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ORAI channels are critical for receptor-mediated
endocytosis of albumin
Bo Zeng1,2, Gui-Lan Chen1,2, Eliana Garcia-Vaz3, Sunil Bhandari4, Nikoleta Daskoulidou1, Lisa M. Berglund3,

Hongni Jiang1, Thomas Hallett1, Lu-Ping Zhou2, Li Huang2, Zi-Hao Xu2, Viji Nair5, Robert G. Nelson6, Wenjun Ju5,

Matthias Kretzler5, Stephen L. Atkin 1,7, Maria F. Gomez 3 & Shang-Zhong Xu 1

Impaired albumin reabsorption by proximal tubular epithelial cells (PTECs) has been high-

lighted in diabetic nephropathy (DN), but little is known about the underlying molecular

mechanisms. Here we find that ORAI1-3, are preferentially expressed in PTECs and down-

regulated in patients with DN. Hyperglycemia or blockade of insulin signaling reduces the

expression of ORAI1-3. Inhibition of ORAI channels by BTP2 and diethylstilbestrol or silencing

of ORAI expression impairs albumin uptake. Transgenic mice expressing a dominant-negative

Orai1 mutant (E108Q) increases albuminuria, and in vivo injection of BTP2 exacerbates

albuminuria in streptozotocin-induced and Akita diabetic mice. The albumin endocytosis is

Ca2+-dependent and accompanied by ORAI1 internalization. Amnionless (AMN) associates

with ORAIs and forms STIM/ORAI/AMN complexes after Ca2+ store depletion. STIM1/

ORAI1 colocalizes with clathrin, but not with caveolin, at the apical membrane of PTECs,

which determines clathrin-mediated endocytosis. These findings provide insights into the

mechanisms of protein reabsorption and potential targets for treating diabetic proteinuria.
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D iabetic nephropathy (DN) is a major cause of end-stage
renal disease, which is characterized by albuminuria, glo-
merulosclerosis and progressive loss of renal function. Up to

one-third of patients with diabetes develop DN1. Moderately
increased albuminuria is the earliest detectable sign of diabetic
kidney damage and continuous proteinuria causes tubulointerstitial
inflammation, scarring and progressive loss of renal function2.
Glomerular hyperfiltration and reduced reabsorption by proximal
tubules are two determinants for albuminuria. Recently, impaired
tubular uptake as the cause of albuminuria in the early stages of DN
has been highlighted in the development of albuminuria3,4. There-
fore, an understanding of the molecular mechanisms of protein
reabsorption is important for the development of potential therapies.

ORAI channels have been identified as the molecular finger-
prints of Ca2+-release activated Ca2+ (CRAC) channels, the highly

Ca2+ selective store–operated channels (SOCs) that can be acti-
vated by depletion of endoplasmic reticulum (ER) Ca2+ stores5.
Three isoforms of ORAI channels (ORAI1-3) have been identified
and each has an intracellular C- and N-terminus, and a trans-
membrane region with four domains6. Store-operated Ca2+ entry
(SOCE) through ORAI channels triggered by STIM1 is a major
mechanism mediating the signals of many hormones, growth
factors, cytokines, and neurotransmitters by acting on G protein-
coupled receptors (GPCR) and protein tyrosine kinase (PTK)
coupled receptors7,8. Loss-of-function mutation of ORAI1 causes
deficiency of Ca2+ release-activated Ca2+ current (ICRAC) in T-cells,
which results in severe combined immune deficiency syndrome9;
however, the role of ORAI channels in DN is unknown.

Here we report a mechanism for the progressive disorder of
DN. We have investigated the expression and function of ORAI
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PTECs were cultured with normal (5.5 mM) and high (25mM) glucose for 60 h. ORAI proteins were detected by western blotting (n= 6). f The mRNA of
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isoforms in proximal tubular epithelial cells (PTECs) using
human cell models and biopsies, in vivo diabetic mouse models
and transgenic mice. ORAI channels act as key elements in the
endocytic process of albumin reabsorption in PTECs. Down-
regulation and enhanced internalization of ORAI channel com-
plexes with the endocytic receptors during albuminuria could
account for the progressive deterioration of renal function in
patients with DN.

Results
ORAIs are expressed in human kidney and downregulated in
DN. ORAI1-3 channels were detected in human kidney samples
both at the mRNA and protein levels (Supplementary Fig. 1a, b).

They were preferentially localized to kidney tubules, with stronger
staining in the proximal tubules than in the distal convoluted
tubules (Supplementary Fig. 1c). This is in agreement with rat
RNAseq data showing higher tubular than glomerular expression
of all ORAI1-3 genes10 and also with available human RNAseq
data (Nephroseq) for ORAI2 expression in human kidney sam-
ples from healthy living donors, confirming higher tubular than
glomerular expression of this gene (Supplementary Fig. 2a).
ORAI1-3 immunostaining in both proximal tubules and distal
tubules was weaker in kidney tissue sections from type 1 diabetic
patients with DN when compared to non-diabetic controls
(Fig. 1a–c; Supplementary Table 1 for patient characteristics).
Correspondingly, human RNAseq data from DN patients with
estimated glomerular filtration rate (eGFR) ranging between 12
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and 60 showed that expression of ORAI2 in the tubulointer-
stitium was lower in patients with DN than that in controls, and
positively correlated to eGFR (Supplementary Fig. 2b, c), sug-
gesting the expression of ORAI2 in tubules is related to the
severity of DN.

