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ABSTRACT 

 Anomalously high rates of continental weathering have frequently been proposed 

as a key stimulus for the development of widespread marine anoxia during a number of 

Late Devonian environmental and biospheric crises, which included a major mass 
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extinction during the Frasnian–Famennian transition (marked by the Upper and Lower 

Kellwasser horizons). Here, this model is investigated by presenting the first stratigraphic 

record of osmium-isotope trends (
187

Os/
188

Os) in upper Devonian strata from the Kowala 

Quarry (Holy Cross Mountains, Poland). Changes in reconstructed 
187

Os/
188

Os seawater 

values to more radiogenic compositions are documented at the base of both the Lower 

(0.42 to 0.83) and Upper (0.31 to 0.81) Kellwasser horizons characteristic of the 

Frasnian–Famennian transition, and additionally within upper Famennian shales that 

record a more minor environmental perturbation known as the Annulata Event (0.20 to 

0.53). These shifts indicate the occurrence of extremely enhanced continental 

weathering rates at the onsets of the Kellwasser crises and during the later Annulata 

Event. The similarity of 
187

Os/
188

Os values in this study from Frasnian–Famennian 

boundary and lower Famennian strata (between 0.4–0.5) to those from North American 

stratigraphic equivalents suggests that the 
187

Os/
188

Os values record global trends. These 

findings support a causal relationship between increased continental weathering (and 

thus, nutrient supply to the marine shelf) and the environmental perturbations that 

occurred during numerous Late Devonian events, including both of the biospherically 

catastrophic Kellwasser crises as well as other, less severe, oceanic anoxic events. 

 

 

1. Introduction 

 

 The Late Devonian (383–359 Ma) marked a time of numerous environmental and biotic 

crises, including one of the ‘Big Five’ mass extinctions of the Phanerozoic Aeon during the Frasnian–

Famennian (F–F) transition (see reviews in Racki, 2005; Bond and Grasby, 2017). Although the 

magnitude of extinction and/or environmental perturbation appears to have greatly varied between the 

Late Devonian crises, a common feature of these events was the development of widespread marine 
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anoxia, typically recorded by the appearance of organic-rich laminated shales in the stratigraphic record 

(e.g., Joachimski and Buggisch, 1993; Walliser, 1996; Bond et al., 2004; Racka et al., 2010; Becker et 

al., 2016; Bond and Grasby, 2017). Two such anoxic episodes are documented to have occurred during 

the late Frasnian, widely known as the Lower (LKW) and Upper (UKW) Kellwasser events (372 Ma), 

the latter of which coincided with the F–F transition and the associated mass extinction. Subsequent 

spells of marine anoxia during the Famennian Stage included the Annulata (363 Ma) and Hangenberg 

(359 Ma) events at the end of the Devonian Period, with the Hangenberg Event characterized by 

another major mass extinction (see reviews by Kaiser et al., 2016; and Bond and Grasby, 2017). The 

ultimate causes of the various Late Devonian environmental perturbations remain debated. Numerous 

triggers have been postulated for the Kellwasser crises, including extra-terrestrial impacts (e.g., Wang, 

1992; Claeys et al. 1996; Du et al., 2008), large-scale volcanic activity potentially linked to the Viluy 

Traps in Siberia (e.g., Courtillot et al., 2010; Ricci et al., 2013; Racki et al., 2018), orogenic uplift and 

erosion (Averbuch et al., 2005), and the expansion of vascular-rooted terrestrial flora (Algeo et al., 

1995; Algeo and Scheckler, 1998). Many of the environmental perturbations also appear to have 

coincided with climate cooling (e.g., Streel et al., 2000; Joachimski and Buggisch, 2002; Balter et al., 

2008). The Annulata anoxic event was coeval with a major marine transgression (Johnson et al., 1985), 

and may also have coincided with a major pulse of volcanic activity (Percival et al., 2018). In contrast, 

Southern-Hemisphere glaciation, and associated continental weathering and marine regression, has been 

most frequently proposed as having caused the end-Famennian Hangenberg Event (e.g., Streel et al., 

2000; Kaiser et al., 2016; Lakin et al., 2016). Whatever initiated the various Late Devonian crises and 

caused any associated extinctions, in all cases the development of marine anoxia has been proposed to 

have been driven by internal triggers. One such postulated trigger is an enhancement of global 

weathering rates and an associated flux of nutrients to the marine realm, which stimulated increased 

primary productivity and consumption of oxygen in the water column (e.g., Wilder, 1994; Algeo et al., 

1995; Algeo and Scheckler, 1998; Averbuch et al., 2005; Chen et al., 2005; Whalen et al., 2015). 

 

 This study presents a new long-term stratigraphic record of sedimentary osmium (Os) isotopes 

(specifically 
187

Os/
188

Os) from rocks that span mid Frasnian up to upper Famennian strata (that 
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represent approximately 20 million years of Late Devonian time). The 
187

Os/
188

Os composition of 

sedimentary rocks can track changes in both continental weathering rates and the influx of 

mantle/meteorite material into the global oceans, due to proportional mixing of inputs to the oceanic 

inventory from extra-terrestrial and mantle-derived-volcanic osmium (
187

Os/
188

Os of 0.13: Allègre et 

al., 1999) and the riverine supply of the element from weathering of the continental crust (average 

187
Os/

188
Os of 1.4: Peucker-Ehrenbrink and Jahn, 2001). The marine residence time of Os (10–50 kyr 

or less; Peucker-Ehrenbrink and Ravizza, 2000; Rooney et al., 2016) results in a homogeneous Os-

isotope composition throughout the open ocean. Hydrographically restricted basins may have different 

seawater Os-isotope values, determined by local sources of the element, if their water-mixing time with 

the global ocean is longer than the lifetime of marine Os (Paquay and Ravizza, 2012; Du Vivier et al., 

2014; Dickson et al., 2015; Percival et al., 2016). Past seawater Os-isotope compositions (Os(i)) can be 

calculated from a sedimentary rock after accounting for radiogenic 
187

Os produced from post-deposition 

decay of 
187

Re (rhenium), assuming that the sedimentary system has remained closed with respect to Re 

and Os, and that the age of the studied sample is known (Cohen et al., 1999). 

