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1. INTRODUCTION

The use of fundamental and technical analysis by financial market professionals is well doc-

umented.1 Empirical evidence suggests that investors and fund managers use combinations of

fixed and switching strategies based on fundamental and technical analysis when making in-

vestment decisions. Recent laboratory experiments (e.g. Hommeset al., 2005 and Anufriev

and Hommes, 2012) provide further evidence that agents use simple “rule of thumb” trading

strategies and are able to coordinate on a common predictionrule, showing that heterogene-

ity in expectations is crucial to describe individual forecasting and aggregate price behavior.

Many heterogeneous agent models based on investors’ behavior of using fixed and, in particu-

lar, switching strategies can replicate volatility clustering and long range dependence in return

volatility. However, an empirical test of such switching model is still a challenging task. This

paper is aimed to address this challenge.

In this paper, we empirically test a simple asset pricing model of heterogeneous agents using

both fixed and switching strategies and show that the model isable to characterize the power-

law behavior of the daily DAX 30 index from 1975 to 2007. More explicitly, we show that the

market is dominated by investors who constantly switch between fundamental and trend fol-

lowing strategies, although some investors never change their strategies over time. The results

provide strong support to the empirical evidence and laboratory experiments. Consequently,

we provide a different insight into the explanatory power ofheterogeneous agent models to

financial markets.

This paper is largely motivated by the recent literature on heterogeneity and bounded rational-

ity. Due to limited information and endogenous uncertaintyof the state of the world, investors

are prevented from forming and solving life-time optimization problems in favor of more sim-

ple reasoning and rules of thumb (Shefrin, 2005). In general, investors are boundedly ratio-

nal by making optimal decisions based on their limited information and expectations (Sargent,

1993). There is growing evidence of investors’ heterogeneity and bounded rationality, which

has profound consequences for the interpretation of empirical evidence and the formulation of

economic policy (Heckman, 2001). Research into asset pricing and financial market dynam-

ics resulting from bounded rationality and interaction of adaptively heterogeneous traders has

1See, for example, Allen and Taylor (1990), Taylor and Allen (1992), Menkhoff (1998) and Cheunget al., (2004)
for foreign exchange rate markets, and Menkhoff (2010) for fund managers.
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flourished over the last three decades and various heterogeneous agent models (HAMs) have

been developed.2 To explore the role of agents’ heterogeneity in financial markets, the market

dominance of different trading strategies represented by different types of traders plays a central

role in market price behavior. It has been modelled either implicitly by examining their relative

activity impacts, such as Day and Huang (1990) and Chiarella(1992) in early literature, or ex-

plicitly by examining their market fractions, such as Lux (1995), Brock and Hommes (1998),

and Dieci, Foroni, Gardini and He (2006). The HAMs have successfully explained market

booms, crashes, and deviations of the market price from the fundamental price. They are also

able to replicate various stylized facts (including excessvolatility, excess skewness, fat tails,

volatility clustering and power-law behavior in return volatility) observed in financial markets.3

The promising perspectives of the HAMs have motivated further empirical studies. Focusing

on the model of Dieci et al. (2006), which allows for agents either having fixed strategies or

switching their strategies based on past performance over time, we extend the model to include

noise traders to rationalize the market noise in the model, which plays a very important role

in explaining the power-law behavior. Our main contribution is to calibrate systematically a

number of structural parameters of the model and subsequently perform series of formal econo-

metric tests, showing that the calibrated model with both fixed and switching strategies is well

able to replicate a large number of stylized facts. We therefore provide a different insight into

the explanatory power of rational switching behavior of investors on the volatility clustering

and long range dependence in return volatility.

This paper is closely related to a growing literature on the calibration and estimation of the

HAMs in which the heterogeneity has been modeled through thewell-known fundamentalists

and chartists approach. These models have been successfully used to empirically explain spec-

ulation and bubble-like behavior in financial markets.4 He and Li (2015) estimate a simple

2See, for example, Frankel and Froot (1990), Day and Huang (1990), Chiarella (1992), Lux (1995, 1998), Brock
and Hommes (1998), Lux and Marchesi (1999), Hommes (2001), Chen and Yeh (2002), Farmer and Joshi (2002),
Chiarellaet al. (2002), Chiarella and He (2002, 2003), and De Grauwe and Grimaldi (2006).
3We refer the reader to Hommes (2006), LeBaron (2006), Chiarella et al. (2009), Lux (2009b), and Chenet al.
(2012) for surveys of recent developments in this literature.
4See, for instance, earlier works by Vigfusson (1997), Baak (1999), Chavas (2000), and, for stock markets (Boswijk
et al., 2007; Franke, 2009; Franke and Westerhoff, 2011, 2012; Chiarellaet al., 2012, 2014; He and Li, 2015),
foreign exchange markets (Westerhoff and Reitz, 2003; De Jong et al., 2010; ter Ellenet al., 2013), mutual funds
(Goldbaum and Mizrach, 2008), option markets (Frijnset al., 2010), oil markets (ter Ellen and Zwinkels, 2010),
and sovereign European CDS markets (Chiarellaet al., 2015). Also, HAMs have been estimated with contagious
interpersonal communication by Gilli and Winker (2003), Alfaranoet al. (2005), Lux (2009a, 2012), and other
works reviewed in Liet al. (2010) and Chenet al. (2012).
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market fraction asset pricing model with heterogenous agents in which agents use fixed strate-

gies (without switching). For the estimated model, we show that the autocorrelations (of returns,

absolute returns and squared returns) of the market fraction model share the same pattern and

the power-law behaviors as those of the DAX 30. The results strongly support the explanatory

power of the heterogeneous agents models. However, whetherswitching models can be tested

empirically to explain volatility clustering and power-law behavior is less clear. For exam-

ple, Amilon (2008) estimates two specifications of the extended Brock and Hommes switching

models described in De Grauwe and Grimaldi (2006). He concludes that the simple prototype

models he estimated seems to have potential to explain empirical facts, however the fit is gener-

ally not quite satisfactory. Intuitively, with rational switching behavior of investors, we would

expect switching models to work better empirically. The difficulties come from the nonlinearity

and complexity of the HAMs, together with many parameters.5 Following Li et al. (2010) and

He and Li (2015), we take the weak econometric interpretation of Geweke (2006) based on the

power-law decay patterns of the autocorrelation of returns, the squared returns and the absolute

returns for the DAX 30 stock market daily closing price index. We do this by choosing the

interesting parameters in the whole model class that minimize the distance between particular

actual data based autocorrelations and HAMs based autocorrelations. Different from He and Li

(2015), we model the switching behavior of some investors, in addition to other investors who

use fixed strategies. By conducting econometric analysis via Monte Carlo simulations of the

model with estimated parameters, we show that the autocorrelation patterns, the estimates of the

power-law decay indices, (FI)GARCH parameters, and tail index of the model match closely to

the corresponding estimates for the DAX 30. Our results therefore provide strong support to the

empirical evidence on the popularity of fundamental and technical analysis, boundedly rational

and adaptive switching behavior of investors in financial markets.

The paper is structured as follows. Section 2 reformulates the adaptive asset pricing model

developed in Dieci et al. (2006) to include noise traders. Section 3 calibrates the model to

characterize the power-law behavior of the DAX 30. We also conduct formal tests to see how

well the calibrated model is able to describe the characteristics of the DAX 30. Section 4

presents an explanation on the generating mechanism of the power-law behavior of the model.

Section 5 concludes.

5We refer to He and Li (2015) for a detailed discussion of theseissues.
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2. THE MODEL

Empirical evidence (Allen and Taylor, 1990 and Taylor and Allen, 1992) suggests that the

proportions of agents relying on particular strategies, such as technical and fundamental anal-

ysis, may vary over time, although there are certainconfidentagents who do not change their

strategy over time. Menkhoff (2010) analyzes survey evidence from 692 fund managers in five

countries. He finds that the share of fund managers that put atleast some importance on tech-

nical analysis is very large. Though technical analysis does not dominate the decision-making

of fund managers in general, at a forecasting horizon of weeks, Menkhoff finds that technical

analysis is the most important form of analysis and is thus more important than fundamental

analysis, which is in line with findings from foreign exchange in Menkhoff (1998) and Cheung

et al. (2004). Menkhoff (2010) strongly supports the view that heterogeneous agents have dif-

ferent sets of information or different beliefs about market processes. Also the use of technical

analysis seems to react to this view with trend-following behavior (and also by relying more

strongly on momentum and contrarian investment strategies), believing that psychological fac-

tors are important and herding is beneficial. This view has also been shared by recent laboratory

experiments in Hommeset al.(2005) and Anufriev and Hommes (2012). They show that agents

using simple “rule of thumb” trading strategies are able to coordinate on a common prediction

rule. Therefore, heterogeneity in expectations and the adaptive behavior are crucial to describe

individual forecasting and aggregate price behavior.

Based on the empirical evidence, Dieci et al. (2006) extend early HAMs of Brock and

Hommes (1998) by considering a more general setup that market fractions have both fixed and

adaptive switching components. In each trading period agents are assumed to be distributed

among two groups, relying upon different predictors (or strategies, or behavioral rules), funda-

mental traders (or fundamentalists) and trend followers (or chartists). The market fractions in

a given period are partially determined by the past performance of the strategies over time and

partially fixed. In other words, a switching component is introduced to characterizeadaptively

rational behaviorof agents who choose different strategies over time according to their perfor-

mance. A constant component of agents is used to represent agents who are confident and stay

with their strategies over time. While the fixed fraction component expresses themarket mood,

the switching fraction component captures the effect ofevolutionary adaption.



6

The focus of Dieci et al. (2006) is to explore the complicatedprice dynamics of the corre-

sponding nonlinear deterministic model, while the focus ofthis paper is on the empirical testing

of the model to characterize the power-law behavior of the DAX 30. To calibrate the model, we

find that the additive market noise plays an important role. To rationalize the additive market

noise, apart from the fundamentalists and trend followers in the model of Dieci et al. (2006), we

also introduce noise traders who play an important role in financial market (see, for example,

Delonget al. 1990). We show that the resulting model is actually the same as the model of

Dieci et al. (2006) with market noise.

Consider an asset pricing model with one risky asset and one risk free asset that is assumed

to be perfectly elastically supplied at gross returnR = 1 + r/K, wherer is the constant

risk free rate per annum andK is the frequency of trading period per year. Letpt be the (ex

dividend) price per share of the risky asset and{Dt} the stochastic dividend process of the risky

asset at timet. There are three types of traders (or investors/agents), fundamental traders (or

fundamentalists), trend followers (or chartists) and noise traders, denoted by type1, 2 and3

traders, respectively. LetQi,t(i = 1, 2, 3) be their market fractions at timet, respectively. We

assume that there is a fixed fraction of noise traders, denoted byn3. Among1− n3, the market

fractions of the fundamentalists and trend followers have fixed and time varying components.

Denote byn1 andn2 the fixed proportions of fundamentalists and trend followers among1−n3,

respectively. Then(1 − n3)(n1 + n2) represents the proportion of traders who stay with their

strategies over time, while(1− n3)[1− (n1 + n2)] is the proportion of traders who may switch

between the two types. Among the “switching” traders, we denoten1,t andn2,t = 1 − n1,t the

proportions of fundamentalists and trend followers at timet, respectively. It follows that the

market fractions(Q1,t, Q2,t, Q3,t) at timet are expressed by

Q1,t = (1−n3)[n1+(1−n1−n2)n1,t], Q2,t = (1−n3)[n2+(1−n1−n2)n2,t], Q3,t = n3.