Rodents are in general quite resilient to develop diabetic
complications as seen in humans and often replicate only early
features of DN. We examined ORAI1-3 and STIM1-2 mRNA
expression in whole kidney homogenates from Akita mice and
STZ-diabetic mice and found increased expression of all targets in
diabetic mice (Supplementary Fig. 2d, e). In the Pima Indian
study cohort, patients with DN at early stage (normal GFR or
hyperfiltration stage), a small increasing trend but not statistically
significant was observed for ORAI2 expression in the tubuloin-
terstitium (Supplementary Fig. 2f), suggesting that downregula-
tion of ORAIs is associated with fast kidney function decline
during the late stage of DN, but not the early stage of DN. Taken
together, the rodent expression and human RNAseq data
demonstrate plasticity of ORAI and STIM genes during the
development of DN.

To investigate whether changes in ORAI expression are driven
by glucose or insulin, in vitro experiments were performed using
primary cultured human PTECs. Cells were characterized by
positive lectin staining in their apical membrane (Fig. 1d). Both

mRNA and protein levels of ORAI1-3 were significantly down-
regulated by high glucose (Fig. 1e, f). Incubation of PTECs with
insulin increased mRNA levels of ORAI1-3, while incubation
with tyrphostin A23, a protein tyrosine kinase inhibitor that
prevents insulin receptor activation, reduced the expression
(Fig. 1g, h). Insulin also increased the expression of STIM1 and
STIM2, while tyrphostin A23 decreased them (Fig. 1i). STIM1
and STIM2 were also detected in both glomerulus and
tubulointerstitium of human kidney (Supplementary Fig. 3a–d).
In the Nephroseq data set, STIM1 mRNA intensity was higher in
glomeruli and positively correlated to eGFR (Supplementary
Fig. 3c, d). Downregulation of STIM1 was also observed in kidney
sections from STZ-induced diabetic mice after long-term
hyperglycemia (Supplementary Fig. 3e, f). These data demon-
strate the expression of ORAIs and STIMs in kidney tubules and
downregulation under diabetic conditions.

Identification of store-operated Ca2+ influx in PTECs. ORAI
and STIM constitute SOCs7, we therefore explored the existence
of store-operated Ca2+ entry (SOCE) and Ca2+ release-activated
Ca2+ current (ICRAC) in PTECs. Store depletion by thapsigargin
(TG) resulted in evident SOCE upon restoration of extracellular
Ca2+, which was significantly inhibited by the SOC blockers,
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2-aminoethoxydiphenyl borate (2-APB), diethylstilbestrol (DES)
and BTP2 (Fig. 2a–d). The inhibitory effects on SOCE were also
observed when cells were pre-incubated with DES, BTP2 and 2-
APB prior to the stimulation with TG (Supplementary Fig. 4). In
addition, a store-operated current was recorded in PTECs using
the same conditions for ICRAC recording in Jurkat cells. The
current was gradually evoked by inositol trisphosphate (IP3) in
the pipette solution or by TG in both bath and pipette solutions.
Current–voltage (IV) relationship of IP3-induced current in the
PTECs showed an inward rectification ranged from −100mV to
+ 50 mV (Fig. 2e, f), which was similar to the current recorded in
Jurkat cells (Supplementary Fig. 5). Both 2-APB and DES
inhibited IP3- or TG-induced store-operated currents in the
PTECs (Fig. 2g). These findings reveal the existence of store-
operated Ca2+ influx and current in PTECs.

Inhibition of ORAI impairs albumin reabsorption. 2-APB has
been shown to inhibit ORAI1 and ORAI2, but stimulate ORAI311;
however, it is unclear for BTP2 and DES. Using stably transfected
STIM1/ORAI1-3 cells, we found that both BTP2 and DES acted as
pan inhibitors of the three ORAI isoforms (Supplementary Fig. 6).
We next examined FITC-conjugated albumin (FITC-albumin)
reabsorption in PTECs using channel blockers and siRNAs. PTECs
showed evident intracellular accumulation of FITC-albumin
(Fig. 3a). Blockade of SOC activity by 2-APB, DES, or BTP2 signi-
ficantly reduced FITC-albumin uptake (Fig. 3a, b). Cells transfected
with ORAI siRNAs decreased SOCE and reduced the FITC-
albumin uptake compared with corresponding scramble siRNA-
transfected groups (Fig. 3c, Supplementary Fig. 7). Considering that
the silencing efficiencies were 45% for ORAI1, 82% for ORAI2 and
74% for ORAI3 when compared to scramble controls, we could
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conclude that ORAI1 had a greater impact on FITC-albumin
uptake than ORAI2 and ORAI3. These in vitro results demonstrate
that downregulation of ORAI expression or inhibition of ORAI
channel activity impairs albumin uptake in PTECs.

