate of degradation of 

����
Rate of elimination of active 
osteoblasts ���

Rate of synthesis of 
systemic PTH 

����
Differentiation rate of osteoclast 
precursors �����

Rate of degradation of 
PTH 

����
Rate of elimination of active 
osteoclasts ���

Minimum rate of 
production of OPG per 
active osteoblast 

	��,����
Activation coefficient related to 
growth factors binding on ���

�����
Rate of degradation of 
OPG 

	��,����
Repression coefficient related to 
growth factors binding on ���

�� � ���
Maximum possible OPG 
concentration 

	��,����
Activation coefficient related to 
growth factors binding on ��� �����

Production rate of RANKL 
per cell 

	��,���
Activation coefficient for 
RANKL production related to 
PTH binding 

�������
Rate of degradation of 
RANKL 

	��,���
Repression coefficient for OPG 
production related to PTH 
binding 

�����
Maximum number of 
RANKL on the surface of 
each osteoblastic precursor
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Table 2(cont): Definitions of model parameters used in the model.

	�,�����
Activation coefficient related to 
RANKL binding to RANK 

	�,����
Association rate constant 
for RANKL binding to 
RANK. 

	�,���,���
Activation coefficient for ���
differentiation related to 
binding

	���

Relative rate of bone 
resorption (normalized 
with respect to normal 
bone resorption) 

	���,���,���
Activation coefficient for �		

transformation related to 
RANKL binding to RANK

	����

Relative rate of bone 
formation (normalized 
with respect to normal 
bone resorption) 

	�� � ,���,���
Activation coefficient for �		�
transformation related to 
RANKL binding to RANK

	�,���
Association rate constant 
for RANKL binding to 
OPG
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Table 3: Values of model parameters and sources. 

Parameter Value Parameter Value 

���� 3.24e+2 /day(estimated) α 1.00 pM/% [28] 

���� 3.67e-1 /day(estimated) ������ 2.00e+2 /day [28] 

���� 3.00e-1 /day [4, 28] ��� 9.74e+2 pM/day [28] 

���� 1.73e-1 /day(estimated) ����� 3.84e+2 /day [28] 

���� 1.20 /day [4] ���
5.02e+6 /day (estimated) 

	��,����
4.825e-4pM 

(calculation by GA) 
�����

4.16 /day [28] 

	��,���� 2.19e-4 pM [28] ��� ��� 7.98e+2 pM[28] 

	��,����
9.33e-5 pM  
(calculation by GA) ����� 8.25e+5 /day (estimated) 

	��,���
2.09e+1 pM 
(calculation by GA) �������

4.16 /day [28] 

	��,��� 2.21e-1 pM [4] ����� 3.00e+6 [28] 

	�,����� 4.12e+1 pM (estimated) 	�,���� 7.19e-2 /pM [28] 

	�,���,���
6.5e-4 pM  
(calculation by GA) 	���

1.92e+2 /(pM*day)  
(calculation by GA) 

	���,���,���
2.5 pM  
(calculation by GA) 

	���� 3.31e+1 /(pM*day) [28] 

	���,���,���
2.5 pM  
(calculation by GA) 

	�,��� 5.68e-2 /pM [28]

Note: GA = genetic algorithm 
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Table 4: Values of cell concentrations. 

Variables Values Unit 

��� 3.27e-6 [39] pM 

��� 7.63e-4 [40] pM 

��� 6.33e-4 [41] pM 

��� 1.28e-3 [1] pM 

��� 1.04e-4 [41] pM 
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Figure 1: Interaction between osteoclastic and osteoblastic lineages including the 
canonical NF-κB signalling pathway during bone remodelling. 

Figure 2: Model simulations of the variation in the concentrations of variables with 
regard to NF-κB signalling pathway during different periods: NF-κB pathway is 
inactivated from 1th hour to 5th hour, activated by RANKL from 6th hour to 35th hour, 
and inactivated again from 36th hour to 55th hour. In figure 4A-4H, Time (horizontal 
axis) is in hours, and concentrations (vertical axis) are given in µM.
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Figure 3: Model simulations of the variation in the concentrations of variables with 
regard to NF-κB signalling pathway during different periods: NF-κB pathway is 
inactivated from 1th hour to 5th hour, activated by RANKL from 6th hour to 35th hour, 
and inactivated again from 36th hour to 55th hour. Concentrations (vertical axis) are 
given in µM,and time (horizontal axis) is in hours.

Figure 4: Model simulations of the variation in normalized free nuclear NF-kB with 
respect to its initial value after injection of RANKL at the rate of 10 or 20 pM /hour, 
or inhibition of RANKL by 5% or 10% from 5th hour to 35th hour.
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Figure 5: Model simulations of the variation in normalized TFs with respect to its 
initial value after injection of RANKL at the rate of 10 or 20 pM /hour, or inhibition 
of RANKL by 5% or 10% from 5th hour to 35th hour.

Figure 6: Model simulations of the variation in normalized cell concentrations with 
respect to its initial value after injection of RANKL at the rate of 10 or 20 pM /hour, 
or inhibition of RANKL by 5% or 10% from 5th hour to 35th hour.
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Figure 7: Model simulations of the variation in normalized ratio of OBa:OCa with 
respect to its initial value after injection of RANKL at the rate of 10 or 20 pM /hour, 
or inhibition of RANKL by 5% or 10% from 5th hour to 35th hour.