Denoten0 = n1 + n2, m0 = (n1 − n2)/n0 andmt = n1,t − n2,t. Then the market fractions at

time t can be rewritten as





Q1,t = 1

2
(1− n3) [n0 (1 +m0) + (1− n0) (1 +mt)] ,

Q2,t = 1

2
(1− n3) [n0 (1−m0) + (1− n0) (1−mt)] ,

Q3,t = n3

(2.1)
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Let Rt+1 := pt+1 + Dt+1 − Rpt be the excess return per share in(t, t + 1). For h = 1, 2,

let Eh,t andVh,t be the conditional expectation and variance of typeh traders. LetWh,t be

investor’s wealth at timet andzh,t the number of shares of the risky asset held by the investor

from t to t + 1. Then the wealth of investor of typeh at t + 1 is given byWh,t+1 = RWh,t +

zh,t(pt+1 +Dt+1 −Rpt). Assume that traders maximize the expected utility of wealth function

Uh(W ) = − exp(−ahW ), whereah is the risk aversion coefficient of typeh traders. Then,

under the standard conditional normality assumption, the demandzh,t of a typeh trader on the

risky asset is given byzh,t = Eh,t(Rt+1)/(ahVh,t(Rt+1)).

Assume the demand of the noise traders is given byξt ∼ N(0, σ2
ξ ), which is an i.i.d. random

variable. With zero supply of outside shares, the population weighted average excess demand

Ze,t at timet is given by

Ze,t ≡ Q1,t z1,t +Q2,t z2,t + n3ξt.

Following Chiarella and He (2003), the market price in each trading period is determined by

a market maker6 who adjusts the price as a function of the excess demand. The market maker

takes a long position whenZe,t < 0 and a short position whenZe,t > 0. The market price is

adjusted according to

pt+1 = pt + λZe,t, (2.2)

whereλ denotes the speed of price adjustment of the market maker. Denoteµ = (1− n3)λ and

σδ = λn3σξ. Then equation (2.2) becomes

pt+1 = pt + µZe,t + δt, (2.3)

whereZe,t = q1,t z1,t + q2,t z2,t andδt ∼ N(0, σ2
δ ) with qi,t = Qi,t/(1 − n3) for i = 1, 2. The

price equation (2.3) is exactly the model developed in Dieciet al. (2006).

For completeness, we now describe briefly the heterogeneousbeliefs of the fundamentalists

and trend followers and the adaptive switching mechanism and refer the readers to Dieci et al.

(2006) and He and Li (2008, 2015) for the details. Fundamental traders are assumed to have

some information on the fundamental valuep∗t+1 of the risky asset at timet.7 They believe

6Different from the Walrasian equilibrium price mechanism used in Boswijket al. (2007), we use market maker
partial equilibrium mechanism for the convenience of calibration. The market maker mechanism has often been
used in HAMs for its simplicity and convenience.
7There is a subtle difference in the information about the fundamental values among investors. For these in-
vestors who have fixed strategies, only the fundamentalists, not the trend followers, have information about the
fundamental value. This is the assumption made in the marketfraction model of He and Li (2015). However,
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that the stock price may be driven away from the fundamental price in the short run, but it

will eventually return to the fundamental value in the long-run. Thus the conditional mean and

variance of the price for the fundamental traders are assumed to follow

E1,t (pt+1) = pt + (1− α)(p∗t+1 − pt), V1,t (pt+1) = σ2
1 , (2.4)

whereσ2
1 is a constant variance on the price. The speed of adjustment towards the fundamental

price is represented by(1 − α), where0 < α < 1. An increase inα may thus indicate less

confidence on the convergence to the fundamental price, leading to a slower adjustment.

Unlike the fundamental traders, trend followers are assumed to extrapolate the latest observed

price deviation from a long run sample mean price. More precisely, their conditional mean and

variance are assumed to follow

E2,t (pt+1) = pt + γ (pt − ut) , V2,t (pt+1) = σ2
1 + b2vt, (2.5)

whereγ ≥ 0 measures the extrapolation from the trend,ut andvt are sample mean and variance,

respectively, which follow

ut = δut−1 + (1− δ) pt, vt = δvt−1 + δ (1− δ) (pt − ut−1)
2 ,

representing limiting processes of geometric decay processes when the memory lag tends to

infinity.8 Hereb2 ≥ 0 measures the sensitivity to the sample variance andδ ∈ (0, 1) measures

the geometric decay rate. Note that a constant variance is assumed for the fundamentalists who

believe the mean reverting of the market price to the fundamental price, while a time-varying

component of the variance for the trend followers reflects the extra risk they take by chasing the

trend.

We now specify how traders compute the conditional varianceof the dividendDt+1 and of the

excess returnRt+1 over the trading period. For simplicity, we assume that traders share homo-

geneous beliefs about the dividend process and that the trading period dividendDt is i.i.d. and

normally distributed with mean̄D and varianceσ2
D. The common estimate of the variance of the

for those investors who are switching between the fundamentalists and trend followers, the information about the
fundamental value is known, which is the common assumption on the switching HAMs.
8With a geometric decaying probability distribution(1 − δ){1, δ, δ2, δ3, · · · } over the historical prices
{pt, pt−1, pt−2, pt−3, · · · , }, ut andvt are the corresponding sample mean and variance. See He (2003) for a
detailed discussion of the process.
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dividend (σ2
D) is assumed to be proportional to the variance of the fundamental price, with no

correlation between price and dividend. It follows that traders’ conditional variances of the ex-

cess return can be estimated9 asV1,t (Rt+1) = (1 + r2)σ2
1 andV2,t (Rt+1) = σ2

1 (1 + r2 + bvt),

whereb = b2/σ
2
1. Denote byp∗ = D̄/(R − 1) = (K/r)D̄ the long-run fundamental price.

