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Can urban coffee consumption help predict US inflation?  

 
 

Abstract 

Motivated by the importance of coffee to Americans and the significance of the coffee 

subsector to the US economy, we pursue three notable innovations. First, we augment the 

traditional Phillips curve model with the coffee price as a predictor, and show that the 

resulting model outperforms the traditional variant in both in-sample and out-of-sample 

predictability of US inflation. Second, we demonstrate the need to account for the inherent 

statistical features of predictors such as persistence, endogeneity and conditional 

heteroskedasticity effects when dealing with US inflation. Consequently, we offer robust 

illustrations to show that the choice of estimator matters for improved US inflation 

forecasts. Third, the proposed augmented Phillips curve also outperforms time-series 

models such as ARIMA and ARFIMA for both in-sample and out-of-sample forecasts. Our 

results show that augmenting the traditional Phillips curve with the urban coffee price 

will produce better forecast results for US inflation only when the statistical effects are 

captured in the estimation process. Our results are robust to alternative measures of 

inflation, different data frequencies, higher-order moments, multiple data samples and 

multiple forecast horizons. 

 

 

JEL Classification: C53, E31, E37  
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1. Introduction 

Over the past decades, the link between prices of commodities (fuel and non-fuel) and 

macroeconomic/financial indicators such as economic activity, inflation, interest rates, 

exchange rate, stock price and money has been widely established in the literature (see, 

for example, Boughton and Branson, 1988; Webb, 1988; Boughton et al., 1989; Baillie, 1989; 

Garner, 1989; Marquis and Cunningham, 1990; Cody and Mills, 1991; Sephton, 1991; 

Pecchenino, 1992; Blomberg and Harris, 1995; Furlong and Ingenito, 1996; Browne and 

Cronin, 2010; Ciner, 2011; Frankel, 2013). Equally, a number of studies have singled out 

the role of commodity prices as an indicator of consumer inflation (see Gilbert, 1990; Bloch 

et al., 2004; Kyrtsou and Labys, 2006; Richards and Pofahl, 2009; Ferrucci et al., 2010; 

Gómez et al., 2012; Chen et al. 2014; Kagraoka, 2015; Davidson et al., 2016; Gelos and 

Ustyugova, 2016). These studies are largely motivated by the implications of commodity 

prices for the effectiveness of policy decisions (especially monetary policy). Since 

commodity prices precede inflation, information about their variations can be exploited 

by monetary authorities in policy decisions. This conclusion is particularly valid for the 

USA, where the consumption of commodities is ranked the largest after China, and 

therefore inflation dynamics are more likely to be closely related to movements in 

commodity prices.  

 

Studies on the commodity price–US inflation nexus tend to either use crude oil (a fuel 

commodity) or gold (a metal commodity which has historical links to the US dollar and 

other major currencies), or a broad index of commodity prices (see Mahdavi and Zhou, 

1997; Hooker, 2002; Kilian, 2008; Edelstein and Kilian, 2009; Valcarcel and Wohar, 2013; 

Hoang et al., 2016; Salisu and Isah, 2018). So far, no study has examined the role of coffee 

alone in predicting US inflation. We argue that there are several motivations for this 

special consideration of coffee consumption in predicting inflation in the USA. First, 

statistics from the US Department of Agriculture show the USA as the largest single 

country consumer of coffee, importing about 2.5 million 60 kg bags of coffee beans in 
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December 2017 (US Department of Agriculture, 2017).1 Unlike other commodities such as 

crude oil, of which the USA is a major producer, or gold, coffee is exclusively an import 

to the USA. Coffee as a beverage has gained increasing popularity among younger adults 

in the USA and Europe, and coffee-drinking has been linked to beneficial effects on health 

and longevity in newspaper reports.2 A report by the Financial Times (2018) attributes the 

recent growth in US coffee consumption to “café culture among millennial” coffee 

drinkers.  

 

Second, at the micro level, coffee is the most widely consumed beverage by households 

in the USA. The Minister of Agriculture and Agri-Food Canada (2013) highlighted coffee 

as a daily staple beverage in the USA that is “consumed across all incomes, ages, genders 

and states” and considered as an “instant energy boost for those on-the-go” (p.2). A study 

by Mintel (2012) shows that 76% of US consumers bought coffee produce to use at home. 

This reality has implications for inflation through the exchange rate pass-through. Thus, 

an unanticipated change in the coffee price could put pressure on consumer price 

inflation, given the high consumer demand nature of the US economy.  

 

Third, US corporations dominate coffee retailing and marketing around the world. Five 

out of the top ten specialist coffee house chains in the world are US-registered firms. In 

particular, Starbucks Corporation (a Seattle-based firm) alone has sales revenue which 

was more than treble the revenue of the remaining nine combined in 2015 (Euromonitor 

International, 2016).3 It has never been easier to access a cup of coffee at home, in offices 

or in hotel rooms with new, improved coffee makers and coffee pod machines.4 A recent 

                                                           
1 Note that the European Union as a trading block of 28 countries is the largest importer of coffee, 
importing average 3.84 million 60 kg bags per month in 2017. 
2 See the following articles in the New York Times: “More consensus on coffee’s effect on health than you 
might think,” May 11, 2015; “Coffee drinkers may live longer,” July 2, 2018; “Coffee may tame the redness 
of rosacea,” October 17, 2018. 
3 The top ten global coffee house chains in 2015 were Starbucks (USA), Costa Coffee (UK), McCafe (USA), 
Doutor Coffee Shop (Japan), Coffee Bean & Tea Leaf (USA), Caffe Nero (UK), Tully’s (USA), Ediya 
Espresso (South Korea), Caribou Coffee (USA), Gloria Jean’s Coffees (Australia). 
4 Gassmann et al. (2014) questioned whether anyone would imagine ten years ago that coffee drinkers 
would buy Nespresso coffee capsules for €80 per kg.    

https://www.nytimes.com/2015/05/12/upshot/more-consensus-on-coffees-benefits-than-you-might-think.html
https://www.nytimes.com/2015/05/12/upshot/more-consensus-on-coffees-benefits-than-you-might-think.html
https://www.nytimes.com/2018/07/02/well/coffee-drinkers-may-live-longer.html
https://www.nytimes.com/2018/10/17/well/eat/coffee-may-tame-the-redness-of-rosacea.html
https://www.nytimes.com/2018/10/17/well/eat/coffee-may-tame-the-redness-of-rosacea.html
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report by Euromonitor International estimates total global spending on coffee at $180–200 

billion per year, and US firms are at the forefront of consolidation and business model 

innovation in the worldwide coffee market. The global coffee industry has benefited from 

remarkable innovations in product, process and business models over the past decade, 

which mirror wider innovations in the USA and the world economy. In addition, the 

recent acquisition of UK-based Costa Coffee (the second largest coffee chain in the world) 

by Coca-Cola and an alliance established between Starbucks and Nestlé further 

exemplifies US firms’ global dominance of the “new age of coffee everywhere” 

(Euromonitor International,  2018, p.1). In this new era of coffee, it is an “American firm” 

that has taken “café culture”, which is essentially “Italian”, to global consumers 

(Economist, 2016). 

 

Fourth, coffee is a commodity which has a “single final use”, namely as a “beverage”, a 

unique characteristic which distinguishes it from other tradeable commodities. In 

addition, coffee “is not combined with any other input to produce the final good”, though 

extracting the soluble component is amenable to a range of manufacturing methods 

(Maizels et al., 1997, p.143). Production of coffee beans is subject to exogenous supply-

side shocks, and once produced the beans are not storable over prolonged periods without 

deterioration in quality or at high storage costs, which contributed to a breakdown in 

International Commodity Agreements (Gilbert, 1987, 1996; Swaray, 2007). Consequently, 

we posit that the coffee price (all-urban CPIfor coffee) in the USA is likely to hold 

predictive power for inflation in the USA, which calls for a rigorous empirical 

investigation.  

 

Generally, the theoretical propositions for considering commodity prices in this light are 

situated around the Theory of Overshooting Commodity Prices, found in the works of 

Frankel (1986). The commodity markets reflect all available supply and demand shocks 

in the economy and these shocks (including shocks to aggregate demand, wealth, 

aggregate investment, technological innovation, harvest failures and labor shortages, 
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among others) give room for unanticipated inflation arising from the market (see 

Malliaris, 2006). Consequently, in the event of such unanticipated inflation, when 

commodity prices rise, wholesalers and retailers of products respond swiftly by passing 

along a certain proportion of the price increase to consumers (see Richards et al., 2012). 

This feeds into general inflation to the extent that the markets interconnect.  

  

In this paper, we examine the role of the coffee price in producing accurate inflation 

forecasts for the US economy. The theoretical basis for forecasting inflation is rooted in 

Phillips curve models (traditional and augmented variants). The traditional Phillips curve 

(TPC), justified from the post-Keynesian theory of demand-pull inflation, specifies a 

trade-off between inflation and the level of aggregate demand. This model has retained 

its relevance over the years for modelling inflation, whether as a single equation model or 

in a system of equations such as the Dynamic Stochastic General Equilibrium model and 

the macroeconometric model. Augmenting the TPC with the coffee price allows us to 

isolate coffee prices from the composite commodity price index, which might suppress 

the significance of the coffee price as an important driver of inflation in the basket of 

commodity prices. Lenten (2010) examined the accuracy of “headline” and “underlying” 

inflation forecasts in Australia in the face of claims from politicians that temporary shocks 

to prices of commodities such as “bananas and oil” are behind rising headline inflation 

forecasts. A recent study by Navamuel et al. (2017) used prices of tropical beverages 

(coffee, tea and cocoa) and other food commodities in a demand system to obtain cost-of-

living differentials between urban and rural areas in Spain. Tallman and Zaman (2017) 

drew on the standard Phillips curve framework to forecast services and goods 

subcomponents of US inflation separately, as emphasized by Peach et al. (2013). Their 

results show clear improvements in the accuracy of both point and density forecasts of 

inflation. 

 

However, a number of endogeneity issues may arise in the estimation process, as 

commodity prices including the coffee price respond to both demand and supply shocks, 
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and therefore the strict exogeneity assumption may not be appropriate. For instance, 

shocks to the coffee supply, climate change and ageing of farmers in the coffee-producing 

nations, among other factors, can affect the coffee price. Closely related to the endogeneity 

issue is the persistence effect, which is also a prominent feature of most commodity prices. 

This is usually expected as the effect of shocks on the commodity market tends to persist 

(see Narayan and Liu, 2011).  

 

On this basis, we account for any inherent endogeneity bias and persistence effect in the 

predictive model for inflation. In this case, the choice of estimator may matter in the 

analysis. This is motivated by the findings of Lewellen (hereafter “LW”; 2004), who 

proposes an alternative estimator to Ordinary Least Squares (OLS) in the presence of 

endogeneity and persistence effects. The proposed estimator, described as the bias-

adjusted OLS estimator, is found to outperform the standard OLS in the presence of 

persistence and endogeneity.5  

 

Another important feature of our data that may require special attention is the conditional 

heteroskedasticity effect, since we are dealing with high-frequency series. This special 

consideration is also motivated by the findings of Westerlund and Narayan (hereafter 

“WN”; 2012, 2015), who propose a Feasible Quasi Generalized Least Squares (FQGLS) 

estimator as an alternative to the LW estimator. Thus, in addition to the endogeneity and 

persistence effects captured in the bias-adjusted OLS estimator of LW (2004), the FQGLS 

estimator also accounts for the conditional heteroskedasticity effect.6 We thus subject both 

the traditional and augmented Phillips curve-based inflation models to these alternative 

estimators – that is, OLS, LW and WN – and the forecast performance of these estimators 

                                                           
5 Another possibility that has been explored is the prospect that (commodity) prices are time varying (see 
Narayan and Sharma, 2018). 
6 A number of papers have recently employed the FQGLS estimator of WN (2012, 2015) to model and forecast 

financial and economic series such as stock returns (see, for example, Narayan and Gupta, 2015; Narayan and Sharma, 

2014; Narayan and Bannigidadmath, 2015; Phan et al., 2015; Bannigidadmath and Narayan, 2016; Devpura et al., 

2018); public expenditure (see Makin et al., 2014); and inflation (see Salisu and Isah, 2018).    
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is comparatively evaluated. Thus, we are able to establish whether the choice of estimator 

matters for the inflation forecast.  

 

More importantly, we test whether augmenting the TPC with the coffee price will enhance 

its inflation forecasts. For robustness purposes, the analyses are subjected to different 

measures of inflation, different frequencies, multiple data samples and multiple forecast 

horizons. For completeness, we also compare the forecast results of the theory-based 

inflation forecast models with time-series models such as the Autoregressive Integrated 

Moving Average (ARIMA) and the Fractionally Integrated version (ARFIMA). This is 

important in order to establish whether theory-based models will beat the benchmark 

time-series models, in the face of contrary evidence from a number of papers (see, for 

example, Atkeson and Ohanian, 2001; Stock and Watson, 2003, 2007, 2008; Canova, 2007; 

Ang et al., 2007).  

 

The rest of the paper is structured as follows. Section 2 provides the basis for augmenting 

the Phillips curve-based inflation model with the coffee price. Section 3 presents the model 

set-up, including the forecast performance measures. Section 4 deals with data and 

preliminary analyses. In Section 5 we present and discuss the results, while Section 6 

concludes the paper. 

 

2 Motivation for the augmented Phillips curve-based inflation model 

The conclusion of Stock and Watson (hereafter “SW”; 2009) that commodity prices do not 

improve TPC-based inflation forecasts has continued to generate debate in the literature 

and reinvigorated researchers’ interest in formulating alternative methods of overturning 

the conclusion. There are two strands in this regard. The first strand involves the use of 

commodity price aggregates, as in SW (2009), but considers alternative methodologies in 

order to deal with issues of non-linearities and structural breaks (see Browne and Cronin, 

2010; Ciner, 2011; Chen et al., 2014). The second strand attempts to isolate key components 

of the composite commodity price index, such as the oil price, gold price or coffee price, 
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among others, and thereafter tests the significance of the individual components in the 

prediction of inflation (see, for example, Otero, 2001; Raju and Melo, 2003; Belke et al., 

2012; Fernandez, 2014; Karlsson and Karlsson, 2016; Van Hoang et al., 2016; Sek, 2017; 

Salisu and Isah, 2018). 

 

In the case of the first strand, using the VAR methodology on US data, Browne and Cronin 

(2010) find that equilibrium relationships exist between money, commodity prices and 

consumer prices (inflation); that both commodity and consumer prices are proportional 

to the money supply in the long run; and that commodity prices can predict future CPI 

inflation. Also, Ciner (2011) provides evidence for a long-term positive relation between 

commodity prices and inflation when frequency dependency (non-linear dynamics 

between the variables) is accounted for statistically. Further, Chen et al. (2014) find that 

world commodity price aggregates have predictive power for their CPI inflation, 

particularly once possible structural breaks are taken into account. Contrary to the 

findings of SW (1999 and others), Chen et al. (2014) show that the inflation model with 

commodity prices outperforms the random walk and autoregressive models.  

 

The second strand of studies focuses on single-commodity price–inflation relationships, 

such as the strong link between gold and inflation found by Van Hoang et al. (2016) and 

similar results for the oil price and inflation (Salisu et al., 2017a, 2018; Sek, 2017; Salisu and 

Isah, 2018). For indexes of multiple commodities, Fernandez (2014) shows that 

commodities such as beverages (coffee), food (maize, rice and wheat) and minerals 

display bidirectional linear and non-linear feedback effects with the general price level. 

Further results from Gelos and Ustyugova (2016) suggest that economies with higher food 

shares in CPI baskets are more prone to experience sustained inflationary effects from 

commodity price shocks.  

 

For the coffee price–inflation relationship, the first notable attempt can be attributed to 

the work of Edwards (1984), which isolates coffee prices from the basket of commodity 
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prices to support the position of a positive relationship between the price of coffee, money 

creation and inflation in Colombia. Other related studies are Cuddington (1986), Kamas 

(1986), Musonda and Luvanda (1986), Bonnell et al. (1990), Bevan et al. (1992), Otero 

(2001), Raju and Melo (2003), Belke et al. (2012) and Karlsson and Karlsson (2016). Like 

Edwards, Raju and Melo (2003), for example, show that the coffee price has a positive 

effect on inflation in addition to real exchange rate appreciation in response to periods of 

coffee boom. Similarly, Karlsson and Karlsson (2016) reveal that the coffee price can serve 

as a predictor for consumer inflation. Given the foregoing, we are therefore motivated to 

extend the previous analyses of the coffee price–inflation nexus from the perspective of 

Phillips curve-based inflation models. The choice of the Phillips curve model is intended 

to draw our model closer to SW (2009), since the conclusion of the latter was based on the 

chosen model. We also attempt to put paid to the issue of methodology in upturning SW’s 

(2009) results by subjecting the theory-based inflation model to different estimation 

methods. As customary in theory-based forecasting, the forecast results from the Phillips 

curve are compared with those of time-series models in order to verify whether theory 

matters to produce accurate US inflation forecasts.  

 

3 The model and forecast evaluation 

3.1 The model 

As previously noted, the underlying theory for the inflation forecasts rendered in this 

study follows the demand-based Phillips curve model, also described as the New-

Keynesian Phillips curve framework. This variant of the Phillips curve allows us to 

evaluate the role of real economic activity inflation forecasts (where the industrial 

production index is used as a proxy for real economic activity to allow for high-frequency 

observations). Thus, a simple representation of the demand-based Phillips curve can be 

represented as  

      ; 0t t t tL L y          >            (1) 
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where t  is represented as the log of the consumer price index; ty  is the log of the 

industrial production index; and L is a polynomial in the lag operator. Equation (1) is the 

backward-looking Phillips curve framework which has dominated the literature, where 

inflation is regressed on a constant, its own lagged values and lagged output (see, for 

example, Salisu et al., 2017a, 2018). A positive relation is hypothesized for the output–

inflation nexus. An expansion in the consumer demand for goods and services will raise 

the general price level, ceteris paribus, through its money effect, which is the case of too 

much money chasing too few goods. In other words, Equation (1) can be described as 

demand-side inflation.   

 

Also, in this paper we aim to understand whether commodity market shocks measured 

as changes to the coffee price will matter for the predictability of a Phillips curve-based 

US inflation forecast. This is in line with studies like Chen and Rogoff (2003) and Chen et 

al. (2014), which argue for the role of commodity prices as viable proxies for the supply 

side. The underlying intuition rests on the fact that global commodity prices affect 

domestic prices through their direct effects on production costs and real outputs, and 

indirectly result in domestic inflation through the exchange rate pass-through, especially 

in commodity-exporting economies (see Salisu et al., 2017b, and relevant papers cited 

therein).  

 

Thus, we modify the predictive theoretical framework in Equation (1) to reflect the 

supply-side component of the specification using changes in the coffee price. This, in a 

way, captures the impact on US inflation of shocks to the coffee supply through climate 

change, coffee booms and ageing of farmers in the coffee-producing nations, among other 

factors. Thus, any potential mis-specification arising from ignoring supply-side inflation 

which may undermine the accuracy of US inflation forecasts is resolved. Nonetheless, any 

inherent bias resulting from the persistence and endogeneity of the coffee price is also 

captured in the estimation. Discussions relating to how the latter is achieved are presented 

in the next section.  
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From the foregoing, we therefore respecify Equation (1) as follows: 

      ; 0;  0t t t t tL L y L p             > >           (2) 

where tp  is the log of coffee price obtained at period t. Similar to the output–inflation 

nexus, a positive relation is also hypothesized for the coffee price–inflation nexus. The 

intuition is that demand and supply shocks (e.g. shocks to aggregate demand, wealth, 

aggregate investment, technological innovation, harvest failures and labor shortages, 

among others) give room for unanticipated price changes; when commodity prices rise, 

wholesalers and retailers of products respond swiftly by passing along a certain 

proportion of the price increase to consumers, and this feeds into general inflation to the 

extent that the commodity and non-commodity markets interconnect. Subsequently, 

Equations (1) and (2) are described as the traditional and augmented Phillips curve-based 

inflation models, respectively.  

 

3.2 The LW (2004) and WN (2015) estimators 

LW (2004) seems to be the first attempt to deal with persistence and endogeneity in a 

predictive model. A simple representation of the underlying predictive model of the LW 

estimator for a single factor is given as: 

    1 1t t t t tz z z                        (3) 

where t  is as previously defined and tz  is a potential predictor variable of t  which can 

be replaced by the single factor in the TPC. Equation (3) is a reparameterization of both 
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persistence and endogeneity effects.7 Solving for 1tz   above gives a bias-adjusted OLS 

estimator of  , defined in this paper as the LW estimator.8 

   1adj                     (4) 

The predictability of output in the inflation model is evaluated under the null hypothesis 

that 0adj  . Thus, output is considered a good predictor of inflation if the null hypothesis 

is rejected; otherwise, it is not. The additional term in Equation (3) – that is,  1t tz z    

– is introduced to resolve any bias resulting from endogeneity and persistence effects, 

with their respective parameters denoted as   and  .  

 

In econometrics, the problem of endogeneity bias is usually attributable to two reasons: 

the omission of important explanatory variables; and two-way causality between 

explanatory variables and the explained variable. Therefore, resolving such bias in the 

estimation is inevitable given the fact that inflation is influenced by several variables, 

albeit with varying contributions to its forecast performance. Moreover, in periods of 

improved macroeconomic stability, using inflation as a proxy may influence the level of 

real economic activity, including the demand and supply of coffee. However, such reverse 

causation is not reflected in the original equation as in (1), and that partly explains the 

need to adjust the equation appropriately to control for such endogeneity bias, as 

provided for in Equation (3). The results of the endogeneity bias tests in Table 4 in the 

next section confirm the inherent endogeneity effect in the predictive model, particularly 

with respect to inflation and the coffee price.  

 

                                                           

7 Equation (3) results from a simple predictive model expressed as 1t t tz       and is based on the underlying 

assumptions that the persistence and endogeneity effects, respectively, follow the specifications as 

  11t t tz z e        and ˆ ˆ
t t te    . Equation (3) is obtained by reparameterizing the resulting equation 

after substituting the expressions for the two effects into the simple predictive model. Note that  1      . 

8 See LW (2004), WN (2012, 2015) and Narayan and Gupta (2015) for a detailed exposition of the underlying 

derivations required to resolve any bias arising from endogeneity and persistence in the predictive model.  
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In addition to endogeneity and persistence effects, it may also be necessary to account for 

a conditional heteroskedasticity effect, particularly when dealing with high-frequency 

series. We employ the FQGLS estimator proposed by WN (2012, 2015), which involves 

pre-weighting Equation (3) in such a way as to exploit the information contained in the 

conditional heteroskedastic variance of the regression residuals, in order to generate more 

precise estimates. The estimation of the weighted predictive model by OLS is described 

as the FQGLS estimator and is given as: 

 

2

12

2
2

12

ˆ

ˆ

m

m

T d d

t t tt q

FQGLS T d

t tt q

z

z

 




 

 





              (5) 

where ,
ˆ ˆ1t t   is used in weighting all the data in the predictive model, 

2

Td

t t ts
z z z T


   and 

2

Td

t t ts
T  


  .  

 

Following the LW and WN approaches, we can respectively rewrite Equations (1) and (2) 

as follows:  

   1 1 ,t y y t y t y t y ty y y                       (6) 

    , 1 1 1 1 , ,t p y y t p t y t y t p t p t p y ty p y y p p                            (7) 

Equations (6) and (7) represent the LW and WN variants for the traditional and 

augmented Phillips curve models, respectively. Notwithstanding the various 

considerations in both equations, we also compare their forecast performance with the 

original Equations (1) and (2) estimated with OLS.  

 

3.3 Estimation and forecasting procedure 

The analyses in this paper are done in three stages. The first stage involves pre-testing of 

each of the variables for endogeneity, persistence and conditional heteroskedasticity 

effects to justify our methodological divergence. The second stage involves in-sample 

predictability and forecast evaluation. The former involves testing whether the predictors 

are statistically significant regardless of the choice of estimator, while the latter involves 
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evaluating the forecasting power of the alternative estimators. The intention here is to 

establish two things. First, we test whether the choice of estimator matters for accurate US 

inflation forecasts; and second, we demonstrate that the augmented Phillips curve (APC) 

model will offer superior forecast performance relative to the traditional variant. Both the 

Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) are used as forecast 

measures. In addition, the Campbell and Thompson (hereafter “C-T”; 2008) test is also 

used as a complementary measure of forecast performance for RMSE and MAE. One 

additional advantage of using the C-T test lies in the fact that one is able to determine the 

model with better forecast performance at a glance, unlike RMSE and MAE, where at 

every point the statistics for the competing models will have to be compared before any 

meaningful conclusion can be drawn. The C-T test is described as the out-of-sample R-

squared  _OOS R  statistic. The OOS_R is given by  1 0_ 1 /OOS R MSE MSE  , where 

1MSE  and 0MSE  are the mean square error of the out-of-sample prediction from the 

unrestricted and restricted models, respectively. A positive value for the statistic – that is,

_ 0OOS R   – suggests that the unrestricted model outperforms the restricted model. 

 

Since it is hard to determine the equality of forecast accuracy between two competing 

models on the basis of the C-T test, we also employ the Diebold and Mariano (hereafter 

“D-M”) test. In other words, the D-M test is used to test for the equality of forecast 

accuracy of two forecasts and is computed as: 

 
 D-M stat 0,1

1

d
N

V d
T

 ~           (8) 

where    1

1

T

it jtT t
d f f 


  
   is the sample mean loss differential and  V d  is the 

unconditional variance of d .  The  
1

T

it t



 and  

1

T

jt t



 are the forecast errors associated 

with the two forecasts, say  
1

ˆ
T

it t
z


 and  

1
ˆ

T

jt t
z


, respectively. The  itf   and  jtf   are 

the loss functions associated with these two forecasts, while    t it jtd f f    is the loss 
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differential. The null hypothesis of equal forecast accuracy for two forecasts is that 

  0tE d  . There is relative equality between the two forecasts if the null hypothesis of the 

D-M test is not rejected; otherwise, there is not.  

 

The third stage involves out-of-sample forecast evaluation. We consider multiple in-

sample periods using 50% and 75% of total observations for robustness checks. Also, the 

rolling window approach is adopted, as against the fixed parameter approach, in order to 

capture any underlying time-varying property of the coefficients of the Phillips curve. 

This consideration is motivated by the findings of studies such as Stock and Watson 

(1999), Atkeson and Ohanian (2001), Orphanides and Van Norden (2004), Ang et al. 

(2007), Canova (2007) and Riggi and Venditti (2015), suggesting that the parameters of the 

Phillips curve are unstable, which may affect the accuracy of inflation forecasts. More 

specifically, Canova (2007) finds that accounting for the time-varying parameter feature 

of the Phillips curve improves the forecast performance of the model.  

 

As is customary, we also compare our models that rely on economic information (both 

traditional and augmented) with time-series models such as the ARIMA process and also 

ARFIMA for robustness. Their forecast performance is compared with the theory-based 

models using the chosen forecast measures. A generalized specification for ARIMA 

(p,d,q) is given as: 

   
1 1

1 1 1
p q

di i

i t i t

i i

L L L    
 

   
       

   
                   (8) 

where   is the drift parameter, L  denotes the lag operator, p  and q  are the maximum 

lags for t   and t , respectively, while d  is the order of integration, which can also be 

defined as the number of times t  is differenced to achieve stationarity. In the case of the 
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ARFIMA model, however,  1
d

L  is described as the fractional differencing operator 

defined by9 

  
 

   0

1
1

k
d

k

k d L
L

d k





 
 

   
                  (9) 

where     denotes the generalized factorial function. The parameter d  is allowed to 

assume any real value. Restricting d  to integer values gives rise to the standard ARIMA 

model. The inflation series t  is both stationary and invertible if 
1

1
p

i

i

i

L


 
 

 
  and 

1

1
q

i

i

i

L


 
 

 
  lie outside the unit circle and d < 0.5. The process is non-stationary for 0.5d 

, as it possesses infinite variance (see Granger and Joyeux, 1980). 

 

4 Data and preliminary analysis 

For the purposes of this study, we obtained synchronous time-series data from the US 

Bureau of Labor Statistics on the following variables: price index of coffee (for all urban 

US consumers), industrial production, unemployment rates, and headline and core 

inflation rates.  The variables are of the same observation numbers ranging from January 

1967 to October 2017, month to month, yielding 610 observations. We begin our 

preliminary analyses with some summary statistics, and thereafter we subject the series 

to formal tests, which are preconditions for the LW and WN estimators. As reported in 

Table 1, average monthly US inflation is approximately 0.33% for both headline and core 

inflation. This is quite low, though it must be noted that this is an average of a long time 

span. The standard deviation values are substantially smaller for core inflation rates than 

for headline inflation. In the case of monthly growth in output and coffee price, their 

respective mean values for the period are 0.33% and 0.18%. The coffee price seems to be 

the most volatile, even more than the general price level. The statistical distribution of the 

                                                           
9 In a situation where time series exhibit too much long-range dependence to be classified as I(0) but are not I(1), the 

ARFIMA model may be appropriate. 
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series shows negative skewness for the headline inflation and output series (indicating 

lower individual values than the average) and positive skewness for both coffee and core 

inflation (implying higher individual values than the average). The distributions of the 

variables are platykurtic for all variables.  

 

(Insert Table 1 here) 

 
4.1 Autocorrelation, conditional heteroskedasticity and unit root properties 

The presence or otherwise of serial correlation is tested using the Ljung-Box Q- and Q2-

Statistics test, while Engle’s ARCH LM test is employed to test for conditional 

heteroskedasticity. Table 2 presents the tests at lags 5, 10 and 20 for robustness. The null 

hypothesis of no conditional heteroskedasticity and serial correlation in the series is 

rejected for all series. Thus, the results of the test are robust to the varying lag lengths, 

therefore the issue of autocorrelation and heteroskedasticity should be a concern which 

has to be resolved in the estimation process.  

 

In line with the standard approach for modeling with time-series data, we also subject 

each of the inflation variables and the predictor series to ADF and the GARCH-based 

(Narayan and Liu, 2015) unit root tests. The latter is an extension of the former, as it allows 

for the GARCH process as well as deterministic trend and structural breaks in the 

estimation process. As presented in Table 3, the predictors are integrated to order 1, while 

core and headline inflation are stationary at all levels, although with lower levels of 

statistical significance. These results are consistent regardless of the choice of unit root 

tests.  

(Insert Table 2 here) 

(Insert Table 3 here) 

 

4.2 Persistence and endogeneity test results 



19 
 

Given the fact that rejecting the null hypothesis of non-stationarity for the predictor series 

does not sufficiently justify the absence of persistence, we test for endogeneity and 

persistence in the predictors. The AR(1) coefficient estimated for each of the predictors is 

very close to 1, suggesting a high degree of persistence in the predictors (see Table 4). The 

extent of endogeneity is also examined. The results, as depicted in Table 4, reveal that the 

coffee price is endogenous, while output is not in the Phillips curve-based inflation model 

regardless of the measure for inflation. Moreover, the result of the endogeneity bias test 

further confirms the strong link between inflation and the coffee price. It also suggests 

that the demand and supply of coffee are influenced by the stability of the economy, 

where inflation is prominently used as a proxy. It is important to emphasize that even 

when we suppress the volatile components of inflation – that is, food and energy prices – 

the conclusion about the presence of endogeneity bias remains unchanged. It is therefore 

not out of place to consider an alternative estimator, which corrects for any potential bias 

in the estimation of the proposed APC model for US inflation. Notwithstanding that, the 

forecast performance of the alternative estimator is compared with other estimators in 

order to further validate our preference for the former.  

 

(Insert Table 4 here) 

 

4.3 Co-movements between coffee price and US inflation 

Prior to a proper discussion of the results, it is necessary to have a cursory look at the 

series of interest to give us some informal idea of the likely pattern of the relationship. 

This is achievable with the aid of graphical analyses of the series. The analyses in Figures 

1.1 and 1.2 (in levels) as well as Figures 1.3 and 1.4 (in returns) provide brief insights into 

possible connections between the coffee price and US inflation (whether measured as core 

or headline inflation) over time. In the absence of a precise co-movement between the 

series, the coffee price appears to hover around the upward-trending US inflation series. 

Although the coffee price series has a history of mild spikes here and there, it maintains a 

steady relationship with the inflation series throughout the review period. Aside from the 
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close relationship between coffee price and inflation series evident in the analyses, we can 

also observe an equal pattern of behavior between headline and core inflation, suggesting 

that findings emanating from the two measures of inflation will likely be identical.  

 

In addition to the graphical depiction of association between the series, we further 

investigate the relationship using formal tests, which confirm the possible existence of a 

long-run relationship between them. Consequently, formal analyses from the bounds test 

co-integration approach of Pesaran et al. (2001) showed in Table 5 confirm the long-run 

relationship between coffee price and inflation series.10 Thus, taken together with the 

evidence of co-movement between the series, the co-integration result provides a strong 

basis for considering the coffee price in the predictive model of US inflation. 

 

(Insert Figures 1) 

(Insert Table 5) 

 

5 Discussion of results 

We adopt the TPC and the APC variant to exploit information held on coffee prices to 

predict US inflation, while accounting for the inherent problems of endogeneity, 

persistence and conditional heteroskedasticity in the variables and modeling framework.  

We further compare the results of our theory-based models with time-series models, 

namely ARIMA and ARFIMA. The analyses are all conducted for both monthly and 

quarterly data frequencies to pose confidence in the robustness and sensitivity of our 

results.11 We assess the in-sample and out-of-sample predictability evaluations for the 

50% and 75% data samples and for 5, 12 and 24 periods ahead of the forecast horizon, 

specifically for out-of-sample forecast evaluation, using four criteria: RMSE, MAE, C-T 

and D-M tests. The analyses all stem from the results in Tables 6–14. 

                                                           
10 The time-series properties of the variables, being a combination of I(0) and I(1), justify the adoption of the 
bounds test co-integration approach (Pesaran et al., 2001).   See Table 5. 
11 See the attached supplementary file for the robustness results using quarterly data. 
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5.1 In-sample predictability 

Our objective is not to validate the TPC, in which case we would consider how the level 

of economic activity (measured with the industrial production index [IPI]) could predict 

inflation. Rather, we are more concerned with the APC, which allows us to assess the role 

of commodity prices, the coffee price in particular, for forecasting US inflation using both 

the volatile (headline inflation) and the less volatile measure (core inflation). To answer 

the research question (“Can the coffee price predict US inflation?”) in the affirmative, we 

require overwhelming evidence of positive and significant values for coffee price 

coefficients across the measures of inflation (headline and core), data samples (50% and 

75%), data frequencies (monthly and quarterly) and estimators (OLS, LW and WN). We 

turn to information in Table 6 to aid our discussion. The results show that whether we 

account for endogeneity, persistence and conditional heteroskedasticity or not, the three 

estimators consistently turn up positive and significant estimates for the coffee price 

coefficients in the TPC and APC models for the 50% and 75% data samples, across 

monthly and quarterly frequencies, and for both headline and core inflation. We therefore 

have strong evidence to suggest that the coffee price could serve as a good predictor, along 

with economic activity, for US inflation. Further confirmation is attempted in the 

succeeding sections. 

 

(Insert Table 6 here) 

 

5.2 In-sample forecast evaluation 

5.2.1 Does the choice of estimator matter? 

We are still in the dark as to the ideal estimator for our TPC-based and coffee price–

inflation predictive models, given the overall evidence of predictability revealed in the 

previous section. Consequently, we examine the in-sample forecast evaluation for the 

estimators for the TPC and APC to reveal whether the choice of estimator matters in each 

of the models; that is, whether accounting for the aforesaid inherent properties improves 
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the forecast performance of each of the models. 12  This helps to show the preferred 

estimator for the TPC on its own without augmenting for the coffee price, and also for the 

APC after augmenting the TPC for the coffee price. Subsequently, we make a comparison 

between the TPC and the APC as to the favored estimator. Further, we decide on the ideal 

estimator by comparing the estimators of the theoretical models (TPC and APC) and those 

of the time-series models (ARIMA and ARFIMA). To execute these, we rely on four 

evaluation criteria: RMSE and MAE (see Tables 7 and 8) and C-T and D-M (see the 

relevant rows and columns of Tables 9–12). In all, the WN, which incorporates all the 

statistical properties, is the reference estimator. This information is particularly relevant 

for the C-T and D-M criteria, which operate on the basis of a predetermined reference 

estimator.  

 

Conventionally, RMSE and MAE approach zero values, such that the closer the value due 

to a particular estimator is to zero, the better the forecasting accuracy of that estimator. 

On the other hand, for the C-T and D-M criteria, a positive C-T statistic and a significant 

D-M test imply that the reference estimator (WN) outperforms the other estimators in 

question. For comparison across the TPC model, when we consider a fairly large 

proportion of the data sample (that is, 75%), both the RMSE and MAE criteria show that 

the WN outperforms the LW and OLS for in-sample predictability of US (headline and 

core) inflation. Interestingly, this result is not sensitive to data frequency, as we arrived at 

the same conclusion for both monthly and quarterly observed data. The foregoing is 

further supported by C-T tests, where the results of the 75% data show that WN 

outperforms the other estimators. We can therefore confidently affirm for in-sample 

predictability that the special consideration for the choice of WN estimator matters in 

predicting US inflation. 

(Insert Table 7 here) 

 (Insert Table 8 here) 

                                                           
12 We hypothesize that if the endogeneity, persistence and conditional heteroskedasticity properties are 
indeed true, then we expect the WN estimator that incorporates them to outperform the other estimators. 
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5.2.2 TPC vs APC 

Before we compare estimators between the TPC and APC models, it is necessary to 

confirm the superiority of the WN estimator for the APC model, as for the TPC in the 

previous section. This facilitates easy comparison of the estimator for the two theoretical 

models. The findings show overwhelming evidence in favor of the WN estimator for the 

two data samples for predicting headline and core inflation using monthly data, but only 

for the more volatile inflation measure (headline inflation) for the data pairs in quarterly 

frequency. In all, the WN clearly outclasses the ARIMA and ARFIMA models.  

 

Now, to compare the TPC with the APC model involves testing whether the forecast 

results for the WN estimator in the APC case outperform those of the same estimator in 

the TPC case. This comparison is done using the C-T test, as shown in Tables 9 and 10, 

and supported by the D-M test in Tables 11 and 12. The C-T test reveals positive statistical 

values for the 50% and 75% data samples in core and headline inflation. These results 

indicate that the augmented Phillips curve with the coffee price as a predictor 

outperforms the traditional variant in the in-sample predictability of US inflation. By 

implication, we have justified the need to account for the inherent statistical features in 

the predictor, as well as made a case for the superiority of the WN estimator in the in-

sample predictive model. We therefore have evidence which surpasses the findings of 

Richards et al. (2012), Chen et al. (2014), Fernandez (2014), Kagraoka (2015), Gelos and 

Ustyugova (2016) and Karlsson and Karlsson (2016) to uphold the significance of the 

coffee price, within the family of other commodity prices, as a predictor of consumer 

inflation. 

 

(Insert Table 9 here) 

 (Insert Table 10 here) 

 

5.2.3 Economic model vs statistical model 
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Having settled for one of the economic models (i.e. APC), we may be interested in 

showing explicitly our choice of estimator between the theoretical and statistical models 

(ARIMA and ARFIMA). It is customary to compare the forecast performance of 

theoretically motivated predictive models with the statistical models when dealing with 

financial time-series forecasting such as inflation (see Karlson and Karlson, 2016, for a 

review on inflation forecasting; see also Atkeson and Ohanian, 2001; Stock and Watson, 

2003, 2007, 2008; Ang et al., 2007; and Canova, 2007, for evidence motivating our interest). 

These studies cast doubt on the efficacy of theoretical inflation models such as the TPC 

and APC, estimated here for predicting inflation. Remarkably, we have convincing 

evidence, whether using the RMSE, MAE or C-T test, in favor of the superiority of the WN 

estimator for the coffee price–Phillips curve augmented model over the two time-series 

models.  

 

Specifically, the C-T tests for the APC model for forecasting both headline and core 

inflation show complete dominance of the WN estimator over the ARIMA and ARFIMA 

statistical models. We therefore have conclusive evidence, first, to augment the TPC with 

the coffee price for forecasting US inflation given the significance of the coffee market to 

the economy (see Financial Times, 2017a, b; see also the ncausa.org website); second, to 

support the conclusions of Westerlund and Narayan (2012, 2015) that accounting for the 

inherent persistence, endogeneity and conditional heteroskedasticity in the coffee price 

improves the theoretical model’s forecast performance; and third, to challenge the 

position of Stock and Watson’s papers that theoretical models can outperform statistical 

models for forecasting inflation. The implication of these is that a rising coffee price could 

be an indication of consumer inflation in the USA and, as such, it can be exploited 

alongside economic activity by the monetary authority to target inflation policy. The 

foregoing is true for in-sample predictability. Is it also true for out-of-sample inflation 

predictability? We attempt to answer this question in the next section. 

 

(Insert Table 11 here) 
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 (Insert Table 12 here) 

 

5.3 Out-of-sample forecast evaluation 

5.3.1 Does the choice of estimator matter? 

There seems to be agreement in the literature that good in-sample forecast results do not 

necessarily equate to good out-of-sample forecast performance. Thus, we consider the 

out-of-sample forecast performance of the inflation forecast models. We report 6, 12 and 

24 periods (month and quarter) ahead of the forecast horizons. Consequently, we evaluate 

the accuracy of the baseline estimator, the WN, in the TPC and APC models for the out-

of-sample forecast of headline and core US inflation using RMSE and MAE (see Tables 13 

and 14) and the C-T test supported by the D-M results (refer to Tables 9–12).  

 

Starting with the out-of-sample forecast of the TPC, the results of the evaluation criteria 

corroborate those of the in-sample predictability evaluation that with a fairly large data 

sample, we find that the unrestricted estimator, WN, supersedes the two other restricted 

estimators, OLS and LW, with LW being better at 50% of the data sample. This is 

consistently so across the three forecast horizons, the two measures of inflation and data 

frequencies. This is further largely supported by the C-T tests. However, the evidence is 

too close to call to reveal the better estimator between WN and LW in the APC model (24 

out of 48 items of evidence from lower values of RMSE and MAE are in support of WN, 

excluding instances of equal values). If we deduct the instances of where equal values are 

recorded, the WN has a slight edge for out-of-sample forecast power over LW in the APC 

model.   

 

5.3.2 TPC vs APC 

Although evidence is not unanimous as to the better model for out-of-sample 

predictability between the LW and NW (note that there is no case for OLS at all), we can 

convincingly decide between the APC and the TPC for ex post forecast evaluation. With 

facts supporting the superiority of the APC model (i.e. positive and significant estimates 
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of the C-T and D-M tests, respectively), we are backed by evidence to justify augmenting 

the TPC model with the coffee price. We are also justified in accounting for endogeneity 

and persistence in the predictor, although modest evidence is available for the relevance 

of conditional heteroskedasticity in the out-of-sample forecast evaluation. 

 

 

5.3.3 Economic model vs statistical model 

Here, we compare estimators between the revealed superior theoretical model, APC, and 

the time-series (statistical) models, ARIMA and ARFIMA. The RMSE and MSE evaluation 

criteria consistently turn in higher values for the statistical models compared to the LW 

and WN of the APC model. Supporting and conclusive evidence from the harmony of C-

T and D-M tests (Tables 9–12) reveals that the APC model consistently outperforms each 

of the statistical models across the forecast horizons.  

 

(Insert Table 13 here) 

(Insert Table 14 here) 

 

5.4 Robustness and policy implications of findings 

In this study, we adopt a number of sensitivity approaches to establish the robustness of 

our findings. Thus, we adopt two measures of inflation, headline and core inflation; utilize 

two inflation forecast models, TPC and APC; conduct analyses over two data samples and 

frequencies; and employ 50% and 75% data samples across monthly and quarterly data 

frequencies, all using competing estimators: theoretical, OLS, LW and WN, and statistical, 

ARIMA and ARFIMA. We establish tentative and overwhelming evidence of positive and 

significant values for in-sample estimation of the inflation model with the coffee price as 

a major predictor. Remarkably, the result of good out-of-sample predictability, where our 

augmented theoretical model consistently outperforms the time-series models, is true 

irrespective of data sample, data frequency and measure of inflation. Thus, our theoretical 

APC model transcends the statistical models even for out-of-sample inflation forecasting, 
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as it supersedes the time-series models for in-sample forecast evaluation. Information 

contained in this study is particularly relevant for monetary policies for targeting inflation 

effectively. Thus, a rising coffee price could be a precursor to consumer inflation in the 

USA and, as such, policy makers can exploit such information alongside economic activity 

to target either volatile or non-volatile consumer inflation. 

 

Also, we test whether the forecast results of the preferred model, APC, is not sensitive to 

higher-order moments based on time-varying skewness and kurtosis. For the purpose of 

this exercise, we consider the GARCH-SK model of Leon et al. (2005) and Narayan and 

Liu (2018), which is described as the GARCH model with skewness and kurtosis. More 

specifically, we test whether allowing for time-varying higher-order moments on the 

Gram–Charlier expansion series will provide better forecast performance than the APC 

model. The WN-based APC is the best predictive model from our previous analyses and 

is therefore compared with GARCH-SK.13 The WN approach is chosen here since it is the 

best estimator among other the competing estimators previously discussed; that is, the 

LW and OLS estimators. In addition to the standard GARCH model as in Equation (10) 

and the corresponding conditional variance equation as in Equation (11), the GARCH-SK 

model requires the provision of additional information on skewness and kurtosis.14  

 The mean equation for inflation can be expressed as:  

t t th    ;                   (10) 

 where    0,1t N  ,  1 0t tE   , 2

1 1t tE 
    , 3

1t t tE s
     and 4

1t t tE k
    . The t  is 

the inflation rate; th  is the conditional variance given the information set at t-1 period; 

t  is the standard residual term; while the higher-order moments are captured as ts  

                                                           
13 The WN (Westerlund and Narayan, 2015) approach that allows for conditional heteroskedasticity, 
endogeneity and persistence effects in the predictive model of inflation. 
14 We specially thank one of the anonymous reviewers for suggesting this robustness test. Its consideration 
appears to have strengthened the quality of our paper.  
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(skewness) and tk (kurtosis). Thus, within the context of GARCH-SK, Equation (10) 

follows a GARCH process, with higher-order moments represented as:   

2

0 1 1 2 1t t th h             (11) 

3

0 1 1 2 1t t ts s             (12) 

4

0 1 1 2 1t t tk k             (13) 

Estimation of GARCH-SK involves the maximum likelihood estimator, which requires 

maximization of the following log-likelihood function: 

    21 1
ln ln

2 2
t t t t tL h             (14) 

where      3 4 23
1 3 6 3

3

t t
t t t t t

s k
     


     

 
 and 

 
22 3

1
3

tt
t

ks 
   

 
.15 

 

The results for the GARCH-SK model are presented in Table 15 and they cover both in-

sample and out-of-sample forecasts for headline and core inflation rates. For want of 

space, only the RMSE statistics are presented. We find that the APC model that relies on 

the WN approach outperforms the GARCH-SK model for both in-sample and out-of-

sample forecasts. The results are in fact consistent for both headline and core inflation. 

Therefore, we can conclude that our proposed APC model is not sensitive to higher-order 

moments.    

 

(Insert Table 15 here) 

 

 

 

 

6 Concluding remarks 

 

                                                           
15 See Leon et al. (2005) and Narayan and Liu (2018) for computational details.  
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This study sets out from impediments established in the extant literature casting doubt 

on the effectiveness of economic models for forecasting inflation (Atkeson and Ohanian, 

2001; Stock and Watson, 2003, 2007, 2008; Ang et al. 2007; Canova, 2007). In a bid to 

establish the role of the coffee price for forecasting US inflation, we account for inherent 

statistical properties in the predictors, augment the traditional Phillips curve and find 

evidence that surpasses findings in the existing literature (e.g. Richards et al., 2012; Chen 

et al. 2014; Fernandez, 2014; Kagraoka, 2015; Gelos and Ustyugova, 2016; Karlsson and 

Karlsson, 2016), which upholds the significance of the coffee price, in the family of other 

commodity prices, as a predictor of consumer inflation. Thus, augmenting the traditional 

Phillips curve with the coffee price will produce better forecast results for US inflation 

only when the statistical effects are captured in the estimation process. Put differently, the 

choice of estimator matters for the predictability of the coffee price in US inflation 

forecasts. This is a major contribution of this paper to the extant literature involving the 

role of commodity prices in inflation. Like Chen et al. (2014) and contrary to the findings 

of Stock and Watson (1999 and others), we show that the proposed augmented Phillips 

curve outperforms time-series models. Our results are robust to alternative measures of 

inflation, different data frequencies, higher-order moments, multiple data samples and 

multiple forecast horizons. 
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Figures 

         Fig. 1.1: Trends in coffee price and headline inflation                Fig. 1.2: Trends in coffee price and core inflation 
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        Fig. 1.3: Trends in coffee returns and headline inflation               Fig. 1.4: Trends in coffee returns and core inflation 
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     Table 1: Summary Statistics  

Variables Mean Std. Dev. Skewness Kurtosis 

tp
 0.3261 2.1187 4.1854 37.9866 

ty
 0.1758 0.7300 -1.1095 8.2862 

h

t


 0.3307 0.3649 -0.1303 6.3061 

c

t


 0.3294 0.2882 0.8480 4.0354 

Note: tp
 ,  ty

, 
h

t


 and 
c

t


are month-on-month growth rates of coffee price, output, headline 

CPI and core CPI respectively.  

 
  Table 2: Autocorrelation and Conditional Heteroscedasticity Tests 

Lag Struct. Variables  Serial Correlation Test Heteroscedasticity Test 

Q-Stat Q2-Stat ARCH 

(5) 

tp  2960.7199 *** 2937.9291 *** 183207.0690 *** 

ty  2990.4557 *** 2872.0017 *** 42610.6203 *** 

h

t  2986.2035 *** 2927.9234 *** 1377803.3492 *** 

c

t  2987.7890 *** 2924.3536 *** 2649530.7125 *** 

(10) 

tp  5726.5183 *** 5627.7935 *** 84559.1842 *** 

ty  5853.2083 *** 5355.5455 *** 20666.6651 *** 

h

t  5848.4526 *** 5633.4375 *** 657878.6687 *** 

c

t  5854.3449 *** 5621.6766 *** 1437742.4376 *** 

(20) 

tp  10656.4538 *** 10196.1779 *** 36193.5073 *** 

ty  11208.2216 *** 9299.4912 *** 9234.6937 *** 

h

t  11198.6748 *** 10380.1309 *** 302081.0317 *** 

c

t  11222.7405 *** 10349.7451 *** 744639.8613 *** 

Note: tp , ty , 
h

t  and 
c

t denote the coffee price, output, headline CPI and core CPI respectively, all 

expressed in natural logarithm. *** represents significance at 1% given that all the estimated F-statistics 
of the ARCH effects for heteroscedasticity tests and the Ljung Box Q- & Q2-statistics for autocorrelation 
tests are significant at 1%. The tests are conducted at different lag lengths, 5, 10 and 20 for robustness. 
This indicates the rejection of the null of no serial correlation and no conditional heteroscedasticity at 
all lags at the specified significance level.  
 
 
 
 
 
 
 
 
 
 
 



 

Table 3: Unit root tests 

 ADF Test NL (2015) Test  

Variables T-test (k) I(d) T-statistic I(d) 

tp  -9.5743***(2) I(I) -2.2389*** I(1) 

ty  -7.9219***(4) I(I) -2.33830** I(1) 

h

t  -2.8336*(12) I(0) -1.852377* I(0) 

c

t  -2.9554**(14) I(0) -5.8037*** I(0) 

 Note: tp , ty , 
h

t  and 
c

t denote the coffee price, output, headline CPI and core CPI respectively, all 

expressed in natural logarithm. k represents the optimal lag for the ADF test selected using the Akaike 
Information Criterion (AIC), and ***,** and *  indicate 1%, 5% and 10% levels of significance 
respectively. We complement the ADF test with the NL (2015), Narayan and Liu (2015) GARCH-based 

unit root test based on the underlying test equation 0 1 1 1

k

t t i it ti
y t y      

       where 

ty  denotes the series of concern, t is the time trend, 1it  if t   the the break date, and zero 

otherwise. The null hypothesis of NL unit root given as 0   is tested against the alternative 

hypothesis of stationarity denoted as 0  .  

