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1. INTRODUCTION

The use of fundamental and technical analysis by financigken@rofessionals is well doc-
umented. Empirical evidence suggests that investors and fund masage combinations of
fixed and switching strategies based on fundamental anaitathanalysis when making in-
vestment decisions. Recent laboratory experiments (eanrieset al, 2005 and Anufriev
and Hommes, 2012) provide further evidence that agentsiogses“rule of thumb” trading
strategies and are able to coordinate on a common predietlenshowing that heterogene-
ity in expectations is crucial to describe individual faasting and aggregate price behavior.
Many heterogeneous agent models based on investors’ loelwdvising fixed and, in particu-
lar, switching strategies can replicate volatility clustg and long range dependence in return
volatility. However, an empirical test of such switching debis still a challenging task. This
paper is aimed to address this challenge.

In this paper, we empirically test a simple asset pricing ehoflheterogeneous agents using
both fixed and switching strategies and show that the moddlesto characterize the power-
law behavior of the daily DAX 30 index from 1975 to 2007. Morgkcitly, we show that the
market is dominated by investors who constantly switch betwfundamental and trend fol-
lowing strategies, although some investors never chargedtrategies over time. The results
provide strong support to the empirical evidence and laboysexperiments. Consequently,
we provide a different insight into the explanatory powerheterogeneous agent models to
financial markets.

This paper is largely motivated by the recent literature eietogeneity and bounded rational-
ity. Due to limited information and endogenous uncertawoftyhe state of the world, investors
are prevented from forming and solving life-time optimieatproblems in favor of more sim-
ple reasoning and rules of thumb (Shefrin, 2005). In genamaéstors are boundedly ratio-
nal by making optimal decisions based on their limited infation and expectations (Sargent,
1993). There is growing evidence of investors’ heteroggreaid bounded rationality, which
has profound consequences for the interpretation of eogpievidence and the formulation of
economic policy (Heckman, 2001). Research into assetngriand financial market dynam-
ics resulting from bounded rationality and interaction déptively heterogeneous traders has

ISee, for example, Allen and Taylor (1990), Taylor and All&842), Menkhoff (1998) and Cheurg al, (2004)
for foreign exchange rate markets, and Menkhoff (2010)diodfmanagers.
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flourished over the last three decades and various hetexogeragent models (HAMs) have
been developetiTo explore the role of agents’ heterogeneity in financialkets, the market
dominance of different trading strategies representedffarent types of traders plays a central
role in market price behavior. It has been modelled eith@licitly by examining their relative
activity impacts, such as Day and Huang (1990) and Chiaf&882) in early literature, or ex-
plicitly by examining their market fractions, such as Lu®@95b), Brock and Hommes (1998),
and Dieci, Foroni, Gardini and He (2006). The HAMs have sasfigly explained market
booms, crashes, and deviations of the market price fromuth@aimental price. They are also
able to replicate various stylized facts (including excedatility, excess skewness, fat tails,
volatility clustering and power-law behavior in return ablity) observed in financial markets.

The promising perspectives of the HAMs have motivated frr#mpirical studies. Focusing
on the model of Dieci et al. (2006), which allows for agenth@i having fixed strategies or
switching their strategies based on past performance wuer tve extend the model to include
noise traders to rationalize the market noise in the modeichvplays a very important role
in explaining the power-law behavior. Our main contribatis to calibrate systematically a
number of structural parameters of the model and subsdguyosnform series of formal econo-
metric tests, showing that the calibrated model with botadiand switching strategies is well
able to replicate a large number of stylized facts. We tloeegprovide a different insight into
the explanatory power of rational switching behavior ofastors on the volatility clustering
and long range dependence in return volatility.

This paper is closely related to a growing literature on thiébcation and estimation of the
HAMs in which the heterogeneity has been modeled throughviiileknown fundamentalists
and chartists approach. These models have been succgsstkd to empirically explain spec-
ulation and bubble-like behavior in financial markétéle and Li (2015) estimate a simple
2See, for example, Frankel and Froot (1990), Day and Huar@0(l Thiarella (1992), Lux (1995, 1998), Brock
and Hommes (1998), Lux and Marchesi (1999), Hommes (20019n@nd Yeh (2002), Farmer and Joshi (2002),
Chiarellaet al.(2002), Chiarella and He (2002, 2003), and De Grauwe and &din2006).
3We refer the reader to Hommes (2006), LeBaron (2006), Clhdagé al. (2009), Lux (2009), and Cheret al.
(2012) for surveys of recent developments in this litemtur
4See, forinstance, earlier works by Vigfusson (1997), B48#©99), Chavas (2000), and, for stock markets (Boswijk
et al, 2007; Franke, 2009; Franke and Westerhoff, 2011, 2012ar€léa et al, 2012, 2014; He and Li, 2015),
foreign exchange markets (Westerhoff and Reitz, 2003; Dg dbal, 2010; ter Elleret al, 2013), mutual funds
(Goldbaum and Mizrach, 2008), option markets (Frigisl, 2010), oil markets (ter Ellen and Zwinkels, 2010),
and sovereign European CDS markets (Chiaretlal, 2015). Also, HAMs have been estimated with contagious