Using (2.4) and (2.5), it turns out that traders’ optimal demands are determined by

z1,t =
(α− 1)

(
pt − p∗t+1

)
− (R− 1) (pt − p∗)

a1 (1 + r2)σ2
1

, z2,t =
γ (pt − ut)− (R− 1) (pt − p∗)

a2σ2
1 (1 + r2 + bvt)

.

(2.6)

Denote byπh,t+1 the realized profit, or excess return, betweent andt + 1 by traders of type

h, πh,t+1 = zh,t(pt+1 + Dt+1 − Rpt) = Wh,t+1 − RWh,t for h = 1, 2. Following Brock and

Hommes (1997, 1998), the proportion of “switching” tradersat timet+ 1 is determined by

nh,t+1 =
exp [β (πh,t+1)]∑
i exp [β (πi,t+1)]

, h = 1, 2,

where parameterβ is the intensity of choicemeasuring the switching sensitivity of the pop-

ulation of adaptively rational traders to the better profitable strategy. Together with (2.1), the

market fractions and asset price dynamics are determined bythe following random discrete-time

dynamic system10

pt+1 = pt + µ(q1,t z1,t + q2,t z2,t) + δt, δt ∼ N (0, σ2
δ ), (2.7)

ut = δut−1 + (1− δ) pt, (2.8)

vt = δvt−1 + δ (1− δ) (pt − ut−1)
2 , (2.9)

mt = tanh

{
β

2
(z1,t−1 − z2,t−1) (pt +Dt − Rpt−1)

}
, (2.10)

Dt = D̄ + σDνt, νt ∼ N(0, 1), (2.11)

9 The long-run fundamental value is given byp∗ = (KD̄)/r, whereKD̄ is the average annual dividend. Let
σp̄ be the annual volatility of the pricep, whereσ represents the annual volatility of one dollar invested in the
risky asset. Under independent price increments, the trading period variance of the price can be estimated asσ2

1 =

(p∗σ)2 /K. Denote byDA andσ2
DA

the annual dividend and its variance and assume an approximate relationship
DA = rp between annual dividend and price. Then one getsσ2

DA
= r2(σp∗)2 and thereforeσ2

D = σ2
DA

/K =

r2(σp∗)2/K = r2σ2
1 . Assuming zero correlation between price and dividend at trading period frequency, one then

obtainsV1,t (Rt+1) =
(
1 + r2

)
σ2
1 andV2,t (Rt+1) = σ2

1(1 + r2) + b2vt.
10Here the hyperbolic functiontanh(x) is defined bytanh(x) = (ex − e−x)/(ex + e−x).
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wherez1,t andz2,t are given by (2.6). The fundamental price is assumed to follow a random

walk, such that11

p∗t+1 = p∗t exp(−
σ2
ǫ

2
+ σǫǫt+1), ǫt ∼ N (0, 1), σǫ ≥ 0, p∗0 = p∗ > 0, (2.12)

whereǫt is independent of the noisy demand processδt. The corresponding deterministic model

can exhibit complicated price dynamics, which help us to understand the underlying mechanism

of the power-law behavior of the stochastic model. When there is no trader who switches

between the two strategies, the model developed in this paper reduces to the no-switching model

in He and Li (2015). We refer the reader to Dieciet al. (2006) for the complex price dynamics

and He and Li (2007, 2015) for a detailed discussion on the mechanism.

3. ESTIMATION OF THE POWER-LAW BEHAVIOR IN THE DAX 30

For the no-switching model, He and Li (2015) show that the autocorrelations (of returns, ab-

solute returns and squared returns) of the market fraction model share the same pattern as those

of the DAX 30. By conducting econometric analysis via Monte Carlo simulations, He and Li

(2015) characterize these power-law behaviors and find thatestimates of the power-law decay

indices, the (FI)GARCH parameters, and the tail index of theestimated market fraction model

closely match those of the DAX 30. The results strongly support the explanatory power of the

heterogeneous agents models. For the extended model (2.7)-(2.12) with both fixed and switch-

ing traders, we are interested in the explanatory power of the adaptive behavior of investors in

financial markets. We follow the same estimation procedure as in He and Li (2015) and show

that the model with the switching is also able to explain the power-law behavior of the DAX

30. The finding provides a strong evidence on the rational switching and adaptive behavior in

financial markets.

After a brief discussion of the stylized facts of the DAX 30, including both fat tail and power-

law behavior, we introduce the calibration procedure to match the autocorrelation patterns in the

11The specification of the fundamental price process in (2.12)is to make sure that there are no significant ACs
in returns, absolute returns and squared returns in the fundamental price. Since the focus of the paper is on the
characteristics of returns, we also choose the fundamentalprice processp∗t defined in equation (2.12) to have an
expected mean return of zero. In general, the fundamental value is calculated from the dividend. For simplicity we
assumep∗t = KDt/r here. Therefore, we can impose the same random process (2.12) on the dividend, which is
equivalent to (2.12) on the fundamental price. The long-runfundamental valuep∗ = (KD̄)/r defined in Footnote
9 only indicates a reference long-run fundamental value, which is chosen as the initial value of the fundamental
price process.
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returns, absolute and squared returns for the DAX 30, present the calibration result and conduct

an out-of-sample test. Based on the calibrated parameters for the model, we use Monte Carlo

simulations to examine the effectiveness of the calibration in generating the autocorrelation

patterns and estimating the decay indices of the power-law behavior, comparing the results with

those of the DAX 30. We also use the calibration result to examine the power-law tail behavior

of the model comparing with the DAX 30. We show that the calibrated model closely generates

the characterization of the power-law behavior of the DAX 30in the return autocorrelation and

tails.