 

 Previous studies of Late Devonian sedimentary records have utilized Re–Os isochrons (based 

on the known half-life of the decay of 
187

Re to 
187

Os) to date organic-rich strata from a number of North 

American sequences (Figure 1). This technique can also determine the isotopic composition of the 

sediment at the time of deposition (Os(i)), and thus, for an open-marine palaeoenvironment, the Os-

isotope signature of the global ocean at that specific time. Following these investigations, the Late 

Devonian (particularly Famennian) ocean is considered to have had an average 
187

Os/
188

Os composition 

of 0.46 (Figure 2), with values of 0.45 and 0.42 measured at the Frasnian–Famennian and Devonian–

Carboniferous (D–C) boundaries, respectively (Selby and Creaser, 2005; Turgeon et al., 2007; Gordon 

et al. 2009; Harris et al., 2013). However, trends in Os-isotope values across the stratigraphic sequences 

of specific Late Devonian events, such as the Kellwasser crises, have not been previously documented. 

Consequently, it is unknown how the global Os inventory responded to possible influences from any or 

all of the postulated meteorite impacts, volcanic activity, or enhanced continental weathering rates 

thought to have occurred during the various Late Devonian environmental perturbations (e.g., Wang, 
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1992; Claeys et al., 1996; Algeo and Scheckler, 1998; Averbuch et al., 2005; Chen et al., 2005; 

Courtillot et al., 2010; Ricci et al., 2013; Whalen et al., 2015; Racki et al., 2018).  

 

 The Kowala Quarry (hereafter termed Kowala), near the town of Kielce in the Holy Cross 

Mountains, Poland, records a well-known long-term record of the Late Devonian, with strata from the 

lower Frasnian through to basal Tournasian (Early Carboniferous) series well constrained by conodont 

biostratigraphy (Szulczewski, 1996; see figure 1 in De Vleeschouwer et al., 2013). The sediments were 

deposited in the Chęciny–Zbrza intra-shelf basin, which was surrounded by more elevated shoal areas 

that formed part of a very large carbonate platform on the north-eastern part of Laurentia (Figure 1, see 

also review by Racki et al., 2002). The presence of conodont fossils found across Europe, North 

America, and South China (Szulczewski, 1971, 1996) indicates that marine organisms could certainly 

migrate between the basin and global ocean, although the degree of connectivity between those two 

environments in terms of water-mass mixing remains unknown. Organic-rich shales (interbedded with 

limestones) are prevalent throughout much of the Kowala stratigraphic sequence, ideal for Re–Os 

analysis due to the uptake of both Re and Os from seawater into organic muds during deposition 

(Ravizza and Turekian, 1989; Cohen et al., 1999). The UKW Horizon has been well documented at 

Kowala on the basis of conodont biostratigraphy (Szulczewski, 1971, 1996), an elevated total organic 

carbon (TOC) content, and a positive carbon-isotope (δ
13

C) excursion of up to 4 ‰ in both carbonates 

and bulk and compound-specific organic matter (Joachimski et al., 2001), which is characteristic of 

both Kellwasser events in stratigraphic archives across the globe (e.g., Joachimski and Buggisch, 1993; 

Chen et al., 2005; De Vleeschouwer et al., 2017). This stratigraphic positioning of the UKW Horizon is 

supported by several other indications of marine anoxia such as pyrite framboid size populations and 

trace metal contents (e.g., vanadium/chromium ratios), all of which show perturbations just below the 

F–F boundary (Joachimski et al., 2001; Racki et al., 2002; Bond et al., 2004). The position of the LKW 

Horizon has been inferred previously from the appearance of organic-rich shales about 10 metres below 

the UKW Horizon in the Late rhenana conodont Zone, consistent with other western European records 

and supported by lithological evidence for marine anoxia, although the positive δ
13

C excursion 

characteristic of the LKW Horizon is not well defined at Kowala (Joachimski et al., 2001; Bond et al., 
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2004). Several Famennian episodes of marine anoxia/euxinia are also well known from the appearance 

of black shale horizons higher in the Kowala Quarry sequence, with both the Annulata and Hangenberg 

Events recorded (e.g., Bond and Zatoń, 2003; Racka et al., 2010; Marynowski et al., 2012).  

 

For this study, sedimentary rocks from both Kellwasser horizons and the Annulata and 

Hangenberg shales at Kowala, together with sediments from seven Frasnian and Famennian 

stratigraphic levels that were deposited between the times of the individual Late Devonian events, were 

analyzed to determine their Os(i) compositions. New samples were taken from throughout the Kowala 

stratigraphic sequence in September 2017 (including the Lower Kellwasser, Annulata, and Hangenberg 

shales), and combined with rocks from an unpublished sample-set spanning the F–F boundary, 

collected in 2009 by Michal Rakociński and Leszek Marynowski (part of the Global Archive of 

Devonian System Samples at the University of Silesia, Sosnowiec, Poland). Where possible, the results 

were compared to Os(i) values in rocks from time-equivalent strata in North America. Because Kowala 

is an active quarry, it is no longer possible to sample the exact section studied by Joachimski et al. 

(2001); therefore, δ
13

C, TOC, and trace-metal data were also determined for uppermost Frasnian 

samples in order to constrain the stratigraphic position of the Kellwasser horizons, particularly the less 

well defined LKW Level. Finally, in order to better understand the degree of hydrographic connectivity 

between the Chęciny–Zbrza Basin and the global ocean during the Late Devonian, sedimentary 

molybdenum and uranium enrichment values were ascertained for a combination of the new samples 

collected for this study and additional material from a third Kowala sample-set, previously described by 

Bond et al. (2004), which collectively spanned the entire stratigraphic sequence from upper Frasnian to 

upper Famennian strata.  

  

 

2. Methods 

 

 Preparation of samples for Re–Os analysis was performed in the Laboratory for Source Rock 

Geochronology and Geochemistry at Durham University (UK), utilising carius-tube digestion with 
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Cr
IV

O3-H2SO4, and Os purification using solvent extraction (by chloroform) and microdistillation 

techniques, following the procedure in Selby and Creaser (2003). Re purification was carried out by 

anion chromatography following treatment with NaOH and acetone (after Cumming et al., 2013). 

Isotope compositions and concentrations of Re and Os were determined by isotope dilution and 

negative thermal ionisation mass spectrometry (N-TIMS) on a ThermoScientific Triton in the Arthur 

Holmes Laboratory at Durham University. In-house standards were used to monitor analytical 

reproducibility (see Nowell et al., 2008; and supplementary information in Du Vivier et al., 2014). The 

187
Os/

188
Os and 

187
Re/

185
Re values generated during sample analysis were 0.16077±0.00032 (1 σ) and 

0.59777±0.00147 (1 σ), respectively, consistent with running averages for the laboratory (see 

Supplementary Tables). 

 

All other accompanying geochemical analyses were undertaken at the University of Lausanne 

(Switzerland). Total organic carbon (TOC) analyses were performed on bulk rock samples using a Rock 

Eval 6 (see Behar et al., 2001). New δ
13

C data were generated as described in Fantasia et al. (2018a). 

Carbonate δ
13

C (δ
13

Ccarb) compositions were ascertained using a Thermo Fisher Scientific Gas Bench II 

connected to a Delta Plus XL isotope ratio mass spectrometer, following reaction of precisely weighed 

aliquots of powdered samples with anhydrous phosphoric acid at 70 ˚C. Bulk organic-matter δ
13

C 

(δ
13

Corg) compositions were determined on aliquots of samples that had been decarbonated using 10% 

HCl and subsequently rinsed multiple times with deionized water and milli-Q purified water to restore a 

neutral pH and dried at 40 ˚C, using flash combustion on a Carlo Erba 1108 elemental analyser 

connected to a Thermo Fisher Scientific Delta V isotope ratio mass spectrometer. Analytical uncertainty 

was ±0.06 ‰ (1 σ) for δ
13

Ccarb, as determined by repeated measurements of a Carrara marble internal 

standard (7 per 45 unknown samples), and ±0.15 ‰ (1 σ) for δ
13

Corg, based on analyses of internal 

laboratory and international standards. 

 

Aluminium abundances were established via X-ray fluorescence (XRF) of fused lithium 

tetraborate glass discs, using a PANalytical PW2400 spectrometer. To create the glass discs, 2.5–3 g 

(depending on the carbonate content) of powdered bulk sample was measured and its precise mass 
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determined. The weighed samples were baked at 1050 ˚C for 3 hours, weighed again to ascertain the 

mass lost during calcination, and re-powdered. Exactly 1.2 g of the new powder was mixed with 

precisely 6 g of Li2B4O7 material, and the resultant mixture heated in a platinum crucible at 550 ˚C for 

10 minutes to form a fused lithium tetraborate glass disc. The glass was left to cool for at least 5 

minutes before being labelled for identification during analysis. The analytical uncertainty of this 

technique has been shown previously to be lower than ±5% (Fantasia et al., 2018b). 

 

Molybdenum (
95

Mo) and uranium (
238

U) contents were determined by laser-ablation inductively 

coupled plasma-mass spectrometry (LA-ICP-MS) on fragments of the glass discs used for XRF analysis 

(see above). Analysis was conducted using an Element XR sector-field ICP-mass spectrometer 

interfaced to a NewWave UP-193 ArF excimer ablation system, which fired a 150 μm diameter laser 

beam with 5 J/cm
2
 on-sample energy density at a repetition rate of 10 Hz. A 90 second background was 

taken before three separate firings of the laser (of 50 seconds duration, with 15–20 seconds between 

each firing). CaO wt% obtained by XRF analysis (see above) was used as an internal standard, with a 

sample of NIST-SRM612 glass employed as an external standard. Data reduction was carried out using 

LAMTRACE software (Longerich et al., 1996), with reproducibility generally within ±5% for Mo and 

±1% for U (1 σ). Full geochemical data are presented in the Supplementary Tables. 

 

 

3. Results  

 

 A clear increase in TOC content, correlative with positive excursions in δ
13

C values of both 

carbonates and bulk organic-matter, is recorded 2 m below the F–F boundary (Figure 3). These trends 

are consistent with previous findings (Joachimski et al., 2001), and, when combined with 

biostratigraphic information (Racki et al., 2002), are likewise interpreted as indicating the position of 

the UKW Horizon in the absence of the bituminous shales that typically define the Kellwasser levels in 

western Europe. An additional set of organic-rich shale layers is also observed 11–12 m below the F–F 

boundary (10 m below the base of the UKW Horizon), which is marked by elevated TOC contents and 
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an enrichment in both uranium and molybdenum concentrations (Figure 3). These results indicate that a 

brief period of marine anoxia occurred in this area prior to, and distinct from, the UKW Event. This 

level is tentatively interpreted as marking the LKW Horizon. Whilst the absence of biostratigraphic 

information in the new sample set means that it cannot be verified that this shale layer assumed to be 

the LKW Horizon occurs within the Late rhenana Zone, the position of the level 11–12 m below the 

base of the F–F boundary matches the biostratigraphic and chemostratigraphic positioning of the LKW 

at Kowala by Joachimski et al. (2001). No positive excursion in either δ
13

Ccarb or δ
13

Corg is documented 

at this stratigraphic level, similarly to Joachimski et al. (2001) who found only a very minor increase in 

δ
13

Ccarb values and a single-data-point positive excursion in δ
13

Corg at their inferred LKW Horizon 12 m 

below the F–F boundary. In the absence of a positive δ
13

C excursion, or detailed conodont 

biostratigraphy for the new samples, the inferred LKW horizon in this study cannot be stratigraphically 

correlated with other Late Devonian records, and it cannot be ruled out that this level actually marks a 

spell of localized anoxia that was unrelated to the LKW Event. Nevertheless, the similarity in 

geochemical perturbations and stratigraphic position (relative to the F–F boundary) of the layer 

interpreted as the LKW Horizon here compared to the LKW shale at Kowala established by previous 

studies (Joachimski et al., 2001; Racki et al., 2002) means that it is not unreasonable to assume that this 

episode of marine anoxia prior to the UKW Event was indeed the local manifestation of the LKW 

crisis. This interpretation is followed hereafter in the results and discussion. 

 

 Variations in the enrichment trends of Mo and U throughout upper Frasnian to upper 

Famennian strata match the patterns expected in a marine basin where the drawdown of molybdenum is 

dominated by particulate shuttling (Figure 4). This system of molybdenum scavenging relies on a 

reducing water column. Consequently, it is most prevalent today in marine basins that are at least semi-

restricted hydrographically with respect to the global ocean (Algeo and Tribovillard, 2009; see also 

Algeo and Howe, 2012, and references therein), which has also been proposed for various marine 

basins from other times in Earth’s history (Tribovillard et al., 2012), although reducing settings 

dominated by upwelling have also been shown to feature particulate-shuttle drawdown of molybdenum 

(Zheng et al., 2000). 
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Stratigraphic trends in Os(i) from Kowala are shown in Figure 2A, where the succession has 

been split into six divisions (A–F) to aid interpretation. Background Os(i) values of the two lowest 

Frasnian samples from below the inferred LKW Horizon (division A) and Famennian samples between 

the UKW and Annulata horizons (division E) are relatively consistent: typically between 0.4–0.5 (mean 

0.52). Contrastingly, there are significant deviations from this background in Os(i) values across the 

two Kellwasser horizons and the Annulata shales. The base of the LKW Horizon records a very 

radiogenic Os(i) value of 0.93, and another peak at 0.73 just below that level, separated by a return to 

near background values (division B). The upper part of the LKW Horizon documents a much more 

unradiogenic Os(i) composition of 0.21, and a very high content of common osmium (represented as 

192
Os), albeit based on analysis of just one sample. Os(i) compositions between the two Kellwasser 

horizons also fluctuate, but to a lesser extent (division C), with both somewhat unradiogenic and a 

slightly radiogenic value documented, relative to the Late Devonian background. Just below the UKW 

horizon there is a second increase in Os(i) values from 0.31 to a peak of 0.81 (division D). The 

remainder of samples from the UKW Horizon have a relatively consistent Os(i) composition of 0.40, 

comparable to the Late Devonian background (division D), except for the sample closest to the F–F 

boundary itself, which has an anomalous Os(i) value of -0.25.  Above the UKW Horizon, Famennian 

samples also show relatively consistent Os(i) values of 0.45–0.5 (division E), with only one sample 

deposited in the marginifera Zone recording a more radiogenic Os(i) composition of 0.73. Just below 

and above the Annulata shales rather unradiogenic Os(i) values of 0.2 and 0.35 are documented, 

respectively, but there is a more radiogenic composition of 0.53 in the main body of the Annulata 

shales (division F). A large variability in Os(i) values was also documented in the four samples from the 

Hangenberg Level, but no clear trend is shown, and two of the four samples recorded compositions well 

outside the expected range of 0.13 to 1.4 for an open-marine setting (0.06 and -0.91; Supplementary 

Figure 1).  
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4. Discussion 

 

4.1. Comparison of Kowala Os-isotope values with North American records 

 

 Only one sedimentary horizon from significantly below the Kellwasser horizons at Kowala was 

investigated for this study, with an Os(i) ratio of 0.61 in the mid Frasnian punctata conodont Zone 

(Figure 2). In contrast, Re–Os isochron data from the only previously studied sedimentary layer that 

was deposited prior to the LKW Event (from Pecos County Well of the Permian Basin in Texas, USA) 

recorded a value of 0.29 (Harris et al., 2013). However, this discrepancy in pre-LKW Os(i) values 

between Kowala and Texas might be because the studied sediments are not time equivalent, as the 

limited biostratigraphic constraints on the Pecos County Well hinders stratigraphic correlation of that 

record with those from elsewhere. Therefore, it is currently difficult to constrain a true global-ocean Os-

isotope composition for the Frasnian prior to the Kellwasser crises.  

 

 North American Os-isotope studies of the F–F boundary and sediments just above (uppermost 

linguiformis – marginifera Zones), across multiple stratigraphic sequences, indicate a global-ocean Os-

isotope composition of 0.4–0.5 at the end of the Frasnian Stage and during the earliest Famennian 

(Figure 2B; see Turgeon et al., 2007; Gordon et al., 2009; Harris et al., 2013). These values are broadly 

consistent with the results from within UKW and lowermost Famennian strata at Kowala (Figure 2), 

suggesting that sediments from both Kowala and the North American records were deposited in marine 

settings where water masses were well mixed with the global ocean. The Late Devonian Os(i) average 

from North America (0.46) is also very similar to the Os-isotope compositions recorded in Frasnian–

Famennian boundary and lower–mid Famennian strata at Kowala, supporting this hypothesis. An 

elevated Os(i) value of 0.59 from an upper Famennian level in the Permian Basin might be equivalent to 

the shift towards more radiogenic compositions recorded at the top of the marginifera Zone at Kowala 

(Figure 2; Harris et al., 2013), although it cannot be conclusively demonstrated that these stratigraphic 

levels are the same age due to the lack of biostratigraphy in the Permian Basin record. It should be 

noted that both here, and in previous studies, Famennian Os(i) information is at low resolution, and more 
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detailed studies of early–mid Famennian shales (as done here for the Kellwasser and Annulata beds) are 

needed to confirm that the global ocean did indeed experience no short-term changes in its Os-isotope 

composition over millions of years. Nonetheless, the broad agreement in Os(i) trends across the F–F 

boundary and lower–mid Famennian strata from Kowala and North America is suggestive that the 

Chęciny–Zbrza Basin was sufficiently hydrographically well connected to the open ocean with respect 

to osmium to record the global seawater Os-isotope signature during that time interval, despite 

indications from the trends in sedimentary Mo and U enrichment factors that water-mass exchange 

into/out of the basin could have been at least semi-restricted (Figure 4). Apparently semi-restricted 

basins that record Os(i) trends broadly consistent with changes in the global ocean have been previously 

reported (e.g., the Toarcian record from the Cleveland Basin, UK; see Cohen et al., 2004; Percival et 

al., 2016; Them et al., 2017); so the possibility of a global ocean Os(i) signature being recorded at 

Kowala is not inconsistent with the Mo and U evidence of semi-restriction. 

 

Moreover, both of the Kellwasser crises are thought to have featured significant marine 

transgressions at their onsets, with a large regression following the UKW crisis (e.g., Johnson et al., 

1985; Bond and Wignall, 2008). If this was the case, then sea levels should have been higher during the 

transgressions of the two Kellwasser crises than in Famennian times that followed the post-Kellwasser 

regression. Higher sea levels should have resulted in an increased hydrographic connectivity between 

marine-shelf basins and the global ocean. Therefore, given that lower–mid Famennian strata at Kowala 

appear to record the global-ocean 
187

Os/
188

Os composition, it would be expected that a similarly open-

marine signature should also be documented by sediments deposited during the Kellwasser crises, when 

sea levels were higher than during the Famennian. 

 

The results from the Hangenberg shales and Devonian–Carboniferous boundary interval at 

Kowala (see Supplementary Figure 1) do not agree with a previously published Os(i) value of 0.42 from 

the D–C boundary in North America (Selby and Creaser, 2005). Of the four stratigraphic layers that 

were studied from that interval at Kowala, two document Os(i) compositions outside the expected range 

for the open ocean (0.13–1.4), and none match the North American value of 0.42. However, there is 
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evidence of potential trace-metal content alteration in strata at the top of the Kowala Quarry (where the 

Hangenberg shales and D–C boundary are recorded; Marynowski et al., 2017) via weathering of those 

sediments, which could have remobilized the Re and Os in those sediments and caused the anomalous 

Os(i) values (Peucker-Ehrenbrink and Hanningan, 2000). A similar problem might also be responsible 

for the single anomalous data point at the F–F boundary, where it has been previously noted that some 

sediments appear to have been oxidized by groundwater or hydrothermal fluids (see Racki et al., 2002; 

Bond et al., 2004). However, the sample in question does not appear to show the same discolouration as 

mentioned in those studies.  

 

 

4.2. Globally enhanced weathering rates during the Frasnian–Famennian transition 

 

If the sediments at Kowala are correctly interpreted as recording the 
187

Os/
188

Os composition of 

the open ocean, the significant variations observed in Os(i) values from Frasnian–Famennian boundary 

strata at that location should reflect changes in the inputs of osmium to that inventory. Consequently, 

whilst Os(i) values from uppermost Frasnian and lower–mid Famennian strata indicate a relatively 

consistent global-ocean Os-isotope composition, a shift towards more radiogenic signatures just below 

the UKW Horizon suggests that the marine realm experienced an influx of relatively radiogenic 

osmium (or a reduction in primitive osmium input) immediately prior to that event. The shifts towards 

radiogenic Os(i) values in the lower part of and a little below the LKW Horizon may reflect a similar 

phenomenon taking place before/during the earlier crisis, assuming that the interpreted position of the 

LKW Horizon is correct. However, because there is also a return to near-background Os(i) within the 

more radiogenic values below the LKW Horizon, it is not clear whether these data represent two 

distinct weathering pulses, or a single pulse partially offset by a coeval influx of unradiogenic osmium. 

However, in either case, the two radiogenic values within/below LKW strata are suggestive of an 

increased influx of terrigenous material in the lead up to that crisis. It should be noted though that the 

inferred hypothesis of radiogenic osmium input is based on only two or three data points for both crises, 

and should be confirmed by additional higher resolution studies, particularly for the LKW Event.  
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The most plausible explanation for the increases in global-ocean Os(i) seawater values at the 

onsets of the two Kellwasser events is a large influx of radiogenic Os derived from enhanced 

continental weathering rates at those times. This hypothesis is consistent with elemental ratios such as 

titanium/aluminium, silicon/aluminium, and zirconium/rubidium from numerous other F–F marine 

records that indicate an increased detrital influx from the continents (e.g., Pujol et al., 2006; Whalen et 

al., 2015). Alternatively, a shift towards a more radiogenic 
187

Os/
188

Os signature in the global ocean 

might signify a large decrease in mid-ocean-ridge volcanism, but such a change would be expected to 

occur over millions of years, and would be very unlikely to result in the abrupt changes in seawater Os(i) 

recorded at Kowala, leaving weathering as the more likely cause.  

 

Interestingly, this interpretation suggests that continental weathering rates were extremely 

elevated just before and during the onsets of the two Kellwasser crises, but then returned to background 

levels or below throughout the main body of the two events. This finding is in contrast to detrital-influx 

and strontium-isotope (
87

Sr/
86

Sr) studies from Europe, North America and South China (Chen et al., 

2005; Pujol et al., 2006; Whalen et al., 2015), which suggest that weathering rates were enhanced 

throughout the entirety of the two Kellwasser crises. However, strontium is less suitable than osmium 

for recording the precise timing and/or duration of geologically abrupt changes to the marine inventory 

due to the very long oceanic residence time of that element (1–4 Myr; Palmer and Edmond, 1989). A 

prolonged input of terrigenous detrital input to some basins might indeed have occurred, but could have 

been local to those areas, and not reflective of global-scale changes in continental weathering. An 

alternative possibility is that enhanced terrestrial runoff did continue throughout the entirety of the 

Kellwasser crises, but that following the initial pulse of continental weathering, the radiogenic seawater 

Os(i) composition was offset by an influx of primitive osmium related to some form of 

volcanic/hydrothermal activity or basalt-seawater interaction. Thus, the published Sr-isotope and 

detrital-influx trends are not necessarily inconsistent with the findings of this study. Consequently, on 

the basis of the results presented here and in previous studies (Chen et al., 2005; Pujol et al., 2006; 

Whalen et al., 2015), it is concluded that the most significant pulses of global continental weathering 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 

during the Frasnian–Famennian transition began just prior to the two Kellwasser crises, although 

enhanced terrestrial runoff may have continued in some areas throughout the events.  

 

 A significant increase in global-scale continental weathering rates would likely have resulted in 

a greatly enhanced delivery of nutrients to the marine realm, elevating primary-productivity levels and 

consequently stimulating widespread marine anoxia and burial of organic carbon (as previously 

proposed by e.g., Wilder, 1994; Algeo et al., 1995; Algeo and Scheckler, 1998; Averbuch et al., 2005), 

which may then have been sustained by remobilization of nutrients from aquatic sediments under those 

low-oxygen conditions (Murphy et al., 2000). Together with this organic-carbon burial, the enhanced 

silicate weathering could also have resulted in a drawdown of CO2 and consequential global cooling, 

which has also been reported for the two Kellwasser crises (e.g., Joachimski and Buggisch, 2002; Balter 

et al., 2008; Xu et al., 2012; Le Houedec et al., 2013; Huang et al., 2018). Thus, the pattern of 

enhanced continental weathering rates immediately prior to/during the onsets of the two Kellwasser 

crises is consistent with evidence of several other environmental perturbations in effect during those 

times, and follows a relationship between climate change, continental weathering, and/or marine anoxia 

that is similar to scenarios proposed for a number of other major events throughout the Phanerozoic 

Aeon (e.g., Kaiser et al., 2006; Bond and Grasby, 2017; Jenkyns, 2018). Importantly, these findings 

also support previous proposals that this weathering acted as an important trigger for degradation to the 

global environment during the Kellwasser events (Algeo and Scheckler, 1998; Averbuch et al., 2005).  

 

 

4.3. Possible causes of the Frasnian–Famennian weathering pulses 

 

What process or processes initially caused the increase in continental weathering rates remains 

unclear. Mesozoic Oceanic Anoxic Events (OAEs) have been widely linked to large-scale volcanism, 

with volcanic CO2 emissions thought to have triggered atmospheric warming and subsequent increased 

weathering rates (see review by Jenkyns, 2010). Argon–argon (Ar–Ar) dating of Viluy Trap basalts has 

indicated a major magmatic pulse of late Frasnian age (374 Ma; Ricci et al., 2013; Polyansky et al., 
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2017), with widespread volcanic activity also taking place on several tectonic rift-systems during the 

Late Devonian (reviewed in Kravchinski, 2012). A precise coincidence between this volcanism and the 

Upper Kellwasser Event has been inferred on the basis of mercury enrichments within UKW strata 

(Racki et al., 2018). The very high Os concentration and low Os(i) value of 0.21 from the inferred LKW 

Horizon observed in this study (Figure 3) may also indicate a major input of unradiogenic Os from 

primitive mantle-derived volcanism during the earlier event; a meteorite impact might also cause these 

changes in Os concentration and isotopic composition, but evidence for such a phenomenon during the 

LKW Event is lacking (Claeys et al., 1996; Racki, 1999; Percival et al., 2018). However, it should be 

noted that this pulse in primitive osmium appears above the shift to radiogenic Os(i) values, which 

would imply that any volcanism during the LKW Event occurred after the weathering pulse. Moreover, 

there is currently limited evidence that surface warming occurred during the Kellwasser events; rather, 

those times appear to have been associated with global cooling (e.g., Joachimski and Buggisch, 2002; 

Balter et al., 2008; Le Houedec et al., 2013; Huang et al., 2018). Possible negative excursions in 

conodont oxygen-isotope compositions just below the two Kellwasser horizons might indicate brief 

warming spells at the onsets of the two crises (see Joachimski and Buggisch, 2002), but these trends are 

far more ambiguous than the pronounced positive shifts interpreted as cooling signals, and could also 

have resulted from local salinity changes rather than warming. Better evidence of significant global 

warming is required in order to satisfactorily link the weathering and marine anoxia during the 

Kellwasser events to volcanism, unless Late Devonian volcanic activity triggered enhanced global 

weathering via a profoundly different causal mechanism to that proposed for the Mesozoic OAEs. 

 

Increased weathering rates related to global cooling events have been recorded as having 

coincided with the expansion of Cenozoic ice sheets during the Eocene–Oligocene transition and Early–

Mid Pliocene (e.g., Blum, 1997; Robert and Kennett, 1997; von Blanckenburg and O’Nions, 1999), as 

well as throughout the formation of alpine-style glaciers in the Alpine–Himalayan belt (Herman et al., 

2013). Additionally, continental weathering pulses have been associated with the onset and termination 

of both the Late Ordovician and Fammenian glaciations, which also occurred broadly coevally with the 

development of widespread marine anoxia/euxinia and major faunal extinctions (e.g., Finlay et al., 
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2010; Kaiser et al., 2016; Lakin et al., 2016). However, whilst it is clearly possible to trigger enhanced 

continental weathering and/or marine anoxia during times of cooling and glacial expansion, 

conclusively demonstrating such a model for the Kellwasser events is inhibited by the lack of clarity 

regarding the precise temporal relationship between the two crises and the onset of global cooling 

associated with each of them. Different sedimentary records individually suggest that cooling may have 

begun before, synchronous with, or after the commencement of marine anoxia and associated increase 

in the deposition of organic matter (e.g., Joachimski and Buggisch, 2002; Balter et al., 2008; Le 

Houedec et al., 2013; Huang et al., 2018). Higher resolution temperature and weathering proxy data are 

needed to clarify whether the Kellwasser cooling occurred in response to elevated silicate weathering 

and organic-carbon burial during the two crises, or could have initiated those environmental 

perturbations. An additional problem with the hypothesis of glacially-induced-weathering is that 

although both a southern-hemisphere ice sheet and additional alpine-style glaciers of latest Famennian 

age are well documented by diamictite deposits in numerous South American sedimentary basins and 

the North American Appalachian Basin (e.g., Caputo et al., 1985; Brezinski et al., 2008; Isaacson et al., 

2008; Lakin et al., 2016), similar sediments spanning the Frasnian–Famennian boundary are unknown. 

A F–F glaciation event has been proposed in order to account for sea-level changes and oxygen-isotope 

perturbations recorded in uppermost Frasnian to lowermost Famennian sedimentary archives (e.g., 

Streel et al., 2000; Joachimski and Buggisch, 2002), but there is currently no direct evidence for the 

existence of any such ice volumes of that age.  

 

 Other possible triggers for enhanced continental weathering at the onset of each of the 

Kellwasser crises include marine transgression (e.g., Bond and Wignall, 2008), tectonic uplift 

associated with the formation of numerous Late Devonian orogenic belts (Averbuch et al., 2005), 

evolution of vascular-rooted plants (Algeo and Scheckler, 1998), an acceleration of the hydrological 

cycle by orbital forcing (De Vleeschouwer et al., 2017), and soil erosion related to the extinction of 

terrestrial plants (Kaiho et al., 2013). However, the severity of land-plant extinctions during the F–F 

extinction remains poorly constrained (see Racki, 2005; and references therein). Marine transgressions 

could have caused significant subaerial and/or submarine erosion of the new coastline, and also brought 
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increased moisture into the continental interior, intensifying the hydrological cycle and increasing 

riverine runoff, although a markedly wetter climate is inconsistent with the widespread evidence for 

cooling at those times. Finally, whilst processes such as mountain building and the evolution of 

vascular-root systems likely caused a gradual elevation in continental weathering rates throughout the 

Late Devonian (a hypothesis consistent with long-term strontium isotope trends: van Geldern et al., 

2006), it less clear whether such processes could have occurred rapidly enough to trigger two distinct, 

abrupt, and short-lived pulses of increased weathering taking place within a million years of each other. 

However, long-term volcanism, land-plant expansion, orogenic processes, and repeated marine 

transgressions could plausibly have increased stress in the global climate system throughout Late 

Devonian times, leaving it increasingly vulnerable to additional environmental perturbations from more 

rapid triggers such as orbital forcing (see De Vleeschouwer et al., 2017). 

 

 

4.4 Volcanically stimulated weathering and anoxia during the Annulata Event 

 

 As well as appearing across the Kellwasser horizons, significant variations in Os(i) values are 

also documented in strata spanning the late Famennian Annulata Event at Kowala (Figure 2A). Just 

below the organic-rich Annulata shales, there is a pronounced shift from Famennian background Os(i) 

values (between 0.4–0.5) towards a very unradiogenic signature, suggesting an influx of primitive 

osmium to the global ocean. There is currently no evidence for a meteorite impact at that time; 

however, the date of the Annulata Event matches the Ar–Ar age of the youngest known pulse of Viluy 

Trap volcanism (363 Ma; Ricci et al., 2013; Polyansky et al., 2017; Percival et al., 2018), based on a 

cyclostratigraphic timescale anchored to the precise uranium–lead age of the Devonian–Carboniferous 

boundary (Myrow et al., 2014). A volcanic cause for the shift to primitive Os(i) in strata immediately 

below the Annulata shales might also be supported by a low Os(i) value in strata just above that unit, 

which suggests that there may have been a relatively long-lived flux of primitive osmium to the marine 

realm, a phenomenon more easily explained by prolonged volcanic activity than two distinct inputs of 

unradiogenic Os from separate, unrecorded, impacts.  
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In this context, it is likely that the rise in Os(i) values within the Annulata shales signifies an 

influx of radiogenic osmium to the ocean during a weathering pulse, superimposed upon a previously 

very unradiogenic seawater Os-isotope composition, rather than a simple return to background 

Famennian conditions as might also be inferred from the similarity of Os(i) values between the Annulata 

shales and lower Famennian strata. Such an increase in continental weathering rates related to volcanic 

activity would likely have stimulated anoxic conditions following the mechanism outlined above for the 

Kellwasser crises, and marine anoxia has been documented as having occurred in a number of marine 

basins during the Annulata Event (e.g., Walliser, 1996; Bond and Zatoń, 2003; Becker et al., 2004; 

Racka et al., 2010). Establishing palaeotemperature records for the Annulata Event (in particular, 

whether this late Famennian crisis was associated with climate warming) will be important for further 

understanding this proposed causal relationship. Regardless of what initiated the enhanced continental 

weathering during the Annulata Event, its occurrence coincident with widespread marine anoxia 

highlights the potential similarities between this environmental perturbation and the earlier Kellwasser 

crises, perhaps supporting previous hypotheses that the Frasnian–Famennian mass extinction may 

simply have been related to the most severe manifestation of these phenomena (Bond and Grasby, 

2017). 

