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SUMMARY

Likelihood factors that can be disregarded for inference are termed ignorable. We demonstrate
that close ties exist between ignorability and identification of causal effects by covariate adjust-
ment. A graphical condition, stability, plays a role analogous to that of missingness at random,
but is applicable to general longitudinal data. Our formulation of ignorability does not depend
on any notion of missing data, so is appealing in situations where missing data may not actually
exist. Several examples illustrate how stability may be assessed.

Some key words: Ignorability; Longitudinal data; Missing at random.

1. INTRODUCTION

We consider the analysis of longitudinal data. For each of a set of subjects, a sequence of
observations is recorded, corresponding to the same property or feature of the subject evaluated
at different times. Longitudinal data are common in scientific investigations, and their analysis
has received much attention (Lindsey, 1999; Diggle et al., 2002; Molenberghs & Verbeke, 2006).

Longitudinal studies typically propose a schedule of measurement times in advance. Never-
theless, even in carefully designed experiments, the precise number and timings of observations
are rarely completely determined by the investigator. Most obviously, a subject who dies during
the course of a study can give rise to no further observations, scheduled or otherwise. In panel
studies, a subject may fail to present for evaluation at an intermediate wave, but then return for
final assessment at a later date. More generally, measurements may be recorded on quite arbitrary
occasions and determined by convenience to the particular subject, availability of the investigator,
or external factors such as weather conditions and public holidays.
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318 D. M. FAREWELL, C. HUANG AND V. DIDELEZ

In addition to external circumstances, observation times may be influenced by internal, subject-
specific factors. Mood, medical intervention or indeed the biological processes underlying the
longitudinal assessments can all affect the likelihood of recording an observation. An important
special case is informative drop-out, where attrition relates to health (Sun et al., 2012).

Dependence between timings and observations may still be ignorable, in the sense that cer-
tain likelihood-based analyses are equivalent under such dependence. Ignorability is ordinarily
described within a missing data framework, which presupposes that the missing data actually
exist (Little & Rubin, 2002, p. 8). Especially for longitudinal data, this is only very rarely the
case; more usually, missing data constitute a convenient and sometimes compelling fiction.

We argue that this fiction is not needed. Instead, we provide an alternative characterization of
ignorability for general longitudinal data that does not depend on any notion of missing data. We
do so by applying the machinery of causal inference (Pearl, 2009; Dawid & Didelez, 2010) to
the components of a marked point process (Jacobsen, 2006). We caution that suppression of the
usual missing data machinery does not absolve the analyst of attention to closely related matters,
the challenges of which are perhaps even more starkly obvious within our causal formulation.

For concreteness, consider the longitudinal measurement of foetal size. In early pregnancy,
foetal growth is often monitored using the crown-rump length, assessed electronically from
an ultrasound image. Crown-rump length could in principle be measured at any point after
conception. We stress, however, that crown-rump length does not actually exist at every point
after conception. This is most obvious following birth, when it is no longer meaningful to measure
crown-rump length by ultrasound. However, our argument is more general: no unambiguous,
unique definition of crown-rump length can be made except on those occasions when it is actually
measured. Certainly, a healthy foetus has a shape and size that is complex and growing more
or less continuously, but crown-rump length is not simply a one-dimensional slice of this high-
dimensional, continuous-time process; it is an external procedure subject to many influences apart
from foetal size, including the skill of the sonographer, the resolution of the ultrasound, and the
cooperation of the foetus. Consequently, crown-rump length only exists in a meaningful way on
precisely those occasions when it is measured. To fix ideas, we refer to this example throughout.

2. NOTATION

We omit subject-specific subscripts i, and let (t, y) be a marked point process (Jacobsen, 2006,
p. 10) representing the longitudinal data arising from a particular subject. The increasing sequence
t = (t1, t2, . . .) is a standard point process, and records the observation times for this subject. The
sequence y = (y1, y2, . . .) contains the corresponding longitudinal measurements. We resist the
temptation to define for each of the n subjects an underlying continuous or complete measurement
process; the existence or otherwise of this complete measurement process, however it might be
defined, is irrelevant in our subsequent development.