The association of ORAI with proteinuria was also tested
in vivo using ORAI channel pan inhibitor BTP2. The genetically
modified type 1 diabetic Akita mice (C57BL/6-Ins2Akita/J) had no
significant albuminuria after 15 weeks of hyperglycemia; however,
BTP2 significantly evoked albuminuria in Akita mice. Injection of
BTP2 also significantly increased albuminuria in streptozotocin-
induced diabetic mice (Fig. 3d). These data provide pharmaco-
logical evidence that inhibition of ORAI channel activity in vivo
aggravates proteinuria in diabetes.

To further examine the contribution of ORAI1 to albuminuria,
transgenic mice with proximal tubule-specific expression of a
dominant-negative mutant (DN-Orai1E108Q) was generated using
Cre-LoxP system (Fig. 3e, f, Supplementary Fig. 8). The mouse Orai1
mutant at E108Q is corresponding to the site of E106 in human
ORAI112. SOCE was robustly abrogated in the PTECs transfected
with Orai1E108Q mutant (Supplementary Fig. 9b). DN-Orai1
transgenic mice showed evident expression of EYFP-Orai1 mutant
in the tubules (Fig. 3f). There was no difference in the ratio of
kidney/body weight (Supplementary Fig. 9c) and glycosuria
(Supplementary Fig. 10) between the DN-Orai1 transgenic mice
and wild-type mice; however, the urinary albumin/creatinine ratio
(uACR) was significantly higher in DN-Orai1 transgenic mice
(Fig. 3g), suggesting that the loss-of-function mutation of ORAI1
leads to the decreased protein reabsorption in proximal tubules and
subsequently proteinuria.

Ca2+-dependent endocytosis of ORAI1 and albumin. We
investigated the mechanism of ORAI channels in albumin endo-
cytosis. FITC-albumin was highly accumulated in the lysosomes of
PTECs after incubation for 4 h (Fig. 4a). Interestingly, the CFP-
tagged ORAI1 was also endocytosed and co-localized with FITC-
albumin in the lysosomes (Fig. 4a). The endocytosis of ORAI1 was
further confirmed by lysosome protein assay in normal PTECs
without transfection (Supplementary Fig. 11). CFP-ORAI1 was
also present in the lysosomes when cells were maintained in
medium without FITC-albumin, but the mean size of lysosomes
was much smaller and the amount of ORAI1 in lysosomes was
significantly less than that in cells incubated with FITC-albumin
(Fig. 4b, c), suggesting that ORAI1 channel internalization is
enhanced by albumin endocytosis. Extracellular Ca2+ is required
for albumin uptake because there was almost no FITC-albumin
uptake into the cells in Ca2+-free solution (Fig. 4d). Incubation
with albumin for 30min in Ca2+ solution significantly reduced
store-operated Ca2+ influx in the serum-starved PTECs, but this
reduction was not observed if extracellular Ca2+ was omitted
(Fig. 4e, f). These results demonstrate that Ca2+ is essential for
albumin uptake and enhanced ORAI channel internalization may
associate with the endocytic receptors.

ORAI channels physically associate with amnionless.
Amnionless (AMN) is a key protein for receptor-mediated
endocytosis13. We found that AMN was associated with STIM1
and ORAI channels and formed STIM1/ORAI/AMN clusters at
the apical and basal plasma membrane (PM) after store depletion
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in the PTECs co-expressing AMN-EYFP, STIM1-mCherry and
CFP-ORAIs (Fig. 5a–c). However, transfection with AMN-EYFP
alone was unable to form clusters after Ca2+ store-depletion
(Fig. 5d), suggesting that the movement of AMN requires the
presence of STIM1 and ORAIs at a certain level. Co-
immunoprecipitation of endogenously expressed STIM1, ORAI1
and AMN showed that ORAI1, but not STIM1, directly interacted
with AMN, and such ORAI1-AMN interaction existed in the
PTECs with either replete or depleted Ca2+ stores (Fig. 5e). The
truncated AMN protein (AMN1-383) without cytoplasmic
domain was still able to form clusters with STIM1/ORAI1 after
Ca2+ store-depletion (Fig. 5f), suggesting that AMN is physically
associated with ORAI1 through its extracellular domain, and
indirectly operated by STIM1 upon Ca2+ store depletion.

In human and mouse kidneys under normal condition, ORAI1
was distributed through the apical and basolateral membrane of
kidney tubules. After perfusion with TG, ORAI1 was enriched to
the brush border of proximal tubules, and colocalized with
cubilin, which constitutes the endocytic receptor with AMN and
megalin (Supplementary Fig. 12).

Endocytosis of STIM1-ORAI1 is mediated by clathrin pathway.
Clathrin and caveolin are two key mediators for protein reab-
sorption, therefore, we examined their subcellular colocalization
with STIM1/ORAI1 after Ca2+ store depletion in PTECs. Clathrin
clearly co-localized with the STIM1/ORAI1 complex at the apical
membrane, but not at the basal membrane (Fig. 6a). However,
there was no significant colocalization between caveolