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Abstract: The aftermath of end-Permian mass extinction was marked by a ~5 million year 14 

interval of poorly-understood, extreme environments that likely hindered biotic recovery. 15 

Contemporary nitrogen isotope variations are considered, using a new conceptual model, to 16 

support a scenario that shows intensive nitrate-removal processes gradually depleted the 17 

global oceanic nitrate inventory during long-lasting oceanic anoxia. Enhanced nitrogen 18 

fixation shifted the oceanic nitrogenous nutrient (nutrient-N) inventory to an ammonium-19 

dominated state. Ammonium is toxic to animals and higher plants but fertilizes algae and 20 

bacteria. This change in ocean chemistry could account for the intense and unexplained 21 

losses of nektonic taxa and the proliferation of microbial blooms in the Early Triassic. The 22 

transition from a nitrate ocean to an ammonium ocean was accompanied by a decrease in 23 

respiration efficiency of organisms and a shrinking oceanic nutrient-N inventory, ultimately 24 

leading to generally low productivity in the Early Triassic oceans. These unappreciated 25 

nutrient changes during episodes of prolonged ocean anoxia may be the key life-limiting 26 

factor at such times. 27 
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1. Introduction 31 

Following the most devastating extinction of the Phanerozoic, the Early Triassic 32 

(~253-247 Ma) interval is considered to have been an extreme hothouse world (Kidder and 33 

Worsley, 2010; Winguth et al., 2015) with equatorial sea-surface temperatures (SSTs) 34 

consistently higher than 32 °C (Sun et al., 2012). Such temperature extremes reduce the 35 

solubility of all gases in the ocean, decrease photosynthetic efficiency in terrestrial plants 36 

and phytoplankton and increase metabolic energy demands (approximately double the cost 37 

for every 10 °C rise according to the Q10 temperature coefficient), and can lead to intense 38 

oceanic anoxia, low biodiversity, and animals with small body sizes (Wignall and Twitchett, 39 

2002; Twitchett, 2007; Bottjer et al., 2008). The peak of the hothouse occurred during the 40 

Smithian-Spathian (S-S) transition, ~2 million years after the end-Permian mass extinction, 41 

when equatorial SSTs reached ~40 °C (Sun et al., 2012) during a major ~6-8 ‰ negative 42 

carbon isotope excursion (Payne et al., 2004; Sun et al., 2015). Many nektonic taxa that were 43 

well adapted to the harsh post-extinction environments finally succumbed at the S-S 44 

transition, suffering even greater proportional losses than at the end of the Permian (Stanley, 45 

2009). 46 

The warm climate and concomitant increased weathering and continental runoff in 47 

the Early Triassic enhanced nutrient delivery to the oceans (Algeo et al., 2011), theoretically 48 

elevating primary productivity and amplifying oxygen deficiency in the water column (Kump 49 

et al., 2005), ultimately producing euxinia with noxious H2S. Such conditions exist today as 50 

localized “dead zones” like those found in the Gulf of Mexico (Rabalais et al., 2002), and they 51 

are an oft-cited mechanism for the end-Permian marine extinction and the delayed Early 52 

Triassic recovery (Kump et al., 2005; Algeo et al., 2011). All versions of the death-by-anoxia 53 
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(euxinia) scenario assume that phosphorus (P) was the key bio-essential element that 54 

controlled productivity levels (Meyer et al., 2008). Cyanobacterial biomarker spikes and the 55 

development of microbialites during and in the immediate aftermath of the end-Permian 56 

crisis (Pruss et al., 2006; Xie et al., 2010) potentially reflect this high productivity scenario.  57 

In addition to P, the other productivity-limiting nutrient in the ocean is N. Unlike P, 58 

nutrient-N availability is not a function of terrestrial input since the oceanic N cycle is largely 59 

internal and biologically-driven (Sigman et al., 2009) (Fig. 1). Under anoxic conditions 60 

denitrification is enhanced and removes nitrate (including nitrite) as N2 while P is released 61 

from sediments (Van Cappellen and Ingall, 1994). This process, if widespread and 62 

maintained for a prolonged time, generates a nitrate-poor but P-rich ocean (Grasby et al., 63 

2012; Grasby et al., 2016). The Early Triassic is known for global absence of phosphorites 64 

and other P-rich sedimentary rocks, suggesting intensive P-recycling into seawater at this 65 

time. Although P can be additionally and partially scavenged by Fe minerals (Feely et al., 66 

1991), Fe shuttles in the Early Triassic oceans were dominated by pyrite burial, and 67 

quantitatively not comparable to banded iron formation deposition in the Archean and 68 

Paleoproterozoic oceans. Thus, P scavenged by Fe minerals is unlikely to have balanced the 69 

excess P input by weathering. Nitrogen could have become the bio-limiting nutrient in the 70 

euphotic zone since marine phytoplankton requires 14-16 times more N than P (i.e., the 71 

Redfield Ratio). The high SSTs of the Early Triassic (Sun et al., 2012) likely deepened the 72 

thermocline, lowered the pole-to-equator temperature gradient and weakened ocean 73 

circulation (Winguth et al., 2015). Under such circumstances, PO43- and NO3- were probably 74 

trapped beneath density barriers, inhibiting nutrient supply to the euphotic zone (Fig. 2C; 75 

Grasby et al., 2016; Penn et al., 2018).  76 
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To understand the interplay of stratification intensity and the availability of different 77 

nutrients in the Early Triassic oceans, we investigated nitrogen isotope (δ15N) trends and 78 

trace metal concentrations during the Late Permian to Early Triassic in palaeo-equatorial 79 

Tethys (Xiakou and Jiarong sections, South China) and the Boreal Ocean (Vindodden section, 80 

Spitsbergen) (Fig. 2). The results, combined with our new conceptual model (Fig. 1), suggest 81 

the establishment of an “Ammonium Ocean” had severe consequences for the marine 82 

biosphere in the Early Triassic. 83 

 84 

2. Settings 85 

The South China Block was situated at an equatorial position in the eastern Tethys 86 

Ocean in the Early Triassic (Fig. 2A). Palaeogeographically, the study section at Xiakou was 87 

situated on the northern margin of the central Yangtze Platform. The study section at Jiarong 88 

was situated in the centre of the Nanpanjiang Basin, which was a V-shaped, deep water 89 

epicontinental basin that opened south-eastward to the Panthalassa Ocean (Lehrmann et al., 90 

2003).  91 

The Xiakou section (GPS: 31° 6'55.82"N, 110°48'15.87"E) is located in Xingshan 92 

County, ~400 km NW of Wuhan. The continuous sequence, from late Changhsingian to 93 