Following Jacobsen (2006), we allow only finitely many longitudinal measurements in any
finite time interval, and define tj = ∞ if fewer than j events occur altogether; drop-outs require no
special handling. If tj = ∞, we assign to the corresponding yj the irrelevant mark �. Defining m =
max{ j : tj < ∞}, we formally admit the possibility that m = 0 and no measurements are made on
a particular subject, but this case is usually of little interest. In our crown-rump length example,
an idealized realization (t, y) of the marked point process in which m = 2 might comprise the
elements t = (12, 20, ∞, ∞, ∞, . . .) weeks and y = (54, 164, �, �, �, . . .) millimetres.

There is a fundamental dependence between the marks y and the time-points t at which they are
observed, for they arise together and neither can exist without the other. Dependence can also be
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Ignorability for longitudinal data 319

associational and dynamic: writing t̄j for (t1, . . . , tj) and ȳj for (y1, . . . , yj), a standard construction
of marked point processes (Jacobsen, 2006, p. 22) specifies the conditional distributions (tj |
t̄j−1, ȳj−1) and (yj | t̄j, ȳj−1) sequentially for j � 1.

We use directed acyclic graphs to summarize possible dynamic dependencies between t and
y. Pearl (2009) demonstrates how such graphs may be given a causal interpretation; in addition
to conveniently summarizing conditional independence statements that apply across a system
of random variables, causal graphs also encode rules for transforming the probability measure
describing the observed data into different measures that would apply under specific external
interventions. Here, we use the related concept of influence diagrams (Dawid & Didelez, 2010).
Influence diagrams contain a special node, σ , a parameter that governs the behaviour of the
system. This σ indicates if the system is operating in its original, observed state (σ = o) or, when
σ takes different values, whether particular interventions into the system are being considered.
Under σ = o, probability functions are written pr(· ; σ = o) or just pr(·). In general, arrows
from σ into other nodes indicate that their stochastic behaviour may be altered under different
regimes. We consider the specific case where arrows emanate from σ to every tj, and only to the
tj. For a specific example, see Fig. 1. Our σ is equivalent to the F used in the appendix of Pearl
(1995).

Our influence diagrams will contain nodes representing tj and yj for every j. Other nodes will
usually appear; we shall write observed baseline covariates generically as x, with u denoting ran-
dom variables whose realized values are not observed. Whatever the larger picture of dependence
between u, x, t and y, the influence diagram should contain, for every j, the subgraphs tj → yj, in
which a directed arrow from tj to yj formalizes the notion that yj comes into existence at time tj
and that if tj is changed, so too is yj.

3. IGNORABILITY

If dependence between t and y is indeed inherent in a marked point process, then it can never be
dismissed entirely. Instead, we may ask when this dependence can safely be ignored. A popular
approach to the analysis of longitudinal data (see, for example, Diggle et al., 2002) is based
on generic multivariate models. To this end, and whether or not this is actually the case, it is
customary to imagine that the occasions t on which we observe the sequence of measurements y
are fixed by design (Molenberghs & Verbeke, 2006, p. 482). In the language of causal graphs and
using the notation of Pearl (2009), this amounts to an interventionist view: instead of allowing
t to evolve stochastically, we have intervened to enforce a particular pattern of observations
do(t1), do(t2), . . . , or simply do(t). Circumstances in which the presence, σ = do(t), or absence,
σ = o, of such intervention is irrelevant to inference might be deemed ignorable, and we make
this our definition.

DEFINITION 1. The point process t is ignorable for inference based on y if pr(t, y) ∝ pr{y; do(t)}
with respect to some parameter of interest. More generally, the point process t is ignorable for
inference based on y, conditional on x, if pr(t, y | x) ∝ pr{y | x; do(t)} with respect to some
parameter of interest.

If the two objects are indeed proportional, then they may be used interchangeably for
likelihood-based inference. Establishing general conditions under which this proportionality
holds is precisely the question addressed by Rubin (1976). To see this, consider Rubin’s statement
(Rubin, 1976, p. 584):
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Ignoring the process that causes missing data means proceeding by: (a) fixing the [missing
data indicator] at the observed pattern of missing data […], and (b) assuming that the values
of the observed data […] arose from the marginal density of the [observed data].