As in He and Li (2015), the price index data for the DAX 30 comesfrom Datastream, which

contains 8001 daily observations from 11 August, 1975 to 29 June, 2007. We usept to denote

the price index for the DAX 30 at timet (t = 0, ..., 8000) with log returnsrt defined byrt =

ln pt − ln pt−1 (t = 1, · · · , 8000)12. The summary statistics ofrt for the DAX 30 show high

kurtosis and fat tails inrt, suggesting thatrt is not normally distributed. The returns also show

volatility clusterings and time-varying market volatility. In addition, the returns contain little

serial correlation, but the absolute returns|rt| and the squared returnsr2t do have significantly

positive and slow decaying serial correlation over long lags. This indicates the long-range

dependence or the power-law behavior in volatility for the DAX 30.13

3.1. Model Calibration and Result. As in He and Li (2015), to calibrate the power-law behav-

ior of the DAX 30 to our model, we minimize the average distance between the autocorrelations

of the log returns, the squared log returns, and the absolutelog returns of the DAX 30 and the

corresponding autocorrelations generated from the models14. More precisely, denoteΘ the pa-

rameter space of the model. Letθ ∈ Θ be the vector of parameters in the model to be calibrated,

N be the number of independent simulations of the model,β̂n be the estimated autocorrelations

of then-th run of the model, and̂βDAX be that of the DAX 30. In calibration, we solve

θ̂ ∈ argminθ∈ΘDθ, Dθ := ‖ 1

N

N∑

n=1

β̂n − β̂DAX‖2 (3.1)

12Note that, at daily frequency, the difference between log-returns and simple returns is very small.
13We refer He and Li (2015) for the detailed statistics, time series and autocorrelation plots.
14Note that we do not consider other moments such as scales of returns and absolute returns and others. By
exclusively focusing on the autocorrelations of return, squared return and absolute return, we provide a simple way
to gain insight into the generating mechanism of power-law behavior of volatility of the model.
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for the standard Euclidian norm‖ · ‖, using an asynchronous parallel pattern search algo-

rithm.15 The parameters in the model are chosen to lie in the followingranges:16 α ∈ [0, 1],

γ ∈ [0.05, 5.5], a1, a2 ∈ [0.001, 9.0], µ ∈ [0.1, 5], m0 ∈ [−1, 1], n0 ∈ [0.05, 0.995], δ ∈ [0, 1],

b ∈ [0.05, 8.5], β ∈ [0.5, 1.5], σε ∈ [0.005, 0.05], σ =
√
Kσε andσδ ∈ [0.05, 8.5]. However

p∗0 = p∗ = 100, q = r2, andr = 0.05 are kept fixed. In the calibration and the subsequent

econometric analysis, we run 1,000 independent simulations over 9,000 time periods and dis-

card the first 1,000 time periods to wash out possible initialnoise effect. For each run of the

model, we obtain 8,000 observations to match the sample sizeof the DAX 30. It is not possible

to use autocorrelations at all lags, so we focus on all lags until 50 and then each fifth lag up

to 10017. This corresponds to 60 autocorrelations in total for return, the absolute return and

squared return, respectively. Essentially, with 60 autocorrelations estimated for each of thert,

r2t and |rt|, the dimension of̂βn and β̂DAX is 180 in total. The calibrated parameters of the

model are reported in Table 3.1.18

TABLE 3.1. The calibrated parameters of the models

α γ a1 a2 µ n0 m0 δ b σ σδ β
0.488 1.978 7.298 0.320 1.866 0.313 -0.024 0.983 3.537 0.2313.205 0.954

We now provide an economic intuition of the calibrated result. Based on the calibrated pa-

rameters in Table 3.1, parameterno = 0.313 implies that, among two strategies, there are

some (about 31%) traders who do not change their investment strategies and many (about 69%)

traders who switch between two strategies with a switching intensity measured byβ = 0.954.

15The software implementing the algorithm is APPSPACK 5.01; see more details in Gray and Kolda (2006), Griffin
and Kolda (2006), and Kolda (2005). In the implementation, to avoid possible local minima, we try different sets
of starting values, and for each set of starting value we search for the minimum and then we re-initialize and search
for the new minimum again. We repeat the procedure until there’s no further improvements.
16The parameter ranges forα,m0, no, δ are implied by the model specifications. The ranges for parameters
γ, a1, a2 andµ are selected to reflect reasonable behavior of the traders based on the analysis of the underly-
ing deterministic model in Dieci et al. (2006). The range forσǫ represents the volatility of the fundamental price,
while the range forσδ indicates the daily market price volatility level.
17We choose a large numbers of lags of ACs because our method of calibration of the model is exclusively focused
on the ACs, and it works well to produce reasonable results reported in Fig. 3.1. In practice, fewer lags may
contain the same information and too many lags would waste computation time and even affect the accuracy of
estimation; see, for instance, Franke and Westerhoff (2012) for related discussion.
18It is likely that the estimated parameter values can be different for differ indices over different time periods. In
fact, in our earlier exploratory model (He and Li, 2007, 2008, 2015 and Liet al., 2010) using other indices or
different periods of an index, the estimated model parameters are different in each of the cases. Quantitatively the
stylized facts can vary over time, however, qualitatively the main feature of the stylized facts remains the same
over long time periods and across different markets. It is this qualitative feature of the long memory pattern and
the generating mechanism provided in Section 4.1 that this paper contributes to the current literature. It is from
this perspective that the model estimation in this paper is robust.



13

This is consistent with the empirical evidence of using fundamental and technical analysis and

the adaptive behavior of investors. Withmo = −0.024, it indicates that, among those traders

who do not change their investment strategies, there are about equal numbers of trend followers

and fundamentalists. This result is different from the estimation of the market fraction model

of He and Li (2015) and the dominance of the trend followers without switching. These re-

sults demonstrate that both fundamentalists and trend followers are active in the market and

the market is populated with confident traders as well as adaptive traders. This is in line with

the findings from foreign exchange markets in Allen and Taylor (1990) and Taylor and Allen

(1992) and fund managers in Menkhoff (2010). The relativelyhighera1 is thana2 implies that

the fundamentalists are more risk averse than the trend followers19. A value ofα = 0.488 indi-

cates that the speed of price adjustment of the fundamentalists towards the fundamental value

is indicated by1/(1 − α), which is about two trading periods. This may explain the frequent

deviations of the market price from the fundamental value inthe short-run but not in the long-

run. A value ofγ = 1.978 indicates that trend followers extrapolate the price trend, measured

by the difference between the current price and the geometric moving average of the history

prices, actively. Also note thatγ = 1.978 > 1 does not lead to explosive expectations by trend

followers because of the quadratic volatility function in the denominator of the demand func-

tion. The geometric decay rateδ = 0.983 indicates a slow decaying weight. The parameter

b2 = bσ2
1 measures the influence of the sample variancevt, in addition to the common belief

on the price volatilityσ2
1, to the estimated price volatility for trend followers. Thevalue of

b = 3.537 implies that trend followers are cautious when estimating the price volatility, though

they are less risk averse. The annual return volatility ofσ = 23.1% is close to the annual return

volatility of 19.67%(=
√
250 × 0.01244) for the DAX 30. A value ofµ = 1.866 indicates

that the market maker actively adjusts the market price to the excess demand of the traders. A

positiveσδ indicates that the noise traders are active in the market. Insummary, the calibrated

parameters show that the market is dominated by traders who switch between the two strategies

based on their performance over time, although there are some traders who do not change their

19Note that, for simplicity, we assume that agents’ risk preferences switch when their strategies switch. Compared
to the trend followers who invest in short-run and are less risk averse, the fundamentalists invest in long-run and
are more risk averse in general. We see from Footnote 9 that trend followers have a systematically higher variance
estimate relative to the fundamentalists (bybvtσ

2
1). When the additional term is much larger than(1 + r2)σ2

1 , the
trend followers have much higher risk perception, which also justifies the relative lower risk aversion of the trend
followers than the fundamentalists.
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strategies over time. Due to switching, the market becomes more volatile, which supports the

theoretical predication in Brock and Hommes (1998).
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FIGURE 3.1. (a) Autocorrelations ofrt, r2t and|rt| for the model. (b) The ACs
of the returns, the squared returns and the absolute returnsfor the calibrated
model and the DAX 30. The smooth lines refer to the model whilethe 95%
confidence intervals are those for the DAX 30.

3.2. The Autocorrelation Patterns of the Calibrated Model and Out-of-Sample Test. As

in He and Li (2015), we want to know if the calibrated model is able to replicate the power-

law behavior of the DAX 30. Using the parameters in Table 3.1,we run 1,000 independent

simulations for the model and report the average ACs for returns, squared returns and absolute

returns. The resulting ACs plots in Fig. 3.1(a) show insignificant ACs for the returns, but

significantly positive and slowly decaying ACs over long lags for r2t and|rt|, very similar AC

patterns to the DAX 30. Further, the sample autocorrelations for the absolute returns are greater

than that for the squared returns at all lags up to at least 100lags. Fig. 3.1(b) plots the ACs

of returns, the squared returns and the absolute returns forthe model together with the DAX

30, respectively. For comparison, we use the Newey-West corrected standard error and plot the

corresponding 95% confidence intervals of the ACs of the DAX 30, showing that all of the ACs

of the model lie inside the confidence intervals of the DAX 30.

Different from He and Li (2015), here we perform an out-of-sample test to evaluate the

performance of the model. Recalling that we calibrated the model using the DAX 30 daily price

index from 11 August 1975 to 29 June 2007, we now use data from 02 July 2007 to 02 April
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2015 and plot ACs for returns, squared returns and absolute returns of the DAX 30 together

with their 95% confidence intervals in Fig. 3.2. The ACs of returns and squared returns of

the calibrated model fit in the 95% confidence intervals of theDAX 30 reasonably well, but

the ACs of absolute returns of the calibrated model lie outside of the corresponding confidence

intervals of the DAX 30 after lag 30, which indicates that thepersistence in volatility of the

DAX 30 is not as strong as before, since the global financial crisis. Overall, the out-of-sample

result indicates that the model performs reasonably well out of the sample and the calibration

method effectively captures the ACs patterns of the DAX 30.
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FIGURE 3.2. The ACs of the returns, the squared returns and the absolute re-
turns for the calibrated model and the DAX 30. The smooth lines refer to the
model while the 95% confidence intervals are those for the DAX30 from 02
July 2007 to 02 April 2015.

Based on the calibrated parameters for the model, we use Monte Carlo simulations to examine

further the effectiveness of the calibration in estimatingthe decay indices of the power-law

behavior of ACs and in volatility clustering, comparing with those of the DAX 30. We also use

the calibration result to examine the power-law tail behavior of the model compared with the

DAX 30. The results show that the calibrated model closely generates the characterization of

the power-law behavior of the DAX 30 in the return autocorrelation, volatility clustering and

tails.20

3.3. A Comparison Test. To see how well the model is able to describe the characteristics in

the DAX 30, we follow He and Li (2015) and conduct the Wald testto see if the estimates based

20Since the results are consistent with the findings in He and Li(2015), we do not report them in detail.
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upon the calibrated model equal those of the DAX 30. In other words, for decay indexd we test

the hypothesis

H0 : dDAX = d

using the Wald test statistic given by

W = (d̂DAX − d̂)2/Σ̂,

whereΣ̂ is simply the variance of̂dDAX . The resulting test statistics are summarized in Table

3.2. In the column ‘rt’, the first sub-row reports the test statistics corresponding to d̂GPH , and

the second sub-row corresponding tod̂RH ,21 and so on. Notice that the critical values of the

Wald test at 5% and 1% significant levels are 3.842 and 6.635, respectively. For the returns,

we see that the estimatedd of the DAX 30 and the model are significantly different. However,

for the squared returns and the absolute returns, the differences between the estimatedd of the

DAX 30 and the model are not statistically significant. This result shows that the calibrated

model is able to describe the ACs of the absolute and squared returns in the DAX 30.