interpersonal communication by Gilli and Winker (2003)fakanoet al. (2005), Lux (2008, 2012), and other
works reviewed in Liet al. (2010) and Cheset al. (2012).
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market fraction asset pricing model with heterogenous @garwhich agents use fixed strate-
gies (without switching). For the estimated model, we shwat the autocorrelations (of returns,
absolute returns and squared returns) of the market fraatiedel share the same pattern and
the power-law behaviors as those of the DAX 30. The resultsigty support the explanatory
power of the heterogeneous agents models. However, wheitliehing models can be tested
empirically to explain volatility clustering and powemlabehavior is less clear. For exam-
ple, Amilon (2008) estimates two specifications of the edgzhBrock and Hommes switching
models described in De Grauwe and Grimaldi (2006). He caleduhat the simple prototype
models he estimated seems to have potential to explain adgacts, however the fit is gener-
ally not quite satisfactory. Intuitively, with rational gehing behavior of investors, we would
expect switching models to work better empirically. Thdidifities come from the nonlinearity
and complexity of the HAMs, together with many parametefsllowing Li et al. (2010) and
He and Li (2015), we take the weak econometric interprataticGeweke (2006) based on the
power-law decay patterns of the autocorrelation of refutressquared returns and the absolute
returns for the DAX 30 stock market daily closing price indé&/e do this by choosing the
interesting parameters in the whole model class that mmarthe distance between particular
actual data based autocorrelations and HAMs based auétetoons. Different from He and Li
(2015), we model the switching behavior of some investoraddition to other investors who
use fixed strategies. By conducting econometric analysisdonte Carlo simulations of the
model with estimated parameters, we show that the autdabare patterns, the estimates of the
power-law decay indices, (FI)\GARCH parameters, and tdiinof the model match closely to
the corresponding estimates for the DAX 30. Our resultstioee provide strong support to the
empirical evidence on the popularity of fundamental antinézal analysis, boundedly rational
and adaptive switching behavior of investors in financiatkats.

The paper is structured as follows. Section 2 reformuldtesatiaptive asset pricing model
developed in Dieci et al. (2006) to include noise tradersctiBe 3 calibrates the model to
characterize the power-law behavior of the DAX 30. We alsodewt formal tests to see how
well the calibrated model is able to describe the charastiesi of the DAX 30. Section 4
presents an explanation on the generating mechanism obtherpgaw behavior of the model.

Section 5 concludes.

SWe refer to He and Li (2015) for a detailed discussion of thissees.



2. THE MODEL

Empirical evidence (Allen and Taylor, 1990 and Taylor anteA) 1992) suggests that the
proportions of agents relying on particular strategieshsas technical and fundamental anal-
ysis, may vary over time, although there are certmnfidentagents who do not change their
strategy over time. Menkhoff (2010) analyzes survey ewsddrom 692 fund managers in five
countries. He finds that the share of fund managers that peiastt some importance on tech-
nical analysis is very large. Though technical analysisdo® dominate the decision-making
of fund managers in general, at a forecasting horizon of siellenkhoff finds that technical
analysis is the most important form of analysis and is thusentmportant than fundamental
analysis, which is in line with findings from foreign exchang Menkhoff (1998) and Cheung
et al. (2004). Menkhoff (2010) strongly supports the view thatehetjeneous agents have dif-
ferent sets of information or different beliefs about magkecesses. Also the use of technical
analysis seems to react to this view with trend-followingpdgor (and also by relying more
strongly on momentum and contrarian investment stratgdietieving that psychological fac-
tors are important and herding is beneficial. This view has béen shared by recent laboratory
experiments in Hommeat al. (2005) and Anufriev and Hommes (2012). They show that agents
using simple “rule of thumb” trading strategies are abledordinate on a common prediction
rule. Therefore, heterogeneity in expectations and thptagsbehavior are crucial to describe
individual forecasting and aggregate price behavior.

Based on the empirical evidence, Dieci et al. (2006) extesmtly eHAMs of Brock and
Hommes (1998) by considering a more general setup that taak¢ions have both fixed and
adaptive switching components. In each trading period @ga®e assumed to be distributed
among two groups, relying upon different predictors (cat&gies, or behavioral rules), funda-
mental traders (or fundamentalists) and trend followersfartists). The market fractions in
a given period are partially determined by the past perfoceaf the strategies over time and
partially fixed. In other words, a switching component isadiuced to characterizadaptively
rational behavioof agents who choose different strategies over time acegtdi their perfor-
mance. A constant component of agents is used to represamisagho are confident and stay
with their strategies over time. While the fixed fraction gunent expresses thearket moog

the switching fraction component captures the effe@waflutionary adaption



The focus of Dieci et al. (2006) is to explore the complicgpeide dynamics of the corre-
sponding nonlinear deterministic model, while the focuthcs paper is on the empirical testing
of the model to characterize the power-law behavior of theX[3@. To calibrate the model, we
find that the additive market noise plays an important roke rafionalize the additive market
noise, apart from the fundamentalists and trend followetke model of Dieci et al. (2006), we
also introduce noise traders who play an important role ianfoial market (see, for example,
Delonget al. 1990). We show that the resulting model is actually the sasn@ model of
Dieci et al. (2006) with market noise.

Consider an asset pricing model with one risky asset andiskéree asset that is assumed
to be perfectly elastically supplied at gross retdtn= 1 + r/K, wherer is the constant
risk free rate per annum anid is the frequency of trading period per year. lpete the (ex
dividend) price per share of the risky asset &} the stochastic dividend process of the risky
asset at timeé. There are three types of traders (or investors/agentsjlaimental traders (or
fundamentalists), trend followers (or chartists) and edrsders, denoted by type2 and3
traders, respectively. L&}, (i = 1,2, 3) be their market fractions at time respectively. We
assume that there is a fixed fraction of noise traders, dérytes. Among1l — ns, the market
fractions of the fundamentalists and trend followers haxedfiand time varying components.
Denote byn; andn, the fixed proportions of fundamentalists and trend foll@amongl — n3,
respectively. Theril — n3)(n; + ny) represents the proportion of traders who stay with their
strategies over time, whil@ — n3)[1 — (n; + n2)] is the proportion of traders who may switch
between the two types. Among the “switching” traders, weaten, , andn,; = 1 — ny, the
proportions of fundamentalists and trend followers at timeespectively. It follows that the

market fractiong@; ;, Q2+, Q) at timet are expressed by

Q1 = (1—ng)[m+(1—n1—ng)nq 4, Q2+ = (1—n3)[na+(1—n1—ng)nayl, Qs = n3.

Denoteny = ny + na, my = (n1 — na)/ne andm,; = ny; — noy. Then the market fractions at

timet can be rewritten as

(1 —n3) [no (1 —mg) + (1 —ng) (1 —my)], (2.1)
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Let Rivq := piy1 + Diy1 — Rpg be the excess return per shargdnt + 1). Forh = 1,2,
let £, and 'V}, be the conditional expectation and variance of typtaders. LetiV,, be
investor’s wealth at time and z;,, the number of shares of the risky asset held by the investor
fromt tot + 1. Then the wealth of investor of typeatt + 1 is given byW, ,.; = RW},; +
2nt(pev1 + Div1 — Rpe). Assume that traders maximize the expected utility of weibction
Un(W) = —exp(—a,W), whereq, is the risk aversion coefficient of typetraders. Then,
under the standard conditional normality assumption, #reahdz;, , of a typeh trader on the
risky asset is given by, ; = Ep, 1 (Riv1)/(anVii(Res1))-
Assume the demand of the noise traders is giveg, by N (0, o7), which is an i.i.d. random
variable. With zero supply of outside shares, the poputatteighted average excess demand
Z. attimet is given by

Zer = Qi 214 + Qoy 224 + N3

Following Chiarella and He (2003), the market price in eaekling period is determined by
a market makérwho adjusts the price as a function of the excess demand. ahieetrmaker

takes a long position whe#., < 0 and a short position whef,; > 0. The market price is

adjusted according to

Per1 = Pt + Ay, (2.2)

where\ denotes the speed of price adjustment of the market makantBe = (1 — n3)A and

o5 = Angoe. Then equation (2.2) becomes
Pir1 = Pt + et + Oy, (2.3)

WhereZe’t = {1t 21t + qat 22t andét ~ N(O, O'g) with Git = Qi,t/(l - ng) fori = 1, 2. The
price equation (2.3) is exactly the model developed in Da¢ail. (2006).

For completeness, we now describe briefly the heterogermaigds of the fundamentalists
and trend followers and the adaptive switching mechanistrafer the readers to Dieci et al.
(2006) and He and Li (2008, 2015) for the details. Fundaneratders are assumed to have
some information on the fundamental valpie, of the risky asset at time’ They believe
®Different from the Walrasian equilibrium price mechanissed in Boswijket al. (2007), we use market maker
partial equilibrium mechanism for the convenience of caliion. The market maker mechanism has often been
used in HAMs for its simplicity and convenience.

"There is a subtle difference in the information about thedmental values among investors. For these in-

vestors who have fixed strategies, only the fundamentatiststhe trend followers, have information about the
fundamental value. This is the assumption made in the mémketion model of He and Li (2015). However,
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that the stock price may be driven away from the fundamemniaépn the short run, but it
will eventually return to the fundamental value in the langr. Thus the conditional mean and

variance of the price for the fundamental traders are assuon®llow

Eiy (pey1) = pe + (1 — )Py — p1)s Vig (prs1) = o3, (2.4)

wheres? is a constant variance on the price. The speed of adjustmeatds the fundamental
price is represented byl — o), where0 < o < 1. Anincrease imx may thus indicate less
confidence on the convergence to the fundamental pricenigéala slower adjustment.

Unlike the fundamental traders, trend followers are assibmextrapolate the latest observed
price deviation from a long run sample mean price. More gedygj their conditional mean and

variance are assumed to follow

Esi (1) = pe + v (pr — we) Vi (Des1) = 07 + bovy, (2.5)

wherey > 0 measures the extrapolation from the tremdandv, are sample mean and variance,

respectively, which follow
up = 6wy + (1 —9) py, v = 6v_1 + 0 (1 —0) (pr — Ut—l)2 )

representing limiting processes of geometric decay psasewhen the memory lag tends to
infinity.® Hereb, > 0 measures the sensitivity to the sample variancedaad0, 1) measures
the geometric decay rate. Note that a constant variancsusrel for the fundamentalists who
believe the mean reverting of the market price to the fundeaigrice, while a time-varying
component of the variance for the trend followers refleatsetktra risk they take by chasing the
trend.

We now specify how traders compute the conditional variarfitkee dividendD, , ; and of the
excess retur®; . ; over the trading period. For simplicity, we assume thatdraghare homo-
geneous beliefs about the dividend process and that thiedrpdriod dividendD; is i.i.d. and

normally distributed with meah and variance?. The common estimate of the variance of the

for those investors who are switching between the fundaatistg and trend followers, the information about the
fundamental value is known, which is the common assumptiotine switching HAMs.

8with a geometric decaying probability distributioll — §){1,4,2,63,---} over the historical prices
{pt, pt—1,pt—2,pPt—3, - , }, ux andv; are the corresponding sample mean and variance. See He) (DG83
detailed discussion of the process.
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dividend ¢%) is assumed to be proportional to the variance of the fundéaherice, with no
correlation between price and dividend. It follows thates’ conditional variances of the ex-
cess return can be estimatesV,; (R,1) = (1 +7%) 02 andVa, (Ryy1) = o2 (14172 4 buy),
whereb = by/o?. Denote byp* = D/(R — 1) = (K/r)D the long-run fundamental price.
Using (2.4) and (2.5), it turns out that traders’ optimal @eahs are determined by

(a=1)(p —p5y) — (R=1) (pr —p") 2 w) = (R=1) (p = p")
ar (1 +1r2) o R aso? (1+ 72 + buy) '

210 =
(2.6)
Denote by, ¢+, the realized profit, or excess return, betweemdt + 1 by traders of type
h, Thi+1 = 2nt(Pes1 + Diy1 — Rpr) = Whn — RW,,, for h = 1,2. Following Brock and
Hommes (1997, 1998), the proportion of “switching” tradarsimet + 1 is determined by

o _ exp [5 (7Th,t+1)]
t+1 > oexp [B (mie41)]

where parametef is theintensity of choicaneasuring the switching sensitivity of the pop-

h=1,2

Y )

ulation of adaptively rational traders to the better prof#astrategy. Together with (2.1), the
market fractions and asset price dynamics are determintgeldgllowing random discrete-time

dynamic syster?

Pey1 = P+ 1(qrt 210 + ot 224) + O, 8 ~ N(0,02), (2.7)
up = o1 + (1 =9) py, (2.8)
vy =001 +6(1—6) (pr — w1)?, (2.9)

m; = tanh {g (214-1 — 224-1) (Pt + Dy — Rptl)} , (2.10)
D, =D + opuy, v, ~ N(0,1), (2.11)

9 The long-run fundamental value is given py = (K D)/r, where K D is the average annual dividend. Let
op be the annual volatility of the price, whereo represents the annual volatility of one dollar investedhia t
risky asset. Under independent price increments, thengguiériod variance of the price can be estimatedfas:
(p*0)2 /K. Denote byD 4 anda,%A the annual dividend and its variance and assume an apprexigiationship
D4 = rp between annual dividend and price. Then one géts = r*(op*)* and thereforer}, = o}, /K =
r?(op*)?/K = r?0%. Assuming zero correlation between price and dividendsalinig period frequency, one then
obtainsVi ¢ (Ri41) = (14 r?) o andVay (Ry11) = o7 (1 +72) + byvy.

%ere the hyperbolic functiotanh(z) is defined bytanh(z) = (e* — e~7)/(e” + ¢~2).
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wherez; ; andz,; are given by (2.6). The fundamental price is assumed tovioflaandom

walk, such that

2

g
p:-}-l = p: eXp<_7€ + Je€t+1)7 € ~ N(07 1)7 O¢ Z 07 pg = p* > 07 (212)

whereg; is independent of the noisy demand procgs3 he corresponding deterministic model
can exhibit complicated price dynamics, which help us toausi@nd the underlying mechanism
of the power-law behavior of the stochastic model. Whenehisrno trader who switches

between the two strategies, the model developed in thigpageces to the no-switching model
in He and Li (2015). We refer the reader to Dietial. (2006) for the complex price dynamics
and He and Li (2007, 2015) for a detailed discussion on thenar@sm.

3. ESTIMATION OF THE POWER-LAW BEHAVIOR IN THE DAX 30

For the no-switching model, He and Li (2015) show that th@emrtrelations (of returns, ab-
solute returns and squared returns) of the market fractimthetrshare the same pattern as those
of the DAX 30. By conducting econometric analysis via Montl@ simulations, He and Li
(2015) characterize these power-law behaviors and findeitahates of the power-law decay
indices, the (FI)GARCH parameters, and the tail index ofgiamated market fraction model
closely match those of the DAX 30. The results strongly supih@ explanatory power of the
heterogeneous agents models. For the extended mode(2212)-with both fixed and switch-
ing traders, we are interested in the explanatory powereataptive behavior of investors in
financial markets. We follow the same estimation procedara &e and Li (2015) and show
that the model with the switching is also able to explain tbesgr-law behavior of the DAX
30. The finding provides a strong evidence on the rationaictivnig and adaptive behavior in
financial markets.

After a brief discussion of the stylized facts of the DAX 3@¢luding both fat tail and power-

law behavior, we introduce the calibration procedure toom#te autocorrelation patterns in the

UThe specification of the fundamental price process in (24%) make sure that there are no significant ACs
in returns, absolute returns and squared returns in theafupedtal price. Since the focus of the paper is on the
characteristics of returns, we also choose the fundamprita procesg; defined in equation (2.12) to have an
expected mean return of zero. In general, the fundameritad igcalculated from the dividend. For simplicity we
assume; = K D,/r here. Therefore, we can impose the same random proces$ ¢2.12 dividend, which is
equivalent to (2.12) on the fundamental price. The longfamalamental valup* = (K D) /r defined in Footnote

9 only indicates a reference long-run fundamental valuéchvis chosen as the initial value of the fundamental
price process.
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returns, absolute and squared returns for the DAX 30, ptéisercalibration result and conduct
an out-of-sample test. Based on the calibrated parametetsd model, we use Monte Carlo
simulations to examine the effectiveness of the calibratiogenerating the autocorrelation
patterns and estimating the decay indices of the power-&haior, comparing the results with
those of the DAX 30. We also use the calibration result to erarthe power-law tail behavior
of the model comparing with the DAX 30. We show that the calibd model closely generates
the characterization of the power-law behavior of the DAXBthe return autocorrelation and
tails.

As in He and Li (2015), the price index data for the DAX 30 corfresn Datastream, which
contains 8001 daily observations from 11 August, 1975 to2#,J2007. We usg, to denote
the price index for the DAX 30 at time(t = 0, ..., 8000) with log returnsr, defined byr; =
Inp, —Inp,_y (t = 1,---,8000)*2 The summary statistics of for the DAX 30 show high
kurtosis and fat tails im;, suggesting that, is not normally distributed. The returns also show
volatility clusterings and time-varying market volaglitin addition, the returns contain little
serial correlation, but the absolute retutng and the squared returm$ do have significantly
positive and slow decaying serial correlation over longsladhis indicates the long-range

dependence or the power-law behavior in volatility for th&80.12

3.1. Model Calibration and Result. AsinHe and Li(2015), to calibrate the power-law behav-
ior of the DAX 30 to our model, we minimize the average distabetween the autocorrelations
of the log returns, the squared log returns, and the absklgtesturns of the DAX 30 and the
corresponding autocorrelations generated from the mtdélere precisely, denot® the pa-
rameter space of the model. lee€ © be the vector of parameters in the model to be calibrated,
N be the number of independent simulations of the matiebe the estimated autocorrelations
of then-th run of the model, anaDAX be that of the DAX 30. In calibration, we solve

N
- ‘ 1 N s
0 € argming.gDg, Dy = HN Zﬁ — Bpax|? (3.1)

n=1

12Note that, at daily frequency, the difference between ktgins and simple returns is very small.

L3we refer He and Li (2015) for the detailed statistics, timgeseand autocorrelation plots.

14Note that we do not consider other moments such as scalesushseand absolute returns and others. By
exclusively focusing on the autocorrelations of returmigsed return and absolute return, we provide a simple way
to gain insight into the generating mechanism of power-lahavior of volatility of the model.
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for the standard Euclidian nortf - ||, using an asynchronous parallel pattern search algo-
rithm.*®> The parameters in the model are chosen to lie in the followamges® o < [0, 1],

v € [0.05,5.5], ay, az € [0.001,9.0], i € [0.1,5], mg € [—1,1], ng € [0.05,0.995], 6 € [0,1],

b € [0.05,8.5], 3 € [0.5,1.5], 0. € [0.005,0.05], ¢ = VKo. andos € [0.05,8.5]. However

ps = p* = 100, ¢ = r?, andr = 0.05 are kept fixed. In the calibration and the subsequent
econometric analysis, we run 1,000 independent simulaioeer 9,000 time periods and dis-
card the first 1,000 time periods to wash out possible init@ate effect. For each run of the
model, we obtain 8,000 observations to match the samplesihe DAX 30. Itis not possible

to use autocorrelations at all lags, so we focus on all lagi$ oM and then each fifth lag up

to 100". This corresponds to 60 autocorrelations in total for rettihe absolute return and
squared return, respectively. Essentially, with 60 aut@tations estimated for each of thg

r? and |ry|, the dimension oﬁ” and BDAX is 180 in total. The calibrated parameters of the

model are reported in Table 314..

TABLE 3.1. The calibrated parameters of the models

«Q ¥ ay as 1 no mo 1) b o o5 I}
0.488 1.978 7.298 0.320 1.866 0.313 -0.024 0.983 3.537 0.22D5 0.954

We now provide an economic intuition of the calibrated resBhsed on the calibrated pa-
rameters in Table 3.1, parametey = 0.313 implies that, among two strategies, there are
some (about 31%) traders who do not change their investrtrategies and many (about 69%)

traders who switch between two strategies with a switchmgnisity measured by = 0.954.

15The software implementing the algorithm is APPSPACK 5.@&;more details in Gray and Kolda (2006), Griffin
and Kolda (2006), and Kolda (2005). In the implementatiorguoid possible local minima, we try different sets
of starting values, and for each set of starting value weckdar the minimum and then we re-initialize and search
for the new minimum again. We repeat the procedure untikthero further improvements.

16The parameter ranges far, mg,n,,d are implied by the model specifications. The ranges for paters
~v,a1,a2 andp are selected to reflect reasonable behavior of the tradeesib@n the analysis of the underly-
ing deterministic model in Dieci et al. (2006). The rangedprepresents the volatility of the fundamental price,
while the range fob s indicates the daily market price volatility level.

\We choose a large numbers of lags of ACs because our methatitmftion of the model is exclusively focused
on the ACs, and it works well to produce reasonable resufisrted in Fig. 3.1. In practice, fewer lags may
contain the same information and too many lags would wastepctation time and even affect the accuracy of
estimation; see, for instance, Franke and Westerhoff (Pfat2elated discussion.

18t is likely that the estimated parameter values can bemdiffefor differ indices over different time periods. In
fact, in our earlier exploratory model (He and Li, 2007, 202815 and Liet al, 2010) using other indices or
different periods of an index, the estimated model pararseate different in each of the cases. Quantitatively the
stylized facts can vary over time, however, qualitativélg thain feature of the stylized facts remains the same
over long time periods and across different markets. Itis glalitative feature of the long memory pattern and
the generating mechanism provided in Section 4.1 that ggepcontributes to the current literature. It is from
this perspective that the model estimation in this papeshbsist.
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This is consistent with the empirical evidence of using ameéntal and technical analysis and
the adaptive behavior of investors. With, = —0.024, it indicates that, among those traders
who do not change their investment strategies, there ang aljoal numbers of trend followers
and fundamentalists. This result is different from theraation of the market fraction model
of He and Li (2015) and the dominance of the trend followerthaut switching. These re-
sults demonstrate that both fundamentalists and trendwelis are active in the market and
the market is populated with confident traders as well astadafpaders. This is in line with
the findings from foreign exchange markets in Allen and Tayl®90) and Taylor and Allen
(1992) and fund managers in Menkhoff (2010). The relativeiyhera; is thana, implies that
the fundamentalists are more risk averse than the tremulifes®. A value ofo = 0.488 indi-
cates that the speed of price adjustment of the fundamststaédwards the fundamental value
is indicated byl /(1 — «), which is about two trading periods. This may explain thejfrent
deviations of the market price from the fundamental valugaénshort-run but not in the long-
run. A value ofy = 1.978 indicates that trend followers extrapolate the price trendasured
by the difference between the current price and the geom®ioving average of the history
prices, actively. Also note that= 1.978 > 1 does not lead to explosive expectations by trend
followers because of the quadratic volatility function iretdenominator of the demand func-
tion. The geometric decay rate= 0.983 indicates a slow decaying weight. The parameter
b, = bo? measures the influence of the sample variancén addition to the common belief
on the price volatilityo?, to the estimated price volatility for trend followers. Thalue of

b = 3.537 implies that trend followers are cautious when estimatirgggrice volatility, though
they are less risk averse. The annual return volatility ef 23.1% is close to the annual return
volatility of 19.67%(= v/250 x 0.01244) for the DAX 30. A value ofu = 1.866 indicates
that the market maker actively adjusts the market priceagceitess demand of the traders. A
positiveo; indicates that the noise traders are active in the marketutmmary, the calibrated
parameters show that the market is dominated by traders withchdbetween the two strategies

based on their performance over time, although there are s@uers who do not change their

19Note that, for simplicity, we assume that agents’ risk preriees switch when their strategies switch. Compared
to the trend followers who invest in short-run and are lesis averse, the fundamentalists invest in long-run and
are more risk averse in general. We see from Footnote 9 #rad followers have a systematically higher variance
estimate relative to the fundamentalists fbyo?). When the additional term is much larger th@an+ r2)o?, the
trend followers have much higher risk perception, whiclo gisstifies the relative lower risk aversion of the trend
followers than the fundamentalists.
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strategies over time. Due to switching, the market becoma wolatile, which supports the

theoretical predication in Brock and Hommes (1998).

(@) (b)

FIGURE 3.1. (a) Autocorrelations of;, r? and|r,| for the model. (b) The ACs
of the returns, the squared returns and the absolute refoirrtbe calibrated
model and the DAX 30. The smooth lines refer to the model wthke 95%
confidence intervals are those for the DAX 30.

3.2. The Autocorrelation Patterns of the Calibrated Model and Out-of-Sample Test. As
in He and Li (2015), we want to know if the calibrated model lideato replicate the power-
law behavior of the DAX 30. Using the parameters in Table @é,run 1,000 independent
simulations for the model and report the average ACs formefisquared returns and absolute
returns. The resulting ACs plots in Fig. 3.1(a) show indigant ACs for the returns, but
significantly positive and slowly decaying ACs over longddgr r? and|r;|, very similar AC
patterns to the DAX 30. Further, the sample autocorrelationthe absolute returns are greater
than that for the squared returns at all lags up to at leastdd® Fig. 3.1(b) plots the ACs
of returns, the squared returns and the absolute returitbhdamodel together with the DAX
30, respectively. For comparison, we use the Newey-Weseciad standard error and plot the
corresponding 95% confidence intervals of the ACs of the DAXsBiowing that all of the ACs
of the model lie inside the confidence intervals of the DAX 30.

Different from He and Li (2015), here we perform an out-ofrgde test to evaluate the
performance of the model. Recalling that we calibrated thdehusing the DAX 30 daily price
index from 11 August 1975 to 29 June 2007, we now use data fidduly 2007 to 02 April
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2015 and plot ACs for returns, squared returns and absadtiiens of the DAX 30 together
with their 95% confidence intervals in Fig. 3.2. The ACs oluras and squared returns of
the calibrated model fit in the 95% confidence intervals of#eX 30 reasonably well, but
the ACs of absolute returns of the calibrated model lie deatsif the corresponding confidence
intervals of the DAX 30 after lag 30, which indicates that gfe¥sistence in volatility of the
DAX 30 is not as strong as before, since the global financialscrOverall, the out-of-sample
result indicates that the model performs reasonably welbbthe sample and the calibration

method effectively captures the ACs patterns of the DAX 30.

FIGURE 3.2. The ACs of the returns, the squared returns and thewbsa-
turns for the calibrated model and the DAX 30. The smoothslirefer to the
model while the 95% confidence intervals are those for the C3®¢rom 02
July 2007 to 02 April 2015.

Based on the calibrated parameters for the model, we usea\@arto simulations to examine
further the effectiveness of the calibration in estimatihg decay indices of the power-law
behavior of ACs and in volatility clustering, comparing vthose of the DAX 30. We also use
the calibration result to examine the power-law tail bebaeif the model compared with the
DAX 30. The results show that the calibrated model closelyegates the characterization of
the power-law behavior of the DAX 30 in the return autocatieln, volatility clustering and

tails 2°

3.3. A Comparison Test. To see how well the model is able to describe the characterist

the DAX 30, we follow He and Li (2015) and conduct the Wald testee if the estimates based

20since the results are consistent with the findings in He ar@@15), we do not report them in detail.
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upon the calibrated model equal those of the DAX 30. In othendw, for decay index we test
the hypothesis

HO : dDAX = d

using the Wald test statistic given by

W = (dpax — d)*/%,
whereY) is simply the variance afpx. The resulting test statistics are summarized in Table
3.2. In the column?,’, the first sub-row reports the test statistics correspoqdd d¢py;, and
the second sub-row correspondingcfllfg)H,21 and so on. Notice that the critical values of the
Wald test at 5% and 1% significant levels are 3.842 and 6.&&pectively. For the returns,
we see that the estimatddf the DAX 30 and the model are significantly different. Howgv
for the squared returns and the absolute returns, the @iftess between the estimatédf the
DAX 30 and the model are not statistically significant. Thasult shows that the calibrated

model is able to describe the ACs of the absolute and squatehs in the DAX 30.

TABLE 3.2. The Wald test of with m = 50, 100, 150, 200, 250

m | 50 100 150 200 250

. 19.41 45.62 61.94 65.86 76.35
*135.41 92.24 126.0 117.5 129.4
2 0.071 1.309 0.282 0.036 0.023
£ 10.037 1.246 0.050 0.767 0.276
0.116 1.165 1.672 0.413 0.195
0.020 0.350 0.067 0.031 0.015

|7¢]

4. MECHANISM EXPLANATION OF THE CALIBRATION RESULTS

We have shown that the calibrated model closely matchestitieesl facts of the DAX
30. In this section, we explore the explanation on the geimgranechanism of the power-law
behavior.

There are several explanatory mechanisms on volatilitgteling based on the underlying

deterministic dynamics in HAM literaturé. The first one is based on the local stability and

2lepr anddry are two semiparametric estimators of the power-law decdgxiof autocorrelations depending
on bandwidthn; see He and Li (2015) for detailed discussions.

2’Different from the mechanisms based on the deterministi@dyics, there are also other mechanisms on volatil-
ity clustering based on stochastic herding or stochastitashel (Alfarancet al. (2005) and Franke and Westerhoff
(2011)).
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FIGURE 4.1. The price of the deterministic model with the calibdgp@arameters.

Hopf bifurcation, explored in He and Li (2007). Essentialiyn the parameter space of the
deterministic model, near the Hopf bifurcation bounddmg fundamental price can be locally
stable but globally unstable, depending on the initial allDue to the nature of Hopf bifurca-
tion, such instability leads to periodic oscillations anduhe fundamental price. Then triggered
by fundamental noise and market noise, He and Li (2007) fiatittte interaction of fundamen-
talists, risk-adjusted trend chasing from the trend fo#osvand the interplay of the noises and
the underlying deterministic dynamics can be the sourcewip-law behavior.

The second mechanism proposed in Gaunersdetfat. (2008) is characterized by the co-
existence of two locally stable attractors with differeizies The interaction of the coexistence
of the deterministic dynamics and noise processes can tlgget the switching among the
two attractors and endogenously generate volatility elusg). Dieci et al. (2006) show that
the model developed in this paper can display such co-existef locally stable fundamental
price and periodic cycle. More recently, He, Li and Wang @0OfLirther verify this endoge-
nous mechanism on volatility clustering of the model. Ecuiwally, they show that volatility
clustering occurs when neither the fundamental nor thedtfellowing traders dominates the
market and when traders switch more often between the tategies.

Mathematically, the model in this paper shares the samerlynagdeterministic mechanism
explored for a market fraction model without switching in&ted Li (2007). For the correspond-
ing deterministic model with the calibrated parameters,dbnstant fundamental equilibrium
becomes unstable, leading to (a)periodical oscillatiaineimarket price around the fundamen-

tal equilibrium, illustrated in Fig. 4.1. Triggered by ramd noise, such periodical deviations of
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the price from the fundamental value in the deterministidei@re inherited in the stochastic
model. Fig. 4.2(a) plots the time series of typical markéteoand fundamental price of the
stochastic model. It shows that the price deviates fromuhddmental price from time to time,
but, in general, follows the fundamental price. In additithre returns of the stochastic model
display the stylized facts of volatility clustering in Fig.2(b) and non-normality of return dis-
tribution in Fig. 4.2(c). Furthermore, with the two noisepesses, Fig. 4.2(d) demonstrates
insignificant ACs for the returns, while Figs 4.2(e) and (ipw significant and decaying ACs
in the absolute and squared returns, respectiielhey clearly demonstrate that, for the cali-
brated model, noise traders play an important role in theggion of insignificant ACs on the
returns, while the significant decaying AC patterns of theofite returns and squared returns
are more influenced by the noisy fundamental process. Tkes#s are consistent with He and
Li (2007, 2015), and Chiarella, He and Hommes (2006).

Economically, this paper provides a different behaviorathanism from He and Li (2015).
In He and Li (2015), a constant market fraction model is usegkamine the potential mecha-
nism in generating power-law behavior in return autocatreh patterns. The estimated param-
eters show that, with the dominance of trend followers (460&6), the model is able to match
closely the power-law behavior of the DAX30. In this papkeg éstimated parameters illustrate
different trading behavior. Essentially, the market is duated by these traders (about 70%)
who consistently switch between two strategies. It is treidedaptive behavior that generates
the power-law behavior.

Given the different behavioral mechanisms, we want to kndvclw mechanism is better.
Intuitively, with the flexibility of the model in this papewe would expect the adaptive switch-
ing model, denoted SM, to fit the data better than the (noetivig) market fraction model,
denoted MF, of He and Li (2015), and the pure-switching modehoted PSM, witlmg = 0
in line of Brock and Hommes (1998). In Appendix A, we provitie talibrated parameters in
Tab. A.1, the ACs patterns in Fig. A.1, and the Wald test fer®$M, which share the similar
results and implications to the SM. We calculate the distaraf ACs, theD; in Eq. (3.1),
between the DAX 30 and the SM, PSM, and MF models and obta @8l 4.59 and 4.63,

23Ve also plot the times series of price, fundamental valueyms, return distribution, the ACs of return, abso-
lute and squared returns with one noise, either the fundheaise in Fig. B.1 or market noise in Fig. B.2,
respectively, in Appendix B.
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(d) The ACs of the return
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FIGURE4.2. Thetime series of (a) the price (red solid line) and timelamental

price (blue dot line) and (b) the return; (c) the return dgrdistribution; the ACs

of (d) the returns; (e) the absolute returns, and (f) the igligeturns.
respectively. The test statistiésare 106, 108, and 112, respectively. These results seems to
confirm that the SM performs better than the PSM and MF modetsrims of minimizing the
distance in Eq. (3.1) and the weighted average distancekingtinto account thé). However,
we would like to emphasize that the comparison is based upmagnitudes of distances we

use. In other words, this is not to say that 4.56 (106) is &cantly lower than 4.59 (108) and

2*The test statistic§3pax — 5)'Q~ (Bpax — B) follow a Chi-square distribution with critical value 180tae
5% significant level, wherg is estimated from the simulation model aftd? is the generalized inverse (see, for
example, Cameron and Trivedi, 2005) of corresponding ¢anee matrix, for ACs up to 50 lags for the return, the
squared return and the absolute return of the SM and PSM
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4.63 (112)° A formal procedure such as that suggested by Hnatkogské (2012) might be

explored furthef®

5. CONCLUSION

Theoretically oriented HAMs have provided many insight®imarket behavior, such as
market booming and crashing, multiple market equilibrishgrt-run deviation of market price
from the fundamental price and long-run convergence of theket price to the fundamental
price. Combined with numerical simulations, the HAMs aré&db reproduce some stylized
fact, such as non-normality in return and volatility clustg. More recent developments in
HAMs have stimulated many interests in the generation nreéshaof those stylized facts and,
in particular, power-law behavior. However, estimation @alibration of HAMs, in particular
the switching models, to the power-law behavior of finandeth, together with some mecha-
nism explanation and economic intuition, are still a diffi@and challenging task.

This paper calibrates an extended switching HAM to charaet¢he power-law behavior in
the DAX 30. The model considers a market populated by hesésregus traders who use either
fundamental or chartist strategies. The market fractidriisaders who use the two strategies
have both fixed and switching components. The calibratiothatkis based on minimization
of the average distance between the autocorrelations (8fakg returns, the squared returns
and the absolute returns of the DAX 30 and the correspond®@g generated from the model.
With the parameter values of the calibrated model, we shaivitte calibrated model matches
closely to the corresponding estimates for the DAX 30 anckges most of the stylized facts
observed in the DAX 30.

The calibration results support the empirical evidencenarfcial markets that investors and
fund managers use combinations of fixed and switching sfiegdased on various fundamen-
tal and technical analysis when making complicated investrdecisions. By calibrating the

model to the daily DAX 30 index from 1975 to 2007, we show the market is dominated

25Ne would like to thank one of the referees who pointed this out

28t is possible to develop measures of goodness of fit. Whéentkasures of goodness of it are very useful when
comparing the performance of different HAMs (see, for exempranke and Westerhoff, 2012), the comparison
results on various econometric characterizations betdvi and the actual data seem to imply that it might be
difficult to get meaningful test statistics. In our approatie sampling error from the actual data is dealt with the
confidence intervals of the estimates and that from the sitioul data is eliminated by running many independent
simulation. For a more general discussion on the compadétime simulation models with the real world data,
see Liet al. (2006, 2010).
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by the adaptive investors who constantly switch betweeriuthdamental and trend following
strategies, though there are some investors who never etiaag strategies over time. In ad-
dition, the calibrated model also provides a different lvéral explanation on the generating
mechanism of the power-law behavior in the literature. Inatasion, the calibration results
provide strong support to the explanatory power of hetaregas agent models and the empir-

ical evidence of heterogeneity and bounded rationality.
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APPENDIXA. ECONOMETRIC ANALYSIS OF THEPURE SWITCHING MODEL

This Appendix provides calibration results of the pure shing model (2.7)-(2.12) with
n, = 0 to characterize the power-law behavior of the DAX 30.

TABLE A.1. The calibrated parameters of the SW models

«@ v a as 1 ) b o o5 15}
0.513 0.764 7.972 0.231 2.004 0.983 3.692 0.231 3.268 0.745

(a) (b)

FIGURE A.1. (a) Autocorrelations of;, r? and|r;| for the SW model. (b) The
ACs of the returns, the squared returns and the absolutesdir the calibrated
SW model and the DAX 30. The smooth lines refer to the SW modidievihe
95% confidence intervals are those for the DAX 30.

TABLE A.2. The Wald test ofl with m = 50, 100, 150, 200, 250

m | 50 100 150 200 250

. 18.92 44.73 61.61 66.17 77.30
© 13499 91.16 125.7 118.6 132.0

2 0.068 1.247 0.263 0.034 0.026
£ 10.035 1.272 0.038 0.694 0.234

7 0.105 1.085 1.603 0.413 0.198
*'10.024 0.331 0.064 0.031 0.016
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APPENDIXB. THE EFFECT OFONE NOISE

This appendix demonstrates the impact of single noise imibeel (2.7)-(2.12) on the AC

patterns of the return, absolute returns and squared seturn
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FIGURE B.1. The time series of (a) the price (red solid line) and tined&-
mental price (blue dot line) and (b) the return; (c) the digrdistribution of the
returns; the ACs of (d) the returns; (e) the absolute refiand (f) the squared
returns, with the fundamental noise onby (= 0).
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