Spathian, crops out alongside a local road. The late Changhsingian strata are characterized 94 

by dark grey to black, marly carbonate and marls. The lithology is replaced upsection by 95 

thinly bedded grey carbonate and shales of the Daye Formation. 96 

The Jiarong section (GPS: 25°55′17″N, 106°33′50″E) is located in Huishui County, 97 

~85 km south of Guiyang City in the Guizhou Province. The Smithian-Spathian succession is 98 

composed of a middle-late Smithian carbonate unit, a latest Smithian black shale unit and an 99 
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early Spathian reddish carbonate unit, representing a transition from a basinal setting to a 100 

shallower water environment across the S-S boundary interval (Chen et al., 2015; Sun et al., 101 

2015). Sediments in the upper part of the Carbonate Unit and the Black Shale Unit are finely 102 

laminated and lack bioturbation. Fossils are generally rare, except for conodonts. Small 103 

ammonoids and scaphopods occur in the Spathian Griotte Unit (Sun et al., 2015). 104 

During the Permo-Triassic the Svalbard Archipelago was situated on the 105 

epicontinental shelf of the northern passive margin of Pangaea adjacent to the Boreal Ocean 106 

in high temperate latitudes (~ 55 to 60 °N) (Hounslow et al., 2008). The S-S strata of central 107 

Spitsbergen belong to the Vikinghøgda Formation, and are best documented from the 108 

Vindodden section (Mørk et al., 1999; Wignall et al., 2016).  109 

The Vindodden section (GPS: 78°19′39″N, 16°30′19″E) lies in the lower slopes of 110 

Botneheia Mountain, south of Sassenfjorden, a north-eastern arm of Isfjorden. The S-S 111 

sequence consists mainly of a lower unit of dark clay/siltstone unit of Smithian age and an 112 

upper siltstone-sandstone unit of Spathian age. The transition from the Smithian to the 113 

Spathian is marked by a laminated thin dolostone ledge of earliest Spathian age. The 114 

phosphatic black clay/shales atop the Vikinghødga Formation characterise the Middle 115 

Triassic Botneheia Formation (Wignall et al., 2016). Fossils are rare in the study section, 116 

except for a few Posidonia bivalves, Planolites trace fossils and ammonoids. Though very low 117 

in abundance, conodonts occur throughout the section, providing biostratigraphic 118 

constraints. 119 

 120 

3. Conceptual Model 121 
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Our conceptual model for the oceanic nitrogen cycle consists of four end-members. 122 

They are N2, the NH4+/NH3 pair, the NO2-/NO3- pair and organic-bonded nitrogen. Amongst 123 

these, NH4+/NH3 and NO2-/NO3- are the main forms of dissolved inorganic nutrient-N in the 124 

ocean. The four end-members are linked by eight known reactions in the nitrogen cycle (Fig. 125 

1). These reactions are further subdivided into aerobic reactions (e.g., nitrification), 126 

anaerobic reactions (e.g., denitrification) and non-redox sensitive reactions (e.g., nitrogen 127 

fixation). This subdivision leads to three simplified sub-models for oceanic nitrogen cycle in 128 

fully oxic (Fig. 1 model A), fully anoxic (Fig. 1 model B) and fully euxinic conditions (Fig. 1 129 

model C). In modern ocean settings, the oceanic nitrogen cycle is dominated by processes 130 

summarized in the model A, while model B describes the nitrogen cycle in the oxygen 131 

minimum zone (OMZ). In warm, stratified and oxygen-depleted Early Triassic oceans, the 132 

models B and C describes the main oceanic nitrogen cycle with the model A only applicable 133 

to the thin, oxygenated surface layer. Though nitrification is an aerobic reaction, it can occur 134 

at very low oxygen concentrations at a lower rate (Bristow et al., 2016). In such cases, the 135 

dissolved nutrient-N inventory is in a subtle balance between nitrate net production and net 136 

consumption, depending on the intensity of ocean anoxia. For example, at the Black Sea 137 

thermocline, anaerobic ammonium oxidation (anammox) bacteria outcompete aerobic 138 

nitrifying bacteria for nitrite (Lam et al., 2007), leading to nitrate and nitrite net 139 

consumption.  140 

Nitrate production by nitrification is mainly carried out by ammonia-oxidizing 141 

bacteria (AOB) and ammonia-oxidizing archaea (AOA). This process is generally considered 142 

to be light-sensitive for two reasons: 1) some AOB show photoinhibition (e.g., Guerrero and 143 

Jones, 1996), and 2) AOA, though more abundant than AOB in the euphotic zone and not 144 
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light-inhibited per se, are often outcompeted by phytoplankton for NH4+. The rate of 145 

nitrification of AOA is lower in the euphotic zone during the day and in the summer due to 146 

limited NH4+ supply while the highest rate occurs at night and in the winter when 147 

competition with phytoplankton is lowest (Smith et al., 2014). Because the euphotic zone is 148 

only a thin layer of water column, the overall rates and efficiency of nitrification in the ocean 149 

depend critically on general redox conditions below the euphotic zone (e.g., Quan and 150 

Falkowski, 2009).  151 

Denitrification has a high energy yield (Table 1) and the resupply of nitrate by 152 

nitrification is greatly inhibited in anoxic conditions. Thus, quantitatively nitrate must be in 153 

net consumption in intensive anoxic and euxinic oceans because nitrate produced by 154 

nitrification in the thin, oxygenated surface water column cannot compensate for the nitrate 155 

consumed by denitrification and anammox in anoxic and much thicker deeper water 156 

columns (Fig. 2C). Note that anaerobic ammonium oxidation by manganese oxides occurs in 157 

sediments rather than the water column (e.g., Hulth et al., 1999) and is excluded here. 158 

 We use the notion “ammonium ocean” to describe an oceanic state in which NO2- and 159 

NO3- are largely depleted while NH4+ is the main form of dissolved nutrient-N. Note that 160 

dominance is not necessarily equal to high concentrations. Thus the term “ammonium 161 

ocean” does not necessarily imply globally high NH4+ concentrations in the ocean (see 5.3 for 162 

further discussion on the heterogeneity of Early Triassic oceans). 163 

 164 

4. Methods (isotope and C/N ratio analyses) 165 

For measurements of δ13Corg, δ15N, and C/Natomic ratios, weathered surfaces were cut 166 

off the samples. The trimmed samples were washed with distilled water, dried with 167 
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compressed air and then milled to fine powder. On average ~3 to ~5 g powders were 168 

immediately treated with ~150 ml 10 % HCl on a hotplate at ~60 °C to dissolve any 169 

carbonate. The samples were stirred while slowly adding acid. The decarbonatization 170 

process was generally completed after 48 hours with the complete removal of dolomite and 171 

siderite phases. If not, acid was refreshed and the samples were treated further for 24-48 172 

hours. Insoluble residues were washed repeatedly with deionized water until pH ≈ 6, dried 173 

in an oven at 60 °C, homogenized using a mortar and stored in small glass containers. 174 