This refers to a derived, interventional, distribution. We interpret Rubin’s statement as an
intent to employ pr{y; σ = do(t)} as the likelihood upon which inference is to be based.
An immediate advantage of the causal formulation is that it provides the informative label
pr{y; σ = do(t)}, or more simply pr{y; do(t)}, for the nameless integral construction that Rubin
(1976) calls a marginal density. While pr{y; do(t)} is indeed a marginal probability function,
it is computed with respect to the interventional regime σ = do(t) and is quite distinct from
both the conditional pr(y | t) = pr(y | t; σ = o) and the more complicated marginal pr(y) = pr
(y; σ = o).

Rubin answers the question of when proportionality between pr(t, y) and pr{y; do(t)} may
be inferred through his condition known as missingness at random. However, because within a
marked point process formulation there are no missing data, we require an analogous condition
that does not employ notions of complete, observed and missing data. Like missingness at random,
our contender, stability, is a simple, general, sufficient condition under which ignorability may be
shown to hold. However, also like missingness at random, stability is not a necessary condition
for ignorability; we return to this point in our discussion.

DEFINITION 2 (Dawid & Didelez, 2010). The marked point process (t, y) exhibits simple
stability if yj ⊥⊥ σ | (x, t̄j, ȳj−1).

Here ⊥⊥ denotes independence. While simple stability can be verified on an influence diagram
by checking the relevant graphical separation, the fact that σ only has directed edges into the tj
allows the following equivalent graphical check where σ is omitted from the graph: the marked
point process is stable if there are no unblocked back-door paths between tj and yj, i.e., paths
between tj and yj, with an arrow into tj, that are not blocked by any of (x, t̄j−1, ȳj−1) in the sense
of d-separation (Pearl, 2009).

THEOREM 1. If the marked point process (t, y) is stable, then

pr(t, y | x) =
⎧⎨
⎩

∞∏
j=1

pr(tj | x, t̄j−1, ȳj−1)

⎫⎬
⎭ × pr{y | x; do(t)}. (1)

COROLLARY 1. If the marked point process (t, y) is stable, then maximizations over parameters
occurring in only one of its two likelihood factors may equivalently be performed over either the
full likelihood pr(t, y | x) or the relevant factor. In particular, any parameters that occur only in
pr{y | x; do(t)} may be maximized over this simpler likelihood.

Proof. The standard decomposition for the likelihood of a marked point process is

pr(t, y | x) =
∞∏

j=1

pr(tj | x, t̄j−1, ȳj−1) pr(yj | x, t̄j, ȳj−1).

Since (t, y) is stable, pr(yj | x, t̄j, ȳj−1; σ = o) = pr{yj | x, t̄j, ȳj−1; σ = do(t)}, whence

pr(t, y | x) =
∞∏

j=1

pr(tj | x, t̄j−1, ȳj−1) pr{yj | x, t̄j, ȳj−1; do(t)}.
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But under σ = do(t), the tj are deterministic, so

pr(t, y | x) =
∞∏

j=1

pr(tj | x, t̄j−1, ȳj−1) pr{yj | x, ȳj−1; do(t)}.

The infinite product
∏

pr{yj | x, yj−1; do(t)} telescopes to yield the required factorization. �

If the marked point process (t, y) is stable, likelihood inference may proceed solely on the basis
of pr{y | x; do(t)}, provided that the parameters of

∏
pr(tj | x, t̄j−1, ȳj−1) are suitably distinct

from the parameters of interest in pr{y | x; do(t)}. It is possible, though unusual, that stability may
plausibly be assumed to hold but the parameters of

∏
pr(tj | x, t̄j−1, ȳj−1) and pr{y | x; do(t)}

are not thought to be distinct. To see that this need not affect consistency of estimation, consider
the following argument, due to Peter Diggle. Since parameterization is essentially a modelling
decision, in this case we may consider the larger model in which any parameters in common
are replaced by two variation-independent sets of parameters, one for each of the two likelihood
factors. Providing parameters are replaced throughout any given conditional probability, the
product of these conditional probabilities remains a probability measure that is consistent with
the data-generating mechanism. It is then clear that estimation of the parameters of pr{y | x; do(t)}
will still be consistent based only on maximizing over this component of the likelihood, albeit
with some loss of efficiency relative to using the full likelihood pr(t, y).

The likelihood factorization of Theorem 1 is an example of G-computation (Robins, 1986).
Indeed, rewriting (1) as

pr{y | x; do(t)} =
⎧⎨
⎩

∞∏
j=1

pr(tj | x, t̄j−1, ȳj−1)

⎫⎬
⎭

−1

pr(t, y | x)

illustrates the close connection between ignorability and the identification of causal quantities
such as pr{y | x; do(t)}, in particular with their identification via adjustment for previous obser-
vations through so-called inverse probability weighting. Philosophically, we find it preferable to
frame problems of ignorability in terms of causal inference, without reference to counterfactual
missing data. In the next section, we argue also for the practical importance of this approach,
particularly in assessing the plausibility of assumptions required for ignorability.

4. WORKING EXAMPLE REVISTED

Like missingness at random, stability is not nonparametrically testable (Molenberghs et al.,
2008); that is, stability cannot be assessed solely on the basis of an empirical joint likelihood
function of observed random variables. However, this need not be the end of the story; Pearl
(2009, p. 40) distinguishes sharply between statistical and causal concepts, and would classify
stability as an essentially causal assumption precisely because it cannot be discerned from a joint
distribution. To assess such a causal assumption requires formal consideration of at least two
regimes, σ = o and σ = do(t), perhaps by way of a causal graph or an influence diagram. This
gives expert judgement a formal place in analysis, and here we give some examples to illustrate
how an expert, loosely defined, might go about assessing the plausibility of stability within our
working example of foetal crown-rump length.

Example 1. Consider an antenatal clinic in which the next recommended ultrasound scan
date tj is set on the basis of foetal length measurements ȳj−1 from previous scans. For instance,
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ut

t1 t2 t3

y1 y2 y3

uy

· · ·

· · ·

s

Fig. 1. Influence diagram for Example 1: stable, because the observation time
tj depends on previous times t̄j−1 and marks ȳj−1, but not the unobserved uy

that influence y.

pregnancies falling within reference ranges for foetal length might follow a standard scan sched-
ule, while those showing unusually slow or rapid foetal growth might be invited to attend more
frequently. There may also be privately scheduled, parent-initiated scans, perhaps because of
underlying anxiety or a particular concern, summarized by ut in Fig. 1.

Any lack of adherence to these appointments is then assumed to arise from external factors
that play no discernible role in determining the foetal length measurements, for example school
holidays or local traffic conditions. In this way an observation time tj depends structurally on
previous observations times t̄j−1, previous observations ȳj−1 and underlying parental influences
ut but, given these, is independent of other past factors or processes, and in particular of uy.

Covariance between scan measurements y may be incorporated in the usual way, by means
of shared random effects uy. This can be thought of as capturing the underlying physical
characteristics of the unborn child; but, crucially, these underlying characteristics are only thought
to influence scan dates indirectly, by way of their influence on the measurements y.

This is our canonical example of stability. Because ut and uy are marginally independent, it is
straightforward to show from first principles that pr(t, y) equals⎧⎨

⎩
∑

ut

pr(ut)

∞∏
j=1

pr(tj | ut , t1, . . . , tj−1, y1, . . . , yj−1)

⎫⎬
⎭ ×

⎧⎨
⎩

∑
uy

pr(uy)

∞∏
j=1

pr(yj | uy, tj)

⎫⎬
⎭.

The latter factor is precisely pr{y; do(t)}, and its form is the usual mixture distribution arising
when random effects are integrated out of a likelihood function, as in Laird & Ware (1982) for
example. Stability would be lost if uy had an arrow directly into any tj.

Example 2. The assumption that parental influences on the timings of antenatal measurements
are independent of their unborn child’s growth is arguably a strong one. In particular, it seems at
least plausible that a mother’s health, u∗ say, could play some role in determining both her levels
of antenatal anxiety ut and the growth of her child uy; such dependence is depicted in Fig. 2.

The marked point process (t, y) is now no longer stable: the likelihood function takes the form

∑
u∗

{ ∑
ut

pr(ut | u∗)
∞∏

j=1

pr(tj | ut , t1, . . . , tj−1, y1, . . . , yj−1)

×
∑
uy

pr(uy | u∗)
∞∏

j=1

pr(yj | uy, tj)

}
,
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ut

t1 t2 t3

y1 y2 y3

uy

u*

· · ·

· · ·

s

Fig. 2. Influence diagram for Example 2: not stable, because t and y have correlated,
unobserved parents ut and uy.

t1 t2 t3

y1 y2 y3

u1 u2 u3

· · ·

· · ·

s

Fig. 3. Influence diagram for Example 3: stable, because the unobserved uj−1
influences yj−1 and tj but not yj .

and no reduction to pr{y; do(t)} is possible. The timings t are not ignorable for inference about
y, and inferences based on pr{y; do(t)} will in general be biased. Stability may be re-established
if ut can be replaced by a set of measurements x assessing antenatal anxiety, assuming for the
sake of argument that this can be done without appreciable error in measurement. Conditioning
on this x breaks the dependency between t and y, and allows us to write pr(t, y | x) as

∞∏
j=1

pr(tj | x, t1, . . . , tj−1, y1, . . . , yj−1) ×
⎧⎨
⎩

∑
u∗

pr(u∗ | x)
∑
uy

pr(uy | u∗)
∞∏

j=1

pr(yj | uy, tj)

⎫⎬
⎭.

An important difference from the factorization in Example 1 is the conditioning on x in the mixing
distribution pr(u∗ | x). The second factor does, of course, reduce to pr{y | x; do(t)}.

Example 3. Our final scenario gives rise to a more surprising example of stability. Suppose that
clinic visits are scheduled for 12 and 20 weeks’ gestation, but if, at such a visit, the sonographer
perceives the ultrasound equipment to be behaving unreliably, an additional measurement is
arranged for the following week. No record is kept of equipment failure, so these enter the
influence diagram as unobserved uj, as in Fig. 3. Failures are assumed to occur independently
of any previous failures and of all other aspects of the system. Since equipment failure might
perhaps make crown-rump length measurements larger, say, or more variable, uj influences yj in
addition to affecting the subsequent tj+1.

Despite unobserved common causes between t and y, the marked point process (t, y) remains
stable because the unobserved factor uj affecting yj influences only the future tj+1, not the
current tj. Stability is immediately lost if equipment failures are not independent of one
another.
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Also important for stability in this case is the assumed autoregressive dependence structure of
the yj. Stability would also be lost if this were replaced by the random effects uy of the previous
two examples, a scenario that we find much more plausible.

5. DISCUSSION

We contend that missing data are not nearly so widespread as their prominence in the statistical
literature would imply. It is, of course, sensible to formulate stochastic systems in terms of
unobserved random variables. However, describing such unobserved variables as data seems to
us appropriate only when they were at some time, by some means, given a specific value that
could in principle have been observed, even if that value has subsequently become lost to us.
This perspective can be traced back to the dawn of the missing data literature, as Rubin (2014,
p. 598) recollects:

[David Cox, then editor of Biometrika] mentioned that he really wasn’t fond of the title of
the already accepted Rubin (1976) because something that’s missing can’t be “given” – the
Latin meaning of data.

It seems to us that the missing data label might reasonably be applied if data were actually gathered
but subsequently lost. An obvious example would be clinical data lost when a laptop computer
disappears from a crowded train. In this rather specific sense, missing data do sometimes exist.