 

 

5. Conclusions 

 

 This study has presented the first stratigraphic osmium-isotope (
187

Os/
188

Os) dataset spanning a 

long-term record of Frasnian–Famennian times, including the Kellwasser crises and the later Annulata 

Event. Seawater 
187

Os/
188

Os values documented in samples from the Frasnian–Famennian boundary and 

lower–mid Famennian strata at the Kowala Quarry study area are very similar to previously published 

results from North America, suggesting that the Os-isotope record presented here reflects the global 

ocean inventory. A number of variations in reconstructed seawater 
187

Os/
188

Os values are documented, 

albeit at low resolution. Significantly radiogenic seawater 
187

Os/
188

Os compositions recorded just 
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below/at the base of both the Lower and Upper Kellwasser horizons indicate that enhanced continental 

weathering took place immediately prior to and/or during the onset of both of those crises and 

potentially caused subsequent environmental degradations such as climate cooling and/or widespread 

marine anoxia, although alternative interpretations regarding the stratigraphic position of the Lower 

Kellwasser Horizon at Kowala cannot be discounted. An additional, lower-magnitude, shift in 

187
Os/

188
Os towards radiogenic values within the Annulata shales suggests that high weathering rates 

were also a feature of that later event. These results are consistent with enhanced continental weathering 

and associated nutrient runoff as a key contributor towards the development of widespread marine 

anoxia during both the most severe and other, comparatively minor, Late Devonian environmental 

perturbations, although the ultimate trigger of these different weathering pulses remains unclear. 

Further work is needed to confirm the record of these weathering pulses at other Late Devonian 

sedimentary archives, and to determine whether they were initiated by volcanism, glaciation, or some 

other cause. 
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Figure Captions 

 

Figure 1: Palaeogeographic reconstruction of the Late Devonian world. The locations of the Late 

Frasnian Siljan impact crater (X), and the Frasnian–Famennian Viluy Traps (V) and Kola, 

Vyatka, and Pripyat–Dniepr–Donets volcanic rift systems (K-V-PDD) are indicated. The 

palaeogeographic position of the Kowala Quarry, Poland (K) investigated in this study is shown 

(black circle), along with North American sedimentary records where Re–Os isochrons have 
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been generated previously (black squares): J: Jura Creek (Alberta, Canada; Selby and Creaser, 

2005); W: West Valley Core (New York, USA; Turgeon et al., 2007); I: Irish Gulf section 

(New York, USA; Gordon et al., 2009); P: Pecos County Well (Texas, USA; Harris et al., 

2013). Based on Figure 1 in Percival et al. (2018). 

 

Figure 2: A: Stratigraphic trends in Os(i) from the Kowala Quarry record, Kielce, Poland. The 

stratigraphic positions of the Upper Kellwasser and Annulata levels are shown, along with the 

inferred Lower Kellwasser Horizon, and the Hangenberg Horizon. Lithological and 

biostratigraphic information after Szulczewski (1996) and De Vleeschouwer et al. (2013). All 

osmium data are from this study (solid circles). The vertical scale is in metres B: Stratigraphic 

composite of previously published Re–Os isochron data from North American records (open 

circles). Os(i) data are from Selby and Creaser (2005), Turgeon et al. (2007), Gordon et al. 

(2009), and Harris et al. (2013). CARB. stands for CARBONIFEROUS. The lowest natural 

terrestrial value of 
187

Os/
188

Os (0.13; Allègre et al., 1999) and Late Devonian average seawater 

Os(i) value (based on North American isochron data) are shown on both figures. 

 

Figure 3: Stratigraphic trends in geochemical data from upper Frasnian sediments at the Kowala 

Quarry. The interpreted stratigraphic positions of the Lower (LKW) and Upper (UKW) 

Kellwasser horizons are indicated by the grey bars. Uranium (U) and molybdenum (Mo) 

enrichment factors (EF) are calculated with respect to Al, relative to average upper continental 

crust (UCC) abundances as shown by [(element/Al)sample/(element/Al)UCC], where U/AlUCC and 

Mo/AlUCC are taken as 0.0000331 and 0.0000135, respectively (Rudnick and Gao, 2003). The 

lowest natural terrestrial value of 
187

Os/
188

Os (0.13; Allègre et al., 1999) and Late Devonian 

average seawater Os(i) value (based on North American isochron data) are plotted alongside the 

Os(i) data from Kowala. Common 
192

Os contents are presented as the best representation of Os 

concentrations in sediments at the time of deposition. The vertical scale is in metres. FM. stands 

for FAMENNIAN. All data are from this study. Unpublished measurements made in 2011 

indicate a small enrichment in Mo and U concentrations from samples within the UKW 
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Horizon, but those data were generated via a different methodology to the samples analysed for 

this study and without accompanying Al contents; therefore, they are not included in this figure 

(they are presented in Supplementary Figure 2). The enrichment in Mo and U was also 

observed on UKW Horizon samples from elsewhere in the Kowala Quarry, based on samples 

from David Bond’s 2004 sample-set analysed by LA-ICP-MS for this study (see 

Supplementary Figure 2), and in previous works (Joachimski et al., 2001; Bond et al., 2004). 

 

Figure 4: Comparison of trends in uranium (U) and molybdenum (Mo) enrichment factors (EF) to 

determine the palaeoenvironmental setting recorded at the Kowala Quarry, following the model 

of Algeo and Tribovillard (2009). Mo/USW indicates the modern-day Mo/U ratio of seawater. 

MoEF and UEF data are calculated as for Figure 3. All data are from this study. 
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Highlights 

 

 First stratigraphic record of Late Devonian osmium-isotope trends. 

 Record includes the Frasnian–Famennian extinction and later Annulata anoxic event. 

 Enhanced continental weathering rates shown to occur during all the studied crises. 

 Supports the runoff of terrestrial nutrients as a trigger of Late Devonian anoxia. 
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