The δ13Corg and bulk rock δ15N analyses were performed with a Flash EA 2000 175 

elemental analyser connected online to ThermoFinnigan Delta V Plus mass spectrometer. All 176 

isotope values are reported in the conventional δ-notation in per mille (‰) relative to 177 

atmospheric air for δ15N and to V-PDB for δ13Corg. Reproducibility of measurements was 178 

monitored by replicate analyses of laboratory standards (synthetic urea) calibrated to 179 

international standards USGS 40 (δ13C = -26.39 ‰; δ15N = -4.52 ‰) and USGS 41 (δ13C = 180 

37.63 ‰; δ15N = 47.57 ‰). The reproducibility was ±0.08 ‰ (2σ) for δ13Corg, ±0.07 % (2σ) 181 

for total organic carbon (TOC), ±0.14 ‰ (2σ) for δ15N and ±0.20 % (2σ) for total nitrogen 182 

(TN). The repeatability of samples for δ15N ranges from 0.05 to 0.18 ‰ (2σ), with a single 183 

case of 0.42 ‰. Note that our δ15N data, as in many other studies in this interval, represent 184 

a δ15Nacidified (rather than δ15Nbulk) record in a strict sense. The C/Natomic ratio was calculated 185 

from (TOC/atomic weight of C)/(TN/atomic weight of N). The TN and TOC values are 186 

positively correlated (r2 = 0.42, 0.68 and 0.93 for Jiarong, Vindodden and Xiakou sections, 187 

respectively), suggesting organic matter was the primary source of N (Fig. 3). Other sources 188 

include clay-bound N resulting from diagenetic NH4+ release. The occurrence of clay-bound 189 

N may homogenise, but not necessarily perturb, δ15N.   190 
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For δ13Ccarb analyses, carbonate powders, preferably from micrites, were drilled on 191 

fresh-cut rock surfaces. The powders were reacted with 100 % phosphoric acid at 70 °C in a 192 

Gasbench II connected online with a ThermoFinnigan Delta V Plus mass spectrometer. All 193 

values are reported in per mille relative to V-PDB by assigning δ13C values of +1.95 ‰ to 194 

NBS19 and -47.3 ‰ to IAEA-CO9 and δ18O values of -2.20 ‰ to NBS19 and -23.2 ‰ to 195 

NBS18. Reproducibility was monitored by replicate analysis of laboratory standards 196 

calibrated to NBS 19 and NBS18, and was ±0.04 ‰ for δ13Ccarb and ±0.04 ‰ for δ18Ocarb (2σ; 197 

n= 20). 198 

 199 

5. Perturbations in global carbon and nitrogen cycles in the Early Triassic 200 

The δ13Ccarb values of the Xiakou section show an increase from 1.22 to 2.16 ‰ in the 201 

late Changhsingian. This positive trend is followed by a negative excursion of -2.8 ‰ across 202 

the Permian-Triassic (P-T) boundary (at 0 m height). A second, ~-2.0 ‰ negative excursion 203 

occurs in the mid-late Griesbachian. The largest negative excursion of ~-3.0 ‰ amplitude 204 

occurs in the Smithian. δ13Ccarb values decrease from 2.04 to -1.00 ‰ and remain low in the 205 

late Smithian (Fig. 4). 206 

The δ13Corg values of Jiarong and Vindodden sections show a similar pattern in the S-207 

S transition, but differ in absolute values by ~1 ‰. δ13Corg from Jiarong shows a positive 208 

excursion of ~5.5 ‰ from -31.5 ‰ in the late Smithian to -26.0 ‰ in the earliest Spathian. 209 

A slightly smaller positive excursion of ~4.5 ‰ is registered at Vindodden, with values 210 

increasing from -32.5 to -28.0 ‰ across the S-S boundary (at 56 m height; Fig. 4).  211 

The δ13Ccarb and δ13Corg variations from our study sections are consistent with 212 

published δ13C records (Payne et al., 2004; Grasby et al., 2012), and are therefore considered 213 
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to record the global signature. The difference in absolute δ13Corg values between Jiarong and 214 

Vindodden is attributed to different primary producers between the equatorial and Boreal 215 

oceans, which were likely to show different carbon isotopic fractionation during 216 

photosynthesis. The δ13C perturbations, redox and sedimentary changes support a scenario 217 

that intense oceanic anoxia in the late Smithian contributed to enhanced burials of organic 218 

carbon (i.e., black shale deposition and positive δ13C excursion) (Sun et al., 2015). 219 

The δ15N values from Xiakou record a rapid increase in the late Changhsingian and 220 

reached a ~3 ‰ peak immediately above the P-T boundary (Fig. 4). This was followed by a 221 

protracted, gradual decrease from the early Griesbachian to values of ~0.5 ‰ in the late 222 

Smithian. At Jiarong, δ15N values match those at Xiakou and then decrease to ~-1 ‰ across 223 

the S-S boundary (at 24.3 m height); a level that sees the onset of black shale deposition. A 224 

comparable trend across the S-S transition is seen at Vindodden although the δ15N curve is 225 

offset in absolute value by ~1 ‰ compared with the other sections (Fig. 4). The C/Natomic 226 

ratio (a measure of organic matter stoichiometry) generally co-varies with, but is opposite 227 

to, the observed trends in δ15N. Thus, C/Natomic at Xiakou decreases sharply across the P-T 228 

boundary from >20 to ~2, followed by a mild recovery to ~10 in the Dienerian and 229 

oscillations around ~6 in the Smithian. C/Natomic at Jiarong increases steadily from ~10 to 230 

~30 towards the S-S boundary, followed by a decrease above its maxima of ~40 in the 231 

earliest Spathian. At Vindodden, C/Natomic increases from ~11 to ~20 towards the S-S 232 

boundary (at 56 m height) before decreasing to ~15 in the early Spathian. 233 

The δ15N data show minor regional variations compared to published records, with 234 

differences occurring mainly in the Late Permian (Fig. 5). Water column denitrification 235 

occurred near the P-T boundary at Xiakou whereas in Arctic Canada and western Alberta 236 

©2019, Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/



12 
 

denitrification prevailed in the latest Permian. The δ15N shifts seen in the Early Triassic at 237 