 
 Table 4:  Persistence and endogeneity test results 

Variable Persistence Endogeneity 

h

t  
c

t  

tp  0.9961*** -1.0736*** -1.1561*** 

ty  0.9985*** -1.2331 -0.7824 

 Note: The test equation for persistence follows the first autoregressive process  1t t tz z e       

where tz  is a potential predictor. The endogeneity test is obtained by regressing the residual term from 

the original predictive model (i.e. 1t t tz      ) on the residuals from the persistence equation 

 t̂e . Thus, the endogeneity test equation is given as ˆ ˆ
t t te      with the null hypothesis of no 

endogeneity effect. *** represents significance at 1% at which the coefficients of the persistence and 
endogeneity effects are statistically significant. 

 

 
Table 5: Bounds test cointegration 

Null hypothesis F-statistics I(0) bound I(1) bound Decision 

No long run relationship 

between tp and 
h

t  

 
22.67774 

 
6.84 

 
7.84 

 
Reject the null 

No long run relationship 

between tp and 
c

t  

 
42.88977 

 
6.84 

 
7.84 

 
Reject the null 

Note: tp , 
h

t  and 
c

t denote the coffee price, headline CPI and core CPI respectively, all expressed in 

natural logarithm. We reject the null if the F statistic is greater than the I(1) bound critical value. The 
I(0) and I(1) bound critical values are as provided in Pesaran et al. (2001) designed for bounds test 
cointegration. 

 



 

Table 6: Predictability Results for US Inflation 

 HEADLINE INFLATION  CORE INFLATION 

 50% 75%  50% 75% 

 OLS LW WN OLS LW WN  OLS LW WN OLS LW WN 

Traditional Phillips Curve 

ty  
2.5517*** 

(0.0476) 

0.0220*** 

(0.0034) 

0.0205*** 

(0.0034) 

1.7849*** 

(0.0301) 

0.0003 

(0.0015) 

0.0003 

(0.0014) 
 2.5305*** 

(0.0464) 

0.0151*** 

(0.0031) 

0.0146*** 

(0.0032) 

1.8226*** 

(0.0291) 

-0.0026* 

(0.0014) 

-0.0027** 

(0.0013) 

Augmented Phillips Curve 

ty  
1.7122*** 

(0.0947) 

0.0188*** 

(0.0033) 

0.0177*** 

(0.0033) 

1.0198*** 

(0.0394) 

0.0023* 

(0.0014) 

0.0019 

(0.0013) 
 1.8628*** 

(0.0972) 

0.0106*** 

(0.0031) 

0.0106*** 

(0.0031) 

1.1318*** 

(0.0408) 

-0.0008 

(0.0013) 

-0.0012 

(0.0012) 

tp  
0.2752*** 

(0.0279) 

0.0042*** 

(0.0008) 

0.0044*** 

(0.0008) 

0.4375*** 

(0.0192) 

0.0048*** 

(0.0006) 

0.0044*** 

(0.0007) 
 0.2189*** 

(0.02867) 

0.0040*** 

(0.0007) 

0.0041*** 

(0.0007) 

0.3951*** 

(0.0199) 

0.0046*** 

(0.0005) 

0.0044*** 

(0.0005) 

Note: The in-sample predictability in a single-factor case is obtained by estimating the equation  1 1t t t t tz z z            where ̂  denotes the 

coefficient on the predictor 1tz  . For a multi-factor case, the given equation is extended to capture as many terms of 1tz   and  1t tz z    as the number of 

additional predictors being included in the predictive model. The competing estimators explored for the in-sample predictability are the ordinary least squares 
(OLS), Lewellen (LW), and Westerlund and Narayan (WN) estimators applied to the 50% and 75% of the data for forecasting headline and core inflation. The 
values reported in parentheses are standard errors while ***, ** and * denote 1%, 5% and 10% levels of significance respectively. The null hypothesis of no 
predictability is rejected if there is statistical significance at least at 10% significance level.



 

Table 7: In-Sample Forecast Performance using Root Mean Square Error 

 Augmented Phillips Curve  Traditional Phillips Curve  Time Series Model 

OLS LW WN  OLS LW WN  ARIMA ARFIMA 

Headline Inflation 
50% Sample 0.1243 0.0368 0.0362  0.1431 0.0634 0.0640  0.0633 0.0691 
75% Sample 0.1274 0.0388 0.0391  0.1866 0.0779 0.0728  0.0575 0.1116 
Core Inflation 
50% Sample 0.1277 0.0259 0.0256  0.1396 0.0543 0.0550  0.0603 0.0773 
75% Sample 0.1318 0.0268 0.0272  0.1803 0.0701 0.0664  0.0761 0.1048 

Note: The reported RMSE are for comparing the single factor (TPC) and multi-factor (APC) predictive 
models as well as the time series models across the various estimators. The forecast performances are 
conducted for half and three-quarter of the data (50% and 75%) for in-sample predictability of headline 
and core inflation. Zero RMSE indicates perfect predictability of the different inflation measures; hence, 
the closer the RMSE to zero, the better the predictability. 
 
 
Table 8: In-Sample Forecast Sample using Mean Absolute Error 

 Augmented Phillips Curve  Traditional Phillips Curve  Time Series Model 

OLS LW WN  OLS LW WN  ARIMA ARFIMA 

Headline Inflation 
50% Sample 0.0951 0.0296 0.0295  0.1148 0.0489 0.0526  0.0525 0.0581 
75% Sample 0.0941 0.0324 0.0316  0.1687 0.0676 0.0602  0.0462 0.0964 
Core Inflation 
50% Sample 0.0991 0.0199 0.0198  0.1112 0.0433 0.0462  0.0516 0.0666 
75% Sample 0.0999 0.0219 0.0219  0.1635 0.0624 0.0522  0.0682 0.0945 

Note: The reported MAE are for comparing the single factor (TPC) and multi-factor (APC) predictive 
models as well as the time series models across the various estimators. The forecast performances are 
conducted for half and three-quarter of the data (50% and 75%) for in-sample predictability of headline 
and core inflation. Zero RMSE indicates perfect predictability of the different inflation measures; hence, 
the closer the MAE to zero, the better the predictability.



 

Table 9: Campbell-Thompson Test Results for Headline Inflation 

 50% 75% 

 Out-of-Sample Out-of-Sample 

 In-Sample h = 6 h = 12 h = 24 In-Sample h = 6 h = 12 h = 24 

Augmented Phillips Curve (APC) 
ARIMA 0.4291 0.4291 0.4291 0.4291 0.3206 0.3205 0.3205 0.3205 
ARFIMA 0.4764 0.4764 0.4764 0.4764 0.6498 0.6498 0.6498 0.6498 
LW 0.0178 0.0178 0.0178 0.0178 -0.0060 -0.0060 -0.0060 -0.0060 
OLS 0.7093 0.7093 0.7093 0.7093 0.6932 0.6932 0.6932 0.6932 

Traditional Phillips Curve (TPC) 
ARIMA -0.0111 -0.0111 -0.0111 -0.0112 -0.2657 -0.2657 -0.2658 -0.2658 
ARFIMA 0.0727 0.0727 0.0727 0.0726 0.3476 0.3476 0.3476 0.3475 
LW -0.0096 -0.0096 -0.0096 -0.0096 0.0657 0.0657 0.0657 0.0657 
OLS 0.5526 0.5526 0.5527 0.5527 0.6098 0.6099 0.6099 0.6099 

Traditional Phillips Curve versus Augmented Phillips Curve 

WN [TPC] 0.4344 0.4353 0.4351 0.4347 0.4629 0.4633 0.4623 0.4626 

Note: The predictability results reported are for in-sample and 6-period, 12-period and 24-period ahead out-of-sample forecast horizons for 50%and 75% of the sample. For 

comparison, the benchmark model, WN-based predictive model, is compared with the other listed estimators and models using the Campbell Thompson test. The C-T test is a 

sign-based test. Positive values indicate superior performance in favour of WN. 

 

Table 10: Campbell-Thompson Test Results for Core Inflation 

 50% 75% 

 Out-of-Sample Out-of-Sample 

 In-Sample h = 6 h = 12 h = 24 In-Sample h = 6 h = 12 h = 24 
Augmented Phillips Curve (APC) 

ARIMA 0.5753 0.5753 0.5753 0.5752 0.6429 0.6429 0.6429 0.6429 
ARFIMA 0.6688 0.6688 0.6688 0.6687 0.7407 0.7407 0.7407 0.7407 
LW 0.0118 0.0118 0.0118 0.0118 -0.0155 -0.0155 -0.0155 -0.0155 
OLS 0.7994 0.7994 0.7994 0.7994 0.7937 0.7937 0.7937 0.7937 

Traditional Phillips Curve (TPC) 
ARIMA 0.0884 0.0884 0.0884 0.0883 0.1273 0.1273 0.1273 0.1273 
ARFIMA 0.2891 0.2891 0.289 0.289 0.3664 0.3664 0.3664 0.3664 
LW -0.0126 -0.0126 -0.0126 -0.0126 0.0522 0.0522 0.0522 0.0522 
OLS 0.6061 0.6061 0.6061 0.6062 0.6317 0.6317 0.6317 0.6317 
 Traditional Phillips Curve versus Augmented Phillips Curve 

WN [TPC] 0.5345 0.5330 0.5331 0.5343 0.5904 0.5909 0.5914 0.5904 

Note: The predictability results reported are for in-sample and 6-period, 12-period and 24-period ahead out-of-sample forecast horizons for 50%and 75% of the sample. For 

comparison, the benchmark model, WN-based predictive model, is compared with the other listed estimators and models using the Campbell Thompson test. The C-T test is a 

sign-based test. Positive values indicate superior performance in favour of WN. 



 

 
Table 11: Diebold and Mariano Test Result (Headline Inflation) 

 50% 75% 

 Out-of-Sample Out-of-Sample 

 In-Sample h = 6 h = 12 h = 24 In-Sample h = 6 h = 12 h = 24 
Augmented Phillips Curve (APC) 

ARIMA -15.010*** -14.905*** -14.763*** -14.403*** -14.464*** -14.421*** -14.377*** -14.282*** 
ARFIMA -16.028*** -16.264*** -16.441*** -16.562*** -21.479*** -21.388*** -21.334*** -21.234*** 
LW -2.082** -2.334** -2.630*** -3.440***  0.523  0.445  0.443  0.517 
OLS -11.312*** -11.440*** -11.557*** -11.643*** -11.684*** -11.682*** -11.703*** -11.740*** 

Traditional Phillips Curve (TPC) 
ARIMA 1.168 1.311 1.637  2.905***  8.872***  8.870***  8.861*** 8.835 
ARFIMA -5.407*** -5.711*** -5.845*** -5.136*** -11.874*** -11.875*** -11.898*** -11.950*** 
LW  0.885  0.665  0.358 -0.589 -3.896*** -3.908*** -3.914*** -3.925*** 
OLS -10.554*** -10.502*** -10.460*** -10.431*** -22.937*** -23.318*** -23.660*** -24.436*** 

Note: The benchmark model, WN-based predictive model of headline inflation, is compared with each of the other listed estimators and models using the 
Diebold-Mariano test. Statistical significance indicates unequal forecast accuracy between two competing models/estimators; otherwise, they are equal. 
while ***, ** and * denote 1%, 5% and 10% levels of significance respectively. 

 

Table 12: Diebold and Mariano Test Result (Core Inflation) 

 50% 75% 

 Out-of-Sample Out-of-Sample 

 In-Sample h = 6 h = 12 h = 24 In-Sample h = 6 h = 12 h = 24 
Augmented Phillips Curve (APC) 

ARIMA -17.618*** -17.444*** -17.326*** -17.417*** -27.954*** -27.722*** -27.543*** -27.244*** 
ARFIMA -17.514*** -17.595*** -17.593*** -17.391*** -27.129*** -26.910*** -26.683*** -26.249*** 
LW -1.413 -1.519 -1.650* -2.052**  1.241  1.194  1.133  1.092 
OLS -12.740*** -12.917*** -13.068*** -13.214*** -13.138*** -13.171*** -13.263*** -13.473*** 

Traditional Phillips Curve (TPC) 

ARIMA -9.236*** -9.101*** -8.890*** -8.145*** -6.619*** -6.637*** -6.667*** -6.748*** 
ARFIMA -12.908*** -13.063*** -13.085*** -12.557*** -12.503*** -12.496*** -12.481*** -12.450*** 
LW  0.993  0.904  0.756  0.197 -2.813*** -2.806*** -2.798*** -2.791*** 
OLS -11.237*** -11.206*** -11.150*** -11.038*** -22.991*** -23.412*** -23.829*** -24.692*** 

Note: The benchmark model, WN-based predictive model of core inflation, is compared with each of the other listed estimators and models using the 
Diebold-Mariano test. Statistical significance indicates unequal forecast accuracy between two competing models/estimators; otherwise, they are equal. 
while ***, ** and * denote 1%, 5% and 10% levels of significance respectively. 



 

Table 13: Out-of-Sample Forecast Performance using Root Mean Square Error 

 
 Augmented Phillips Curve 

(APC) 
 Traditional Phillips Curve 

(TPC) 
 Time Series Model 

 OLS LW WN  OLS LW WN  ARIMA ARFIMA 

Headline Inflation 

50% Sample 

h = 6 0.1231 0.0364 0.0358  0.1417 0.0628 0.0634  0.0627 0.0684 

h = 12 0.1197 0.0354 0.0348  0.1378 0.0610 0.0616  0.0609 0.0664 

h = 24 0.1219 0.0361 0.0355  0.1404 0.0622 0.0628  0.0621 0.0677 

75% Sample 

h = 6 0.1265 0.0386 0.0388  0.1854 0.0774 0.0723  0.0571 0.1108 

h = 12 0.1257 0.0383 0.0386  0.1842 0.0769 0.0718  0.0568 0.1101 

h = 24 0.1241 0.0379 0.0381  0.1818 0.0759 0.0709  0.0560 0.1087 

Core Inflation 

50% Sample 

h = 6 0.1264 0.0257 0.0254  0.1382 0.0538 0.0544  0.0597 0.0766 

h = 12 0.1229 0.0249 0.0247  0.1343 0.0522 0.0529  0.0580 0.0744 

h = 24 0.1252 0.0254 0.0251  0.1369 0.0532 0.0539  0.0591 0.0758 

75% Sample 

h = 6 0.1309 0.0266 0.0270  0.1792 0.0696 0.0660  0.0756 0.1042 

h = 12 0.1301 0.0264 0.0268  0.1780 0.0692 0.0656  0.0751 0.1035 

h = 24 0.1284 0.0261 0.0265  0.1758 0.0683 0.0647  0.0742 0.1022 

Note: The reported RMSE are for comparing the single factor (TPC) and multi-factor (APC) predictive models as well as the time series models across the 
various estimators for the out-of-sample forecast evaluation. The forecast performances are conducted for half and three-quarter of the data (50% and 75%) for 
6-, 12- & 24-months ahead out-of-sample predictability of headline and core inflation. Zero RMSE indicates perfect predictability of the different inflation 
measures; hence, the closer the RMSE to zero, the better the predictability. 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
Table 14: Out-of-Sample Forecast Performance using Mean Absolute Error 

 
 Augmented Phillips Curve 

(APC) 
 Traditional Phillips Curve 

(TPC) 
 Time Series Model 

 OLS LW WN  OLS LW WN  ARIMA ARFIMA 

Headline Inflation 

50% Sample 

h = 6 0.0932 0.0290 0.0289  0.1125 0.0480 0.0516  0.0514 0.0570 

h = 12 0.0914 0.0284 0.0284  0.1104 0.0471 0.0506  0.0504 0.0559 

h = 24 0.0881 0.0274 0.0273  0.1063 0.0453 0.0487  0.0486 0.0538 

75% Sample 

h = 6 0.0929 0.0320 0.0312  0.1665 0.0668 0.0594  0.0456 0.0951 

h = 12 0.0917 0.0316 0.0308  0.1644 0.0659 0.0586  0.0450 0.0939 

h = 24 0.0894 0.0308 0.0301  0.1602 0.0642 0.0571  0.0439 0.0915 

Core Inflation 

50% Sample 

h = 6 0.0972 0.0195 0.0194  0.1090 0.0424 0.0453  0.0506 0.0653 

h = 12 0.0954 0.0191 0.0190  0.1069 0.0416 0.0444  0.0496 0.0640 

h = 24 0.0918 0.0184 0.0183  0.1030 0.0401 0.0428  0.0478 0.0616 

75% Sample 

h = 6 0.0986 0.0217 0.0216  0.1613 0.0616 0.0516  0.0673 0.0933 

h = 12 0.0974 0.0214 0.0214  0.1593 0.0608 0.0509  0.0665 0.0920 

h = 24 0.0949 0.0208 0.0208  0.1553 0.0593 0.0496  0.0648 0.0897 

Note: The reported MAE are for comparing the single factor (TPC) and multi-factor (APC) predictive models as well as the time series models across the various 
estimators for the out-of-sample forecast evaluation. The forecast performances are conducted for half and three-quarter of the data (50% and 75%) for 6-, 12- 
& 24-months ahead out-of-sample predictability of headline and core inflation. Zero RMSE indicates perfect predictability of the different inflation measures; 
hence, the closer the MAE to zero, the better the predictability. 
 
 
 
 
 
 
 
 
 
 
 



 

 
Table 15: Forecast results for the WN & GARCH-SK models using the Root Mean Square Error (RMSE) 

 In-Sample Out-of-Sample 

 WN-APC GARCH-SK WN GARCH-SK 
   h = 12 h = 24 h = 12 h = 24 
Headline Inflation       
50% Sample 0.0362 5.2824 0.0348 0.0355 5.3095 5.3357 
75% Sample 0.0391 5.5743 0.0386 0.0381 5.5935 5.6125 
Core Inflation       
50% Sample 0.0256 5.3036 0.0247 0.0251 5.3343 5.3594 
75% Sample 0.0272 5.6072 0.0268 0.0265 5.6262 5.6449 

Note: The Augmented Philips Curve (APC) model is the best predictive model based on the previous analyses and is therefore compared with the GARCH-SK 
model which is described as the GARCH model with Skewness and Kurtosis. The WN is the Westerlund and Narayan (2015) approach that allows for 
conditional heterocsedasticity, endogeneity and persistence effects in the predictive model of inflation. The WN approach is chosen here since it is the best 
estimator among other competing estimators previously discussed, that is, the LW (Lewellen) and the OLS (the Ordinary Least Squares) estimators. The 
GARCH-SK model is GARCH-based and also allows for higher order moments unlike the WN-based predictive model. The forecast performances are 
conducted for half and three-quarter of the data (50% and 75%) for in-sample predictability of headline and core inflation. Zero RMSE indicates perfect 
predictability of the different inflation measures; hence, the closer the RMSE to zero, the better the predictability. 
 
 

 

  



 

SUPPLEMENTARY 
 

RESULTS: QUARTERLY DATA 
 

 Table S1: Predictability Results for US Inflation 

 HEADLINE INFLATION  CORE INFLATION 

 50% 75%  50% 75% 

 OLS LW WN OLS LW WN  OLS LW WN OLS LW WN 

Traditional Phillips Curve 

ty  
2.5517*** 

(0.0476) 

0.0220*** 

(0.0034) 

0.0205*** 

(0.0034) 

1.7849*** 

(0.0301) 

0.0003 

(0.0015) 

0.0003 

(0.0014) 
 2.5353*** 

(0.0800) 

0.0449*** 

(0.0123) 

0.0432*** 

(0.0124) 

1.8180*** 

(0.0503) 

-0.0082 

(0.0052) 

-0.0085* 

(0.0046) 

Augmented Phillips Curve 

ty  
1.7282*** 

(0.1648) 

0.0553*** 

(0.0122) 

0.0517*** 

(0.0123) 

1.0185*** 

(0.0680) 

0.0073 

(0.0051) 

0.0057 

(0.0047) 
 1.8818*** 

(0.1693) 

0.0300** 

(0.0115) 

0.0299** 

(0.0115) 

1.1290*** 

(0.0703) 

-0.0027 

(0.0044) 

-0.0038 

(0.0040) 

tp  
0.2716*** 

(0.0487) 

0.0131*** 

(0.0029) 

0.0136*** 

(0.0029) 

0.4383*** 

(0.0333) 

0.0148*** 

(0.0023) 

0.0138*** 

(0.0024) 
 0.2145*** 

(0.0500) 

0.0122*** 

(0.0025) 

0.0124*** 

(0.0025) 

0.3962*** 

(0.0345) 

0.0139*** 

(0.0018) 

0.0132*** 

(0.0018) 

Note: The in-sample predictability in a single-factor case is obtained by estimating the equation  1 1t t t t tz z z            where ̂  denotes the 

coefficient on the predictor 1tz  . For a multi-factor case, the given equation is extended to capture as many terms of 1tz   and  1t tz z    as the number 

of additional predictors being included in the predictive model. The values reported in parentheses are standard errors while ***, ** and * denote 1%, 5% and 
10% levels of significance respectively. The null hypothesis of no predictability is rejected if there is statistical significance.



 

Table S2: In-Sample Forecast Performance using Root Mean Square Error 

 Augmented Phillips Curve  Traditional Phillips Curve  Time Series Model 

OLS LW WN  OLS LW WN  ARIMA ARFIMA 

Headline Inflation 
50% Sample 0.1237 0.0337 0.0331  0.1420 0.0619 0.0626  0.0603 0.0514 
75% Sample 0.1267 0.0349 0.0353  0.1863 0.0751 0.0704  0.0531 0.0428 
Core Inflation 
50% Sample 0.1270 0.0232 0.0231  0.1385 0.0531 0.0539  0.0526 0.0474 
75% Sample 0.1312 0.0235 0.0241  0.1801 0.0674 0.0641  0.0551 0.0406 

 
 
 
Table S3: In-Sample Forecast Sample using Mean Absolute Error 

 Augmented Phillips Curve  Traditional Phillips Curve  Time Series Model 

OLS LW WN  OLS LW WN  ARIMA ARFIMA 

Headline Inflation 
50% Sample 0.0947 0.0269 0.0269  0.1138 0.0484 0.0519  0.0504 0.0414 
75% Sample 0.0931 0.0289 0.0284  0.1687 0.0656 0.0580  0.0414 0.0359 
Core Inflation 
50% Sample 0.0988 0.0176 0.0179  0.1106 0.0429 0.0458  0.0432 0.0352 
75% Sample 0.0993 0.0188 0.0191  0.1635 0.0603 0.0500  0.0466 0.0262 



 

Table S4: Campbell-Thompson Test Results for Headline Inflation 

 50% 75% 

 Out-of-Sample Out-of-Sample 

 In-Sample h = 6 h = 12 h = 24 In-Sample h = 6 h = 12 h = 24 
Augmented Phillips Curve (APC) 

ARIMA 0.4523 0.4522 0.4522 0.4521 0.3353 0.3353 0.3353 0.3352 
ARFIMA 0.3573 0.3572 0.3572 0.3570 0.1761 0.1761 0.1760 0.1760 
LW 0.0179 0.0179 0.0179 0.0179 -0.0098 -0.0098 -0.0098 -0.0098 
OLS 0.7329 0.7329 0.7329 0.7330 0.7218 0.7218 0.7218 0.7218 

Traditional Phillips Curve (TPC) 
ARIMA -0.0380 -0.0382 -0.0383 -0.0384 -0.3268 -0.3269 -0.3269 -0.3270 
ARFIMA -0.2181 -0.2182 -0.2183 -0.2185 -0.6447 -0.6447 -0.6448 -0.6449 
LW -0.0122 -0.0122 -0.0122 -0.0122 0.0624 0.0624 0.0624 0.0624 
OLS 0.5589 0.5590 0.5590 0.5591 0.6222 0.6222 0.6222 0.6223 

Traditional Phillips Curve versus Augmented Phillips Curve 

WN [TPC] 0.4712 0.4725 0.4726 0.4723 0.4986 0.4992 0.4992 0.4985 

Note: The benchmark model, WN-based predictive model, is compared with the other listed estimators and models using the Campbell Thompson test. Positive values indicate 

superior performance in favour of WN. 

 

Table S5: Campbell-Thompson Test Results for Core Inflation 

 50% 75% 

 Out-of-Sample Out-of-Sample 

 In-Sample h = 6 h = 12 h = 24 In-Sample h = 6 h = 12 h = 24 
Augmented Phillips Curve (APC) 

ARIMA 0.5609 0.5608 0.5608 0.5607 0.563 0.5629 0.5629 0.5629 
ARFIMA 0.5124 0.5124 0.5123 0.5123 0.4063 0.4063 0.4063 0.4062 
LW 0.0052 0.0052 0.0052 0.0052 -0.0261 -0.0261 -0.0261 -0.0261 
OLS 0.8181 0.8181 0.8181 0.8182 0.8163 0.8163 0.8163 0.8163 

Traditional Phillips Curve (TPC) 
ARIMA -0.025 -0.0251 -0.0252 -0.0254 -0.163 -0.1631 -0.1631 -0.1632 
ARFIMA -0.1381 -0.1382 -0.1383 -0.1385 -0.5799 -0.58 -0.58 -0.5802 
LW -0.0164 -0.0164 -0.0164 -0.0164 0.0484 0.0484 0.0484 0.0484 
OLS 0.6104 0.6104 0.6105 0.6105       0.6440 0.6440 0.6440 0.6441 
 Traditional Phillips Curve versus Augmented Phillips Curve 

WN [TPC] 0.5714               0.5711          0.5722     0.5708         0.6240 0.6248 0.6240 0.6240 

 



 

Table S6: Diebold and Mariano Test Result (Headline Inflation) 

 50% 75% 

 Out-of-Sample Out-of-Sample 

 In-Sample h = 6 h = 12 h = 24 In-Sample h = 6 h = 12 h = 24 
Augmented Phillips Curve (APC) 

ARIMA -8.332*** -8.280*** -8.220*** -8.058*** -7.320*** -7.302*** -7.289*** -7.270*** 
ARFIMA -4.559*** -4.550*** -4.538*** -4.494*** -3.432*** -3.436*** -3.470*** -3.620*** 
LW -1.166 -1.303 -1.454 -1.886*  0.491  0.467  0.483  0.564 
OLS -6.638*** -6.704*** -6.760*** -6.790*** -6.882*** -6.891*** -6.899*** -6.918*** 

Traditional Phillips Curve (TPC) 
ARIMA 1.038 1.0842 1.177 1.585  8.691***  8.668***  8.632***  8.542*** 
ARFIMA 2.434** 2.462** 2.515** 2.749***  8.22  8.196***  8.147***  7.987*** 
LW 0.639 0.505 0.322 -0.24 -2.107** -2.112** -2.114** -2.117*** 
OLS -6.057*** -6.026*** -6.006*** -6.011*** -13.292*** -13.515*** -13.709*** -14.151*** 

Note: The benchmark model, WN-based predictive model, is compared with each of the other listed estimators and models using the Diebold-Mariano test. 
Statistical significance indicates unequal forecast accuracy between two competing models/estimators; otherwise, they are equal. while ***, ** and * denote 
1%, 5% and 10% levels of significance respectively. 

 

Table S7: Diebold and Mariano Test Result (Core Inflation) 

 50% 75% 

 Out-of-Sample Out-of-Sample 

 In-Sample h = 6 h = 12 h = 24 In-Sample h = 6 h = 12 h = 24 
Augmented Phillips Curve (APC) 

ARIMA -8.871*** -8.800*** -8.731*** -8.627*** -10.609*** -10.556*** -10.507*** -10.407*** 
ARFIMA -6.949*** -6.917*** -6.895*** -6.915*** -5.046*** -5.043*** -5.041*** -5.027*** 
LW -0.34 -0.395 -0.441 -0.612 1.134 1.125 1.095 1.118 
OLS -7.405*** -7.495*** -7.569*** -7.624*** -7.641*** -7.679*** -7.731*** -7.848*** 

Traditional Phillips Curve (TPC) 
ARIMA 0.934 0.971 1.045 1.418  4.028***  4.027***  4.030***  4.027*** 
ARFIMA 2.835*** 2.860*** 2.905*** 3.139***  8.584***  8.557***  8.534***  8.485*** 
LW 0.726 0.671 0.588 0.267 -1.492 -1.489 -1.485 -1.482 
OLS -6.425*** -6.402*** -6.370*** -6.320*** -13.359*** -13.606*** -13.849*** -14.350*** 

Note: The benchmark model, WN-based predictive model, is compared with each of the other listed estimators and models using the Diebold-Mariano test. 
Statistical significance indicates unequal forecast accuracy between two competing models/estimators; otherwise, they are equal. while ***, ** and * denote 
1%, 5% and 10% levels of significance respectively



 

Table S8: Out-of-Sample Forecast Performance using Root Mean Square Error 

 
 Augmented Phillips Curve  Traditional Phillips Curve  Time Series Model 
 OLS LW WN  OLS LW WN  ARIMA ARFIMA 

Headline Inflation 

50% Sample 

h = 6 0.1225 0.0333 0.0327  0.1406 0.0613 0.0620  0.0597 0.0509 

h = 12 0.1191 0.0324 0.0318  0.1367 0.0595 0.0603  0.0580 0.0495 

h = 24 0.1213 0.0330 0.0324  0.1393 0.0607 0.0614  0.0592 0.0504 

75% Sample 

h = 6 0.1259 0.0347 0.0350  0.1851 0.0746 0.0699  0.0527 0.0425 

h = 12 0.1251 0.0345 0.0348  0.1839 0.0741 0.0695  0.0524 0.0422 

h = 24 0.1235 0.0340 0.0344  0.1816 0.0732 0.0686  0.0517 0.0417 

Core Inflation 

50% Sample 

h = 6 0.1258 0.0230 0.0229  0.1371 0.0526 0.0534  0.0521 0.0469 

h = 12 0.1223 0.0224 0.0222  0.1333 0.0511 0.0519  0.0506 0.0456 

h = 24 0.1246 0.0228 0.0227  0.1358 0.0520 0.0529  0.0516 0.0465 

75% Sample 

h = 6 0.1303 0.0233 0.0239  0.1790 0.0669 0.0637  0.0548 0.0403 

h = 12 0.1295 0.0232 0.0238  0.1778 0.0665 0.0633  0.0544 0.0401 

h = 24 0.1279 0.0229 0.0235  0.1756 0.0657 0.0625  0.0537 0.0396 

 

Table S9: Out-of-Sample Forecast Performance using Mean Absolute Error 

 
 Augmented Phillips Curve  Traditional Phillips Curve  Time Series Model 
 OLS LW WN  OLS LW WN  ARIMA ARFIMA 

Headline Inflation 

50% Sample 

h = 6 0.0929 0.0264 0.0264  0.1116 0.0475 0.0509  0.0494 0.0405 

h = 12 0.0911 0.0259 0.0259  0.1095 0.0466 0.0499  0.0484 0.0398 

h = 24 0.0877 0.0249 0.0249  0.1055 0.0448 0.0481  0.0466 0.0383 

75% Sample 

h = 6 0.0919 0.0285 0.0280  0.1665 0.0647 0.0573  0.0408 0.0355 

h = 12 0.0907 0.0281 0.0276  0.1644 0.0639 0.0565  0.0403 0.0350 

h = 24 0.0885 0.0274 0.0269  0.1603 0.0623 0.0551  0.0393 0.0341 

Core Inflation 

50% Sample 

h = 6 0.0969 0.0173 0.0175  0.1084 0.0421 0.0449  0.0424 0.0345 

h = 12 0.0950 0.0169 0.0172  0.1063 0.0413 0.0440  0.0416 0.0338 

h = 24 0.0915 0.0163 0.0165  0.1024 0.0397 0.0424  0.0400 0.0326 

75% Sample 

h = 6 0.0980 0.0186 0.0189  0.1614 0.0596 0.0494  0.0460 0.0258 

h = 12 0.0968 0.0183 0.0186  0.1593 0.0588 0.0487  0.0454 0.0255 

h = 24 0.0943 0.0179 0.0182  0.1553 0.0573 0.0475  0.0442 0.0248 

 

 

 

 

 

 

 