Formulations of ignorability that rely on missing data require the user to assign meaning to
these quantities in order that the plausibility of assumptions concerning the missing data can be
assessed. Little and Rubin observed that the ability to assign such meaning formally underpins
the majority of their influential book (Little & Rubin, 2002, p. 8, Assumption 1.1) and most
related work: ‘missing indicators hide true values that are meaningful for analysis’. We believe
that removing reliance on assigning meaning to missing data makes our assumptions easier to
understand and evaluate.

Often missing data are given a counterfactual interpretation, especially in the longitudinal
setting. It is widespread practice to employ a notional variable yj recording the value that would
have been observed had a measurement taken place at time tj. In some instances it may be possible
to make such notions concrete, particularly if errors in measurement are negligible. However, such
a formulation requires some understanding of why these hypothetical measurements took place:
did the subject become sufficiently well, or unwell, to allow or require measurement? How ought
we to allow for the multiplicity of reasons for which a measurement might have taken place but in
fact did not occur? In order to assess a condition such as missingness at random, dependence of
the missingness mechanism on these infinite-dimensional, vaguely defined counterfactuals must
be examined, which is arguably a daunting task.

Shpitser et al. (2015) also argued for causal reasoning about questions of ignorability, and the
forthcoming book by Hernan & Robins (2017) employs inverse probability weighting to address
closely related problems. Both theories, though, are based on counterfactual missing data. Our
view is that inverse probability weighting becomes even more natural when weighting is done
not in order to restore fictitious missing data, but by the probability that the observed data arise
as they do.

Our unobserved nodes u play an important role in assessing stability. We might variously
choose to think of these as infinite-dimensional objects summarizing the entire trajectory of
an unobserved, possibly highly multivariate, stochastic process, or alternatively as very low-
dimensional objects, for instance a random intercept and slope. The former perspective is useful
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Ignorability for longitudinal data 325

in assessing assumptions, while the latter is more suited to applied statistical modelling. Dawid
& Didelez (2010) extended the notion of simple stability to a similar, but weaker, assumption that
involves conditioning on such unobserved nodes. This weaker version may then be combined
with other assumptions to regain simple stability, while in other cases simple stability fails but
adjustment is still possible, and hence proportionality of likelihoods may still be shown to hold.
We reiterate that, as with missingness at random, stability is not necessary for ignorability.

Dawid & Didelez (2010) also admit what might be called time-varying covariates. This exten-
sion is possible here, too, but would require that similar consideration be given to the occasions
and reasons that such covariates were measured.

We have argued that it is useful to think of longitudinal data in terms of marked point processes,
especially when there may be dependence between points and marks. Even in the absence of such
dependence, it seems to us quite natural to base inference within a stochastic process setting.
Most fundamentally, time is given a central role (Aalen, 2012), which is especially important
in causal reasoning. This is in contrast to the usual multivariate modelling of longitudinal data,
where although time may be given a conspicuous notational presence, its inferential role is often
restricted to forming suitable covariance structures. Other advantages of marked point process
models for longitudinal data include elegant martingale decompositions analogous to those in
widespread use in event-history analysis (Martinussen & Scheike, 2007).

In the context of longitudinal data, missingness at random has been defined in various ways
and with varying degrees of formality. Many authors employ informal notation such as yobs and
ymis to refer to observed and unobserved components, and data are said to be missing at random if
pr(t | yobs, ymis) = pr(t | yobs). Since we have avoided defining complete data, we could not use
this notation here. This is no bad thing, as the yobs, ymis notation is at best ambiguous and at worst
confusing (Seaman et al., 2013; Mealli & Rubin, 2015); taken literally, yobs must at least encode
the value of m and, in balanced monotone drop-out cases, actually determines t completely.

Many variants of missingness at random, such as covariate-dependent missingness at random
(Little, 1995) or sequential missingness at random (Robins et al., 1995; Hogan et al., 2004), are
subsumed within the general approach outlined here. Although we have focused on longitudinal
data, the formulation of ignorability given in the present paper also applies in other settings: for
instance, spatial point processes may raise similar questions of informative sampling. Censoring,
and more generally coarsening (Heitjan, 1994), could also be formulated in these terms. We
emphasize again the advantage of making explicit the observational and interventional likelihoods
whose proportionality is in question.
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