Figure 8: Model simulations of the variation in normalized bone volume with respect 
to its initial value after injection of RANKL at the rate of 10 or 20 pM/hour, or 
inhibition of RANKL by 5% or 10% from 5th hour to 35th hour. 
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Appendix A 

1. Tables of definitions of the concentrations and π functions 
Table A1: Definitions of the concentrations of RANKL, OPG, TGF-β and PTH. 

�����
���	
�,� + ��	
� ∙ ���

(1 + ��,��� ∙ ��� + ��,��	
 ∙ ����) ∙ ( ��	
�
���	
� ∙ ����,��	
�

��� ∙ ����,��	
�
��� + ���	
�)

���
����,� + ��� ∙ ��� ∙ ����,���

���

�
��� ∙ ��� ∙ ����,���

���

������
+ ���� + ����,�� ∙ ���

���
� · ���� · ��� + �����

������

���
��� + ����,�(�)

�����

Table A2: Definitions of the π functions used in the concentration equations in Table 
A1. 

��� stimulates the differentiation of 
��� into ���

����,���
���� = TGFβ

K��,���� + TGFβ

��� inhibits the differentiation of 
��� into ���

����,���
���� = 1

1 + (���/���,����)

��� promotes the apoptosis of ��� ����,�� 
���� = ���

��¡,���� + ���

PTH stimulates the production of 
RANKL 

����,��	
�
��� = ���

���,��� + ���

PTH inhibits the production of OPG ����,���
��� = 1

1 + (���/���,���)
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2. Mathematical model of NF-κB signalling pathway 

�
�� ¢��£ (�) = ��¤� − ��¥¢��£ (�) − �¦� �¢��£ (�)                         (A1) 

�
�� ¢��§ (�) = �¦� �¢��£ (�) − ¡¢��§ (�) − �¦� �¢��§ (�) · �20(�) − ��¥¢��§ (�)              

− �¢��§ (�) · ¢ ¨ ��(t) + ��(¢��§ |¢¨�� )(t)
  − ¡¢��§ (�) · (¢¨�� |��¨ �)(�)

              +��(¢��§ |¢¨�� |��̈ �)(�)   (A2) 
�
�� ¢��© (�) = ¡¢��§ (�) + �¦� �¢��§ (�) · �20(�) − ��¥¢��© (�)               (A3) 

�
�� (¢��§ |¢¨�� )(�) = �¢��§ (�) · ¢¨�� (�) − ��(¢��§ |¢¨�� )(�)  (A4) 

�
�� (¢��§ |¢¨�� |��¨ �)(�) = ¡¢��§ (�) · (¢¨�� |��¨ �)(�)

                        −��(¢��§ |¢ ¨ ��|��̈ �)(�)                        (A5) 
�
�� ��̈ �(�) = ��(¢¨�� |��¨ �)(�) − ���̈ �(�) · ¢¨�� (�)

              +��(¢��§ |¢¨�� |��̈ �)(t) − ���¨ �(�)                        (A6) 
�
�� ��¨ �ª(�) = � «��¨ �(�) − �¢¨�� ª(�) · ��¨ �ª(�)     (A7) 

�
�� �20(�) = ¬�20�(�) − �20(�)                            (A8) 

�
�� �20�(�) = � + ���¨ �ª(�) − ¡�20�(�)           (A9) 

�
�� ¢¨�� (�) = − �¢��§ (�) · ¢¨�� (�) − �¢¨�� (�) · ��¨ �(�) + ¬�¢¨�� �(�) −

�¢¨�� (�) − ��¢¨�� (�) + ��¢¨�� ª(t)                        (A10) 
�
�� ¢¨�� ª(�) = − �¢¨�� ª(�) · ��̈ �ª(�) + �� « ¢ ¨ ��(�) − �� « ¢¨�� ª(�) (A11)

�
�� ¢¨�� �(�) = �� + ����¨ �ª(�) − ¡�¢¨�� �(�)       (A12)

�
�� (¢¨�� |��̈ �)(�) = �¢¨�� (�) · ��̈� (�) − ��(¢¨�� |��̈ �)(�)

 − ¡¢��§ (�) · (¢¨�� |��¨ �)(�)
                   + ��(¢¨�� ª|��¨ �ª)(t)                             (A13) 

�
�� (¢¨�� ª|��¨ �ª)(�) = �¢¨�� ª(�) · ��¨ �ª(�) − �� «(¢¨�� ª|��¨ �ª)(�) (A14)   

�
�� ��® (�) = �� + ����¨ �ª(�) − ¡���(�) (A15)

The definitions and values for parameters in above equations can be found in 
Lipniacki et al. [27] 



3 

3. Calculation of model parameters based on GA 

�( ) = ∑ (�( )¯  − ¯)¯°�:¡ (A16) 

= [ , … , , �¤², �¤�] (A17)

where X = [���,����, ��¡,����, ���,���, ��,���,���, ����,���,���, ����,���,���, ����] is a 

row vector consisting of the seven parameters in the model equations and represents 

one point in the parameter space; �(³ )¯ and �̄ ( = 1,2,3) represent model outputs 

corresponding to each point in the parameter space and the preferred model outputs, 

respectively.  