Xiakou and Jiarong are comparable to reported patterns from the Sverdrup Basin (Knies et 238 

al., 2013; Grasby et al., 2016) and the western margin of Pangaea (Schoepfer et al., 2012). 239 

Since South China, the Sverdrup Basin and western Alberta were situated in very different 240 

climatic and oceanographic settings, and yet were connected to the Panthalassa ocean, we 241 

interpret their comparable δ15N variations in the Early Triassic to reflect the global ocean 242 

signatures (Fig. 5). The divergence in δ15N between Vindodden and other regions probably 243 

reflects a minor nitrate input from a polar current to Spitsbergen as well as its slightly more 244 

restricted environment (Fig. 2A).  245 

 246 

6. Discussion 247 

6.1 Influence of diagenesis on δ15N and C/Natomic ratio 248 

 Diagenesis can potentially alter both sedimentary δ15N and the C/Natomic ratio. For 249 

example, degradation of amino acid during early diagenesis releases NH4+ to pore water. If 250 

the NH4+ is absorbed by clay minerals, then sedimentary δ15N would show minor changes 251 

compared to the original signature. Positive intercepts on the TN axis in our TN-TOC cross 252 

plot (Fig. 3) indicate the presence of excess clay-bound nitrogen in our samples. We consider 253 

our δ15N to be a faithful record because data measured from adjacent carbonate and marl 254 

(shale) samples, although with large variations in TOC and clay content, show consistent 255 

values in δ15N (Table 2) and our sections are from different sedimentary basins and 256 

underwent different diagenetic and burial history, and yet the δ15N records are largely 257 

comparable with each other and published records. Only, the onset and duration of P-T water 258 

column denitrification show regional variations (Fig. 5). On the other hand, diagenesis can 259 
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significantly alter the C/Natomic ratio, especially in TOC-poor, clay-rich sediments, and cause 260 

divergence from the Redfield Ratio to higher values. Diagenetic sulphate reduction, which 261 

removes C but not N, can lower C/Natomic ratio. 262 

6.2 Intensified denitrification, low sulphate concentration and a nitrate starved ocean 263 

The oceanic N cycle is largely microbially mediated (Altabet, 2006). The onset of 264 

intense and widespread anoxia in the latest Permian saw a profound change in dominance 265 

amongst oceanic microbial communities from aerobic to anaerobic respiration. Since the 266 

energy yield from denitrification (ΔG0 = -445 kJ/mol C)1 is almost as efficient as that of 267 

aerobic respiration (ΔG0 = -478 kJ/mol C), nitrate is the first energy source to be consumed 268 

in anoxic environments (Table 1). Thus, the shift to microbial anaerobic respiration is 269 

manifest as the positive δ15N trend seen in the late Changhsingian at Xiakou and elsewhere 270 

(Fig. 5). This indicates widespread water column denitrification, and coincides with the 271 

onset of intensive anoxia (e.g., Grasby et al., 2012; Elrick et al., 2017). 272 

Despite some regional variations, δ15N records from different settings all indicate 273 

strong denitrification occurring across the P-T boundary, followed by a dominance of 274 

nitrogen fixation in the Early Triassic (Fig. 5). The δ15N values in the Early Triassic of our 275 

study sections are depleted in 15N compared to the average δ15N of modern oceans (~5 276 

‰)(Altabet, 2007). Nitrate was likely depleted and nitrogen fixation dominated in both 277 

northern Boreal and equatorial Tethyan waters at this time. Reducing conditions amplify 278 

anaerobic reactions such as denitrification and anammox; reactions that selectively consume 279 

                                                           
1 ΔG0 represents the standard Gibbs free energy of formation, a thermodynamic measure of energy 
absorption or yield of a reaction at the standard conditions (25 °C and 100 kPa). Positive values 
suggest a reaction absorbs energy while negative values suggest a reaction yield energy. The more 
negative the values, the more energy is yielded though the reaction.  
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nitrate depleted in 15N (ε = 5–30 ‰) and produce non-nutritious N2. As nitrate consumption 280 

continues, 15N becomes enriched in seawater, resulting in heavy δ15N values in sedimentary 281 

organic matter (e.g. δ15N > 5 ‰). In modern oceans, intensive denitrification occurs in the 282 

oxygen minimum zone where organic matter and nitrate are both replete (Fig. 2C). In the 283 

Early Triassic anoxic oceans, denitrification and anammox probably occurred over a broad 284 

range of depths and theoretically would have generated high sedimentary δ15N values (e.g. 285 

δ15N = ~5-15 ‰). Instead, δ15N values from both equatorial and boreal settings are in the -286 

1 to 2 ‰ range. This can be explained through a nitrate-starved scenario in which the 287 

isotopic fractionation effect of denitrification and anammox decreases due to very low 288 

nitrate availability (i.e., exceptionally high denitrification rate) and intense seawater 289 

stratification while nitrogen fixation is the only source of nutrient-N. Alternatively, low δ15N 290 

could suggest nitrate levels become so low that the heavy δ15N of the residual nitrate can no 291 

longer dominate the isotopic composition of biomass. As the thermocline deepened during 292 

the Early Triassic hothouse, nitrate supply from deep-water environments to the euphotic 293 

zone had to overcome the density barrier, and this could only be achieved by diffusion (Fig. 294 

2C). Diffusion would eventually have drained the nitrate inventory of deep-water reservoirs. 295 

In open water settings, nitrate consumption exceeding nitrate production was probably a 296 

protracted process, controlled by the evolution and intensity of ocean anoxia. This is 297 

consistent with the observed prolonged and gradual δ15N decrease from the earliest Triassic 298 

to the S-S boundary (Grasby et al., 2016). Localized depletion of nitrate on some isolated 299 

platforms, marked by δ15N falling to ~0 ‰, occurred much earlier at the P-T boundary (Fig. 300 

5); this was probably due to a lack of nitrate resupply from the deep reservoirs in such 301 

settings. 302 
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The near-antithetic relationship between δ15N and the C/Natomic ratio at the S-S 303 

transition suggests that a common cause simultaneously drove δ15N to lower values and the 304 

C/Natomic ratio to higher values (and vice versa). This is unlikely to be due to the input of 305 

terrestrial organic matter (which typically has low δ15N and high C/Natomic ratios) because, 306 

with the near-extinction of land plants at the end of the Permian and the subsequent low 307 

terrestrial biomass on Pangea (Looy et al., 1999), terrestrial N input is unlikely to have 308 

affected the isotopic composition of the oceanic N pool. Instead, the factor that drove the 309 

δ15N and C/Natomic ratio in opposite directions was probably the bioavailability of nitrate. In 310 

the case of low nitrate availability and long-term anoxia, nitrate-removal processes utilize 311 

nitrate and the corresponding isotopic fractionation effects decrease while nitrogen fixation 312 

is enhanced thereby compensating for the nutrient-N loss. Both processes lower δ15N values 313 

of organic N. At the same time, anoxia enhances bacterial recycling of N-rich amino acids 314 

from organic matter (Van Mooy et al., 2002), leading to a more intense loss of sedimentary 315 

N during diagenesis and higher C/Natomic ratios. 316 

  Low sulphate concentrations and episodic euphotic zone euxinia characterize the 317 

Early Triassic oceans (Grice et al., 2005; Song et al., 2014). These are largely, or at least 318 

partially, due to enhanced bacterial sulphate reduction, perhaps due to high marine 319 

productivity (Schobben et al., 2015). However, with increasing water column O2 deficiency, 320 

heterotrophic bacteria favour energy extraction pathways with high yields. Sulphate 321 

reduction ranks low in this respect amongst anaerobic respiration (Table 1) and is only 322 

favoured once nitrate is depleted (Altabet, 2006). We thus argue that enhanced sulphate 323 

reduction in the Early Triassic oceans was probably a response to a functional shift in 324 

microbial communities from nitrate consuming (ΔG0 = -445 kJ/mol C) to sulphate consuming 325 
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(ΔG0 = -61 kJ/mol C) and thus did not necessarily require eutrophication (Schobben et al., 326 

2016). 327 

6.3 Enhanced nitrogen fixation, Mo limitation and a shift in nutrient-N inventory 328 

The protracted anoxic conditions in the Early Triassic promoted nitrogen fixation. 329 

The δ15N values of ~0.5 to -1 ‰ at Jiarong and Xiakou suggest N2 fixation dominated 330 

equatorial oceans. A similar scenario is suggested for Cretaceous oceanic anoxic events when 331 

comparably low δ15N values are associated with black shale deposition (Junium and Arthur, 332 

2007), highlighting a key role of diazotrophs (nitrogen fixers) under anoxic conditions. 333 

 Biological nitrogen fixation is an enzyme-catalyzed N2 reduction, which has low 334 

energy yields (ΔG0 = -157 kJ/mol N) and has to overcome a large kinetic barrier to break 335 

three N-N bonds in the N2 molecule (Altabet, 2006). This can only be achieved by 336 

diazotrophs that are exclusively prokaryotes. Most diazotrophs are anaerobic bacteria or 337 

archaea except for diazotrophic cyanobacteria which have special cell walls that inhibit 338 

oxygen diffusion (Altabet, 2006). This is because the nitrogenase enzyme has a metal center 339 

consisting of either Mo-Fe, V-Fe or Fe-only complexes and its function is irreversibly 340 

inhibited by free oxygen (Berman-Frank et al., 2003). Thus, diazotrophs generally prefer 341 

anoxic environments, require P as a nutrient, and metal ions for synthesizing the nitrogenase 342 

enzyme. Phosphorus availability may not have been a limiting factor in the Early Triassic 343 

ocean because of 1) increased terrestrial P input via enhanced weathering; 2) recycling of P 344 

from anoxic sediments; and 3) reduced metazoan uptake following extinctions of shelly 345 

fossils that incorporated P in CaCO3 shells and biogenic apatite. This inference is supported 346 

by data from Jiarong, where P and Al contents are positively correlated (r = 0.77, p < 0.05) 347 
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but not as significantly as Fe vs. Al (r = 0.96, p < 0.05) and V vs. Al (r = 0.95, p < 0.05) (Fig. 6), 348 

suggesting P sources were not entirely terrestrial.  349 

Metabolizable trace metals Mo(VI), V(V) and Fe(II) are redox-sensitive and they can 350 

be scavenged from the water column into sediments under intensely anoxic and euxinic 351 

conditions. A scarcity of such trace nutrients could severely suppress nitrogen fixation, 352 

leading to a pause in nitrogen cycling after nitrate depletion and a consequent collapse in 353 

oceanic productivity (Fig. 1, model C). However, such a scenario seemingly did not occur, at 354 

least not globally or for the long term, in the Early Triassic. This is probably because Fe(II) 355 

availability was sufficiently high, being reduced from Fe oxides from riverine input and 356 

aeolian dust or directly derived from hydrothermal activity at mid-ocean ridges. High Fe(II) 357 

availability is consistent with the development of ferruginous conditions (Clarkson et al., 358 

2016) and the global abundance of pyrite framboids in Early Triassic sediments (Wignall and 359 

Twitchett, 2002).  360 

In contrast, the Mo reservoir was probably much smaller than the Fe reservoir with 361 

minor input into large sinks, and could be depleted more easily. However, Mo availability 362 

cannot be easily evaluated because Mo tends to sink in sediments under anoxic-euxinic 363 

conditions. Thus Mo concentration measured from sedimentary rocks mainly reflects water 364 

column redox changes and does not necessarily mirror Mo availability in seawater. A proper 365 

estimation would require multiple speculations on Mo input and sink. Mo limitation in this 366 

case is inferred from indirect evidence from δ15N. Mo-Fe nitrogenase is much more efficient 367 

than V-Fe and Fe-only nitrogenase (Berman-Frank et al., 2003). A shift in nitrogenase type 368 

leads to a change in the isotopic fractionation during nitrogen fixation (14N is preferably 369 

used) which could have resulted in more negative values in sedimentary δ15N (Zhang et al., 370 
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2014). The sporadic development of more negative δ15N values (< -2 ‰) in the Jiarong 371 

section might have been a manifestation of short pulses of Mo limitation. Alternatively, (or 372 

collectively), these low δ15N values may also be explained by partial NH4+ uptake. Low δ15N 373 

values are comparably rare throughout Earth's history, including the Precambrian, where 374 

Mo was likely much less abundant than at any time in the Phanerozoic (Stüeken et al., 2016). 375 

However, δ15N values < -2 ‰ are seen during intensive anoxia, such as during the oceanic 376 

anoxic events in the early Jurassic and middle Cretaceous (Jenkyns et al., 2001; Junium and 377 

Arthur, 2007), suggesting Mo limitation and/or NH4+-rich conditions may have occurred 378 

more frequently than previously thought.  379 

Nitrate (including nitrite) and ammonium (including ammonia) are two end 380 

members of oceanic nutrient-N (Fig. 1). In oxic waters, nitrification actively converts NH4+ 381 

to NO3-. Many primary producers rely on the nitrate supply from deep waters, brought up by 382 

mixing and upwelling (Fig. 2C). In contrast, in anoxic oceans, anammox, denitrification and 383 

dissimilatory nitrate reduction to ammonium (DNRA) compete for nitrate for high anaerobic 384 

energy yields (Fig.1; Table 1). Anammox consumes both NH4+ and NO2- and produces non-385 

nutritious N2. In the case of intense anoxia (e.g., fast expansion of OMZ) and especially 386 

euxinia, DNRA produces an electron sink and thus outcompetes denitrification for nitrate 387 

(An and Gardner, 2002; Giblin et al., 2013) (Table 1). Such conditions, typically accompanied 388 

by high temperatures, high organic carbon burial and sulphate reduction rates, are seen in 389 

polluted coastal environments today but were likely widespread in the Early Triassic oceans, 390 

especially during the P-T transition and in the late Smithian (Grasby et al., 2012; Sun et al., 391 

2012; Schobben et al., 2015; Sun et al., 2015). Unlike denitrification and anammox, DNRA 392 

recycles nitrate to bioavailable NH4+. A combination of nitrate net consumption and 393 
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enhanced nitrogen fixation and DNRA likely led to a shift from a NO3- dominated nutrient-N 394 

inventory to one dominated by NH4+ (Fig. 1, models B and C; Fig. 8). Though NH4+ dominance 395 

does not necessarily result in NH4+ accumulation to high concentrations. Once established, 396 

the only pathway to reverse this shift is through nitrification, which is a light-sensitive 397 

aerobic reaction (Zehr and Ward, 2002), thus requiring oxygenation of deeper (dark) waters. 398 

6.4 Comparison with the modern Black Sea and the heterogeneity of Early Triassic oceans 399 

The Black Sea is the world’s largest anoxic basin and a contemporary analogue for an 400 

ammonium ocean that can be used to test our conceptual model. The NH4+ concentration in 401 

the Black Sea is ~0 µM in oxygenated surface waters but increases significantly with depth 402 

and oxygen deficiency to ~30 µM at 250 m depth while nitrate concentration remains ~0 µM 403 

below the suboxic-anoxic interface (Fig. 7; Kuypers et al., 2003). Our model fits these 404 

observations— nitrate is depleted while ammonium accumulates in anoxic environments 405 

(Fig. 1 model B).  406 

Accumulation of NH4+ in the Black Sea is at least partially due to strong stratification 407 

of the water column (Fig. 7). The freshwater discharge from the Danube and other rivers 408 

creates an oxic cap that prevents water column mixing. Though not a perfect analogue, the 409 

P-T oceans are also generally considered to be highly stratified due to extreme hothouse 410 

climate and stagnation of ocean circulations (e.g., Hotinski et al., 2001; Winguth et al., 2015).  411 

In contrast to Black Sea surface waters, where nitrate still exists, low latitude shallow-412 

water Early Triassic δ15N values fall to ~0 ‰ and lower immediately above the P-T 413 

boundary (Luo et al., 2011) and at the S-S transition, which suggests the nutrient-N supply 414 

to surface waters was composed entirely of newly fixed-N. This was probably due to intense 415 

photic zone euxina (Grice et al., 2005; Cao et al., 2009) which inhibited nitrification in the 416 
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surface water. In contrast, δ15N values from northern higher latitudes (e.g., Vindodden) have 417 

a mixed signature of N-fixation and nitrate. The presence of nitrate suggests nitrification was 418 

still partially active in these settings at night, in the winter and/or in the oxygenated lower 419 

euphotic zone. 420 

6.5 Ammonium fertilization  421 

Marine phytoplankton and newly generated organic matter have a near-constant 422 

stoichiometric composition ratio — C:N:P = 106:16:1, known as the Redfield ratio. The 423 

Redfield stoichiometry suggests a higher demand for nutrient-N than P amongst primary 424 

producers. At higher temperatures, eukaryotic phytoplankton have a reduced demand for P 425 

required for cellular protein synthesis and shifts the oceanic nutrient structure to one that 426 

is N-limited (Toseland et al., 2013). Diazotrophic cyanobacteria are uniquely suited to such 427 

environments due to their self-sufficiency in nutrient-N. The recycling of cyanobacterial 428 

biomass occurs rapidly during heterotrophy in the euphotic zone, releasing NH4+ that can be 429 

assimilated by other phytoplankton (Fulton et al., 2012). Such processes could continue to 430 

the point that P is consumed in the euphotic zone and then becomes the limiting nutrient. 431 

Given this constraint and the lack of major shifts in the Redfield N/P ratio in the Early Triassic 432 

(Grasby et al., 2016), the size of the ancient deep ocean NH4+ reservoir could not have been 433 

much greater than the modern ocean nitrate reservoir. This suggests an Early Triassic deep 434 

ocean NH4+ concentration was unlikely to have been greater than ~50 µM. 435 

Phytoplankton (both eukaryotes and cyanobacteria) generally prefer NH4+ to NO3- as 436 

a nutrient source, because of the redundant energy costs expended when reducing NO3- to 437 

NH4+ (Zehr and Ward, 2002). The exception is diatoms which generally prefer NO3- as a 438 

nutrient-N source but they only appeared in the Jurassic. One contemporary example for 439 
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NH4+ fertilization is the long-lasting Texas Brown Tide at the Laguna Madre/Baffin Bay 440 

estuary, caused by the alga Aureomonas lagunensis. This species is able to use NH4+ or NO2– 441 

but not NO3- and its enduring bloom was fertilized by NH4+ produced by DNRA in an 442 

environment with high sulphide concentrations (An and Gardner, 2002). Similarly, regional 443 

primary productivity increase and stromatolite development (e.g., Pruss et al., 2006; Chen et 444 

al., 2014) in the Early Triassic were likely stimulated by NH4+ fertilization. The extensive 445 

microbialite build-ups in the aftermath of end-Permian mass extinction (Fig. 2A, B) were 446 

probably constructed by diazotrophs (NH4+ self-sufficient by N-fixation), or otherwise 447 

fertilized by ambient NH4+. The onset of microbialite development in the earliest 448 

Griesbachian clearly coincided with enhanced nitrogen fixation (Cao et al., 2009; Xie et al., 449 

2010; Luo et al., 2011) — a feature also seen during the S-S transition. The bloom of 450 

prasinophyte algae immediately after the end-Permian mass extinction while N-fixation by 451 

cyanobacteria was occurring, is suggested to have provided prasinophytes with NH4+ in 452 

nutrient-limited environments (Jia et al., 2012).  The demise of microbialites towards the 453 

Middle Triassic (Fig. 2B) was likely due to a general amelioration of environmental stresses 454 

and the re-establishment of potent nitrification, reducing NH4+ during deep-water re-455 

oxygenation (Fig. 1, model A). 456 

6.6 Ammonium intoxication 457 

Although it fertilizes phytoplankton, NH4+ is a major metabolic waste and can be 458 

lethal to both animals and higher plants at high concentrations (Britto and Kronzucker, 459 

2002). NH4+ accumulation, for instance, is a widespread problem in modern fish farming. 460 

Terrestrial animals and birds convert NH4+ to the much less toxic urea but aquatic animals 461 

generally rely on direct excretion of NH4+ to ambient water (Ip et al., 2001). The lethal 462 
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concentration of ammonium for a wide range of marine vertebrates is 12.5 µM (Knoph and 463 

Thorud, 1996; U.S. Environmental Protection Agency, 1998), much lower than the ~50 µM 464 

maximum estimated for the Early Triassic oceans. In general, invertebrates are more 465 

tolerant to ammonia (i.e., total ammonia = NH4+ and NH3) than vertebrates while freshwater 466 

animals are more tolerant than marine animals. The toxicity of total ammonia manifests as 467 

damage to the central nervous system in vertebrates and is amplified at higher pH (e.g., in 468 

seawater). This is because NH4+ is more toxic but less diffusive while most animal 469 

membranes are more permeable to NH3 (Ip et al., 2001). Remineralization of organic N in 470 

anoxic environments exclusively leads to NH4+ and NH3 accumulation (Fig. 1, models B and 471 

C). Since protein decay is independent of redox conditions, and nitrification is inhibited in 472 

anoxic waters, degradation of organic remains and diazotrophs could have, at least in short 473 

term, produced excessive NH4+ that may, at least in part, explain the hitherto enigmatic Early 474 

Triassic extinction/changeover events amongst nekton such as conodonts and fish. Such 475 

groups would be somewhat immune to the typical end-Permian scenario of high 476 

temperatures and low oxygen levels due to their ability to migrate to higher latitudes and 477 

their upper water column habitats. Neither factor would help nekton escape NH4+-NH3 478 

poisoning. Even at modest increases in concentrations, the swimming ability of animals such 479 

as fish is impaired (Ip et al., 2001).  480 

 On the other hand, cephalopods are exclusively carnivores with fast growth rates for 481 

most of their life cycle. They have a high demand for proteins and the dominance of amino 482 

acid metabolism leads to a high NH4+ accumulation in their systems (Lee, 1995). Some 483 

groups of cephalopods have much high tolerance of NH4+ because they retain this metabolic 484 

waste in their tissues to achieve neutral buoyancy while other groups did not develop this 485 
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physiological mechanism, but instead transform toxic NH4+ to N2 gas (e.g., Nautilus) or 486 

develop jelly-like chloride compounds to maintain buoyancy (Voight et al. 1995). Thus, the 487 

fast turnover of ammonoids during the end-Permian mass extinction may reflect the success 488 

of those groups with a tolerance for high NH4+ concentrations. NH4+ levels in ammonoid soft 489 

tissue were probably often high and the post mortem release during burial maintains high 490 

ambient pH levels thus inhibiting calcium phosphate replacement (Clements et al., 2017). 491 

This likely explains why ammonoid soft body tissue is rarely seen in fossil Lagerstӓtte.  492 

Ammonium concentrations are not recorded in sedimentary rocks. Quantitative 493 

Earth system modelling studies are needed to better constrain the concentration of total 494 

ammonia in the P-T oceans and to further validate this hypothesis. If correct, ammonium 495 

poisoning is a previously unidentified end-Permian and Early Triassic killing mechanism 496 

(Fig. 8) and, once accumulated, its removal from seawater is difficult under anoxic and 497 

stratified oceanic conditions.  498 

6.8 Loss of dissolved nutrient-N in anoxic waters 499 

 Since nitrification can occur at low oxygen concentrations, establishment of 500 

ammonium oceans in the Phanerozoic could only occur in highly stratified oceans and during 501 

intensive ocean anoxic events. In cases of moderately anoxic conditions or fast oscillations 502 

in (dys)oxic and anoxic conditions, ammonium is likely converted to nitrate, which would 503 

then be denitrified. Additionally, as observed in OMZs in contemporary Omani Shelf, offshore 504 

Peru and elsewhere, DNRA and anammox bacteria can form DNRA-Anammox coupling and 505 

account for nutrient-N losses in areas of no detectable denitrification (Jensen et al., 2011). 506 

These processes could result in losses of both ammonium and nitrate, leading to a decrease 507 

in dissolved inorganic nutrient-N inventory (Fig. 8).  508 
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 509 

7. Conclusion 510 

Assertions that primary productivity in the Early Triassic oceans was either 511 

universally high or universally low are both untenable. The transition from nitrate oceans to 512 

ammonium oceans was accompanied by decreases in both the respiration efficiency of 513 

organisms and in the oceanic nutrient-N reservoir (Fig. 8). Though controlled by regional 514 

redox and oceanographic setting, NH4+ could temporarily and regionally boost primary 515 

productivity although it was probably low in general since most nutrient-N was likely lost 516 

during persistent periods of anoxia. Enhanced sulphate reduction, which is widely implied 517 

in the P-T oceans, could be attributed to a functional shift in microbial communities from 518 

nitrate consumption to sulphate consumption in a nitrate-starved ocean and thus does not 519 

necessarily require eutrophication. 520 

Ammonium intoxication is one of the worst case scenarios of ammonium ocean 521 

which, in turn, is likely a synergetic effect of widespread ocean anoxia and intensive water 522 

column stratification. Though remaining conceptual and awaiting Earth system modelling 523 

studies to further constrain, ammonia toxicity has not been considered in geological studies, 524 

and yet it may have played a substantial role in suppressing complex life before the rise of 525 

oxygen and probably in selectivity during many past extinctions. 526 
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 721 

Figure and table captions 722 

Fig. 1 The marine nitrogen cycle with sub-models for oxic (A), anoxic (B) and euxinic (C) 723 

conditions. Blue arrows are aerobic reactions; red arrows are anaerobic reactions; 724 

black arrows are reactions with aerobic and anaerobic pathways. Bold lines are 725 

favoured reactions, whereas dashed lines are possible, but unfavoured reactions. 726 

Lightning contributes ~5-8 % of total fixed nitrogen and is generally considered as a 727 

constant input in geological studies. Sub-models represent end-member situations and 728 

do not include the oxygen minimum zone in oxic oceans and oxygenated surface layers 729 

in anoxic and euxinic oceans. In model B, nitrate is consumed by reactions 5, 6, 7 and 8 730 
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while resupply of nitrate is inhibited because reaction 4 is a light-inhibited aerobic 731 

reaction. In the model C, nitrogen fixation can be inhibited due to removal of 732 

metabolizable Mo, V and Fe in the water column, leading to suppression of the nitrogen 733 

cycle. Nutrient-N systematically becomes dominated by NH3/NH4+ in anoxic and 734 

euxinic conditions. Anammox = anaerobic ammonium oxidation, DNRA = dissimilatory 735 

nitrate reduction to ammonium. 736 

Fig. 2 A., Early Triassic palaeogeography, ocean currents and sites of microbial buildups 737 

(Pruss et al., 2006; Chen et al., 2014; Scotese and Moore, 2014). B., Temporal 738 

occurrences of microbial buildups (geographic occurrences shown in A), redox 739 

conditions and equatorial seawater temperatures (Wignall and Twitchett, 2002; 740 

Grasby et al., 2012; Sun et al., 2012; Sun et al., 2015) in the Early Triassic. For redox 741 

conditions, the blue colour stands for a globally oxic condition; black stands for 742 

generally anoxic condition while white stands for regional oxic conditions in some 743 

basins. These redox histories derive from studies in Alps, British Columbia, Canadian 744 

Arctic, Japan, South China, Spitsbergen etc. C., Simplified models comparing nitrogen 745 

cycles between a well oxygenated nitrate ocean and an Early Triassic stratified 746 

ammonium ocean. Note that in anoxic oceans denitrification can occur in all water 747 

depths while nutrient-N uptake by phytoplankton can only occur in the euphotic zone.  748 

Fig. 3 Cross plots of total nitrogen and total organic carbon content of decarbonatized sample 749 

residues. Intercepts on the TN axis indicate the presence of excess silicate-bound 750 

nitrogen in the samples. 751 

Fig. 4 Geochemical records from three study sections, showing a gradual decrease in δ15N in 752 

the Early Triassic, a negative shift in δ15N towards the S-S boundary, the covariation of 753 
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δ13Ccarb and δ13Corg at Jiarong and a near antithetic relationship between δ15N and 754 

C/Natomic. Redox conditions and biostratigraphy from the three sections, δ13Ccarb from 755 

Jiarong and δ13Corg from Vindodden are from Zhao et al., (2013), Sun et al. (2015), 756 

Wignall et al. (2016) and Elrick et al. (2017). Redfield ratio (C/N=6.6) is used as a 757 

reference. 758 

Fig. 5 Summary of published δ15N records in the Late Permian to Early Triassic interval, 759 

showing strong denitrification occurred geographically in different settings across the 760 

P-T boundary. The onset and duration of the P-T water column denitrification shows 761 

regional variations, probably controlled by local redox conditions and 762 

palaeoceanographic settings. 763 

Fig. 6 Cross plots of V vs. Al, Mo vs. Al, Fe vs. Al and P vs. Al from Jiarong, South China. The 764 

original dataset is fully accessible in Sun et al. (2015). 765 

Fig. 7 Depth profile of NO3-, NH4+, O2 and S2- concentrations in the highly stratified 766 

contemporary Black Sea, showing a depletion of NO3- but accumulation of NH4+ in 767 

anoxic water column (modified from Konovalov et al., 2005). 768 

Fig. 8 The evolution of the ammonium ocean and changes in energy structures in the 769 

aftermath of the end-Permian mass extinction. 770 

Table 1 Comparison of energy yields (standard Gibbs free energy) of aerobic and anaerobic 771 

respiration. Glucose (C6H12O6) is the most important source of energy for cellular 772 

respiration and thus is used for calculation of comparable energy yields here. Isotopic 773 

enrichment (ε) is only for nitrogen reactions and approximated by δ15Nproduct-774 

δ15Nreactant (for ε<1000 ‰) (McCready et al., 1983; Sigman et al., 2009; Zhang et al., 775 

2014). Note that DNRA produces less energy than denitrification in term of per mol C; 776 
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however, in intense anoxia where nitrate is a limited resource, DNRA yields more 777 

energy than denitrification in measure of per mole N. 778 

Table 2 A comparision of δ15N and C/Natomic ratio in clay-poor rocks and clay-rich rocks that 779 

are closely spaced to each other, showing measured δ15N and C/Natomic ratios are 780 

generally consistent in the two types of rock but C/Natomic ratios are more variable in 781 

Early Triassic (TOC poor) rocks. 782 

Supplementary materials: Data file (including the original dataset and statistical analyses 783 

on the data) 784 

 785 
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isotopic enrichment (ε)

kJ/mol C kJ/mol N kJ/mol S ‰

aerobic respiration C6H12O6 + 6O2 = 6CO2 + 6H2O -478 -- --

denitrification 5C6H12O6 + 24NO3
-+ 24H+ = 30CO2 + 12N2 + 42H2O -445 -556 -- 5 – 30

DNRA C6H12O6 + 3NO3
- + 6H+ = 6CO2 + 3NH4

++ 3H2O -312 -623 -- -5 – -30

anammox NH4
+ + NO2

- = N2 + 2H2O -- -179 -- >10

nitrogen fixation N2 + 10H+ + 8e− = 2NH4
+ + H2 -- -157 -- -1 to 2 a or to -7 b

sulphate reduction C6H12O6 + 3SO4
2- = 6CO2 + 6H2O + 3S2- -61 -- -121

ethanol fermentation C6H12O6  = 2CO2 + 2C2H5OH -38 -- --

Energy yield (ΔG0)
Simplified reaction

Energy extraction 
pathway

a., reaction calatlyzed by Mo-Fe nitrogenase enzyme; 

b., reaction calatlyzed by V-Fe or Fe-only nitrogenase enzyme.
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Sample No. Height/m Lithology
carbonate 
content/%

TOC/ wt% TN/ wt% δ13Corg ‰ δ15N ‰ C/Natomic

XK 248B -0.88 limestone 74.7 1.13 0.06 -26.13 1.05 23.5
XK 248A -0.81 marl 14.4 3.05 0.15 -26.35 1.36 23.1
XK 247A -0.90 limestone 73.2 1.21 0.06 -26.11 1.53 23.8
XK 247B -0.95 marl 29.3 2.86 0.15 -26.13 1.10 21.8

XK 22.1 22.1 limestone 92.5 0.03 0.01 -28.74 1.13 7.5
XK 21.9 21.9 black shale 19.3 1.05 0.10 -28.57 0.76 12.7

Permian (high TOC) samples

Triassic (low TOC) samples 
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