TABLE 3.2. The Wald test ofd with m = 50, 100, 150, 200, 250

m 50 100 150 200 250

rt
19.41 45.62 61.94 65.86 76.35
35.41 92.24 126.0 117.5 129.4

r2t
0.071 1.309 0.282 0.036 0.023
0.037 1.246 0.050 0.767 0.276

|rt| 0.116 1.165 1.672 0.413 0.195
0.020 0.350 0.067 0.031 0.015

4. MECHANISM EXPLANATION OF THE CALIBRATION RESULTS

We have shown that the calibrated model closely matches the stylized facts of the DAX

30. In this section, we explore the explanation on the generating mechanism of the power-law

behavior.

There are several explanatory mechanisms on volatility clustering based on the underlying

deterministic dynamics in HAM literature.22 The first one is based on the local stability and

21d̂GPH andd̂RH are two semiparametric estimators of the power-law decay index of autocorrelations depending
on bandwidthm; see He and Li (2015) for detailed discussions.
22Different from the mechanisms based on the deterministic dynamics, there are also other mechanisms on volatil-
ity clustering based on stochastic herding or stochastic demand (Alfaranoet al. (2005) and Franke and Westerhoff
(2011)).
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FIGURE 4.1. The price of the deterministic model with the calibrated parameters.

Hopf bifurcation, explored in He and Li (2007). Essentially, on the parameter space of the

deterministic model, near the Hopf bifurcation boundary, the fundamental price can be locally

stable but globally unstable, depending on the initial values. Due to the nature of Hopf bifurca-

tion, such instability leads to periodic oscillations around the fundamental price. Then triggered

by fundamental noise and market noise, He and Li (2007) find that the interaction of fundamen-

talists, risk-adjusted trend chasing from the trend followers and the interplay of the noises and

the underlying deterministic dynamics can be the source of power-law behavior.

The second mechanism proposed in Gaunersdorferet al. (2008) is characterized by the co-

existence of two locally stable attractors with different size. The interaction of the coexistence

of the deterministic dynamics and noise processes can then trigger the switching among the

two attractors and endogenously generate volatility clustering. Dieci et al. (2006) show that

the model developed in this paper can display such co-existence of locally stable fundamental

price and periodic cycle. More recently, He, Li and Wang (2016) further verify this endoge-

nous mechanism on volatility clustering of the model. Economically, they show that volatility

clustering occurs when neither the fundamental nor the trend following traders dominates the

market and when traders switch more often between the two strategies.

Mathematically, the model in this paper shares the same underlying deterministic mechanism

explored for a market fraction model without switching in Heand Li (2007). For the correspond-

ing deterministic model with the calibrated parameters, the constant fundamental equilibrium

becomes unstable, leading to (a)periodical oscillation ofthe market price around the fundamen-

tal equilibrium, illustrated in Fig. 4.1. Triggered by random noise, such periodical deviations of
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the price from the fundamental value in the deterministic model are inherited in the stochastic

model. Fig. 4.2(a) plots the time series of typical market price and fundamental price of the

stochastic model. It shows that the price deviates from the fundamental price from time to time,

but, in general, follows the fundamental price. In addition, the returns of the stochastic model

display the stylized facts of volatility clustering in Fig.4.2(b) and non-normality of return dis-

tribution in Fig. 4.2(c). Furthermore, with the two noise processes, Fig. 4.2(d) demonstrates

insignificant ACs for the returns, while Figs 4.2(e) and (f) show significant and decaying ACs

in the absolute and squared returns, respectively.23 They clearly demonstrate that, for the cali-

brated model, noise traders play an important role in the generation of insignificant ACs on the

returns, while the significant decaying AC patterns of the absolute returns and squared returns

are more influenced by the noisy fundamental process. These results are consistent with He and

Li (2007, 2015), and Chiarella, He and Hommes (2006).

Economically, this paper provides a different behavioral mechanism from He and Li (2015).

In He and Li (2015), a constant market fraction model is used to examine the potential mecha-

nism in generating power-law behavior in return autocorrelation patterns. The estimated param-

eters show that, with the dominance of trend followers (about 60%), the model is able to match

closely the power-law behavior of the DAX30. In this paper, the estimated parameters illustrate

different trading behavior. Essentially, the market is dominated by these traders (about 70%)

who consistently switch between two strategies. It is traders’ adaptive behavior that generates

the power-law behavior.

Given the different behavioral mechanisms, we want to know which mechanism is better.

Intuitively, with the flexibility of the model in this paper,we would expect the adaptive switch-

ing model, denoted SM, to fit the data better than the (no-switching) market fraction model,

denoted MF, of He and Li (2015), and the pure-switching model, denoted PSM, withn0 = 0

in line of Brock and Hommes (1998). In Appendix A, we provide the calibrated parameters in

Tab. A.1, the ACs patterns in Fig. A.1, and the Wald test for the PSM, which share the similar

results and implications to the SM. We calculate the distances of ACs, theD
θ̂

in Eq. (3.1),

between the DAX 30 and the SM, PSM, and MF models and obtain 4.56 and 4.59 and 4.63,

23We also plot the times series of price, fundamental value, returns, return distribution, the ACs of return, abso-
lute and squared returns with one noise, either the fundamental noise in Fig. B.1 or market noise in Fig. B.2,
respectively, in Appendix B.
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FIGURE 4.2. The time series of (a) the price (red solid line) and the fundamental
price (blue dot line) and (b) the return; (c) the return density distribution; the ACs
of (d) the returns; (e) the absolute returns, and (f) the squared returns.

respectively. The test statistics24 are 106, 108, and 112, respectively. These results seems to

confirm that the SM performs better than the PSM and MF models in terms of minimizing the

distance in Eq. (3.1) and the weighted average distance by taking into account thêΩ. However,

we would like to emphasize that the comparison is based upon the magnitudes of distances we

use. In other words, this is not to say that 4.56 (106) is significantly lower than 4.59 (108) and

24The test statistics(β̂DAX − β̂)′Ω̂−1(β̂DAX − β̂) follow a Chi-square distribution with critical value 180 atthe
5% significant level, wherêβ is estimated from the simulation model andΩ̂−1 is the generalized inverse (see, for
example, Cameron and Trivedi, 2005) of corresponding covariance matrix, for ACs up to 50 lags for the return, the
squared return and the absolute return of the SM and PSM
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4.63 (112).25 A formal procedure such as that suggested by Hnatkovskaet al., (2012) might be

explored further.26

5. CONCLUSION

Theoretically oriented HAMs have provided many insights into market behavior, such as

market booming and crashing, multiple market equilibrium,short-run deviation of market price

from the fundamental price and long-run convergence of the market price to the fundamental

price. Combined with numerical simulations, the HAMs are able to reproduce some stylized

fact, such as non-normality in return and volatility clustering. More recent developments in

HAMs have stimulated many interests in the generation mechanism of those stylized facts and,

in particular, power-law behavior. However, estimation and calibration of HAMs, in particular

the switching models, to the power-law behavior of financialdata, together with some mecha-

nism explanation and economic intuition, are still a difficult and challenging task.

This paper calibrates an extended switching HAM to characterize the power-law behavior in

the DAX 30. The model considers a market populated by heterogeneous traders who use either

fundamental or chartist strategies. The market fractions of traders who use the two strategies

have both fixed and switching components. The calibration method is based on minimization

of the average distance between the autocorrelations (ACs)of the returns, the squared returns

and the absolute returns of the DAX 30 and the corresponding ACs generated from the model.

With the parameter values of the calibrated model, we show that the calibrated model matches

closely to the corresponding estimates for the DAX 30 and generates most of the stylized facts

observed in the DAX 30.

The calibration results support the empirical evidence in financial markets that investors and

fund managers use combinations of fixed and switching strategies based on various fundamen-

tal and technical analysis when making complicated investment decisions. By calibrating the

model to the daily DAX 30 index from 1975 to 2007, we show that the market is dominated

25We would like to thank one of the referees who pointed this out.
26It is possible to develop measures of goodness of fit. While the measures of goodness of fit are very useful when
comparing the performance of different HAMs (see, for example, Franke and Westerhoff, 2012), the comparison
results on various econometric characterizations betweenHAM and the actual data seem to imply that it might be
difficult to get meaningful test statistics. In our approach, the sampling error from the actual data is dealt with the
confidence intervals of the estimates and that from the simulation data is eliminated by running many independent
simulation. For a more general discussion on the comparisonof the simulation models with the real world data,
see Liet al. (2006, 2010).
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by the adaptive investors who constantly switch between thefundamental and trend following

strategies, though there are some investors who never change their strategies over time. In ad-

dition, the calibrated model also provides a different behavioral explanation on the generating

mechanism of the power-law behavior in the literature. In conclusion, the calibration results

provide strong support to the explanatory power of heterogeneous agent models and the empir-

ical evidence of heterogeneity and bounded rationality.
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APPENDIX A. ECONOMETRIC ANALYSIS OF THEPURE SWITCHING MODEL

This Appendix provides calibration results of the pure switching model (2.7)-(2.12) with
no = 0 to characterize the power-law behavior of the DAX 30.

TABLE A.1. The calibrated parameters of the SW models

α γ a1 a2 µ δ b σ σδ β
0.513 0.764 7.972 0.231 2.004 0.983 3.692 0.231 3.268 0.745
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FIGURE A.1. (a) Autocorrelations ofrt, r2t and|rt| for the SW model. (b) The
ACs of the returns, the squared returns and the absolute returns for the calibrated
SW model and the DAX 30. The smooth lines refer to the SW model while the
95% confidence intervals are those for the DAX 30.

TABLE A.2. The Wald test ofd with m = 50, 100, 150, 200, 250

m 50 100 150 200 250

rt
18.92 44.73 61.61 66.17 77.30
34.99 91.16 125.7 118.6 132.0

r2t
0.068 1.247 0.263 0.034 0.026
0.035 1.272 0.038 0.694 0.234

|rt| 0.105 1.085 1.603 0.413 0.198
0.024 0.331 0.064 0.031 0.016
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APPENDIX B. THE EFFECT OFONE NOISE

This appendix demonstrates the impact of single noise in themodel (2.7)-(2.12) on the AC
patterns of the return, absolute returns and squared returns.
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FIGURE B.1. The time series of (a) the price (red solid line) and the funda-
mental price (blue dot line) and (b) the return; (c) the density distribution of the
returns; the ACs of (d) the returns; (e) the absolute returns, and (f) the squared
returns, with the fundamental noise only (σδ = 0).
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(d) The ACs of the return
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(e) The ACs of the absolute return
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FIGURE B.2. The time series of (a) the t price (red solid line) and thefunda-
mental price (blue dot line) and (b) the return; (c) the density distribution of the
returns; the ACs of (d) the returns; (e) the absolute returns, and (f) the squared
returns, with the market noise only (σǫ = 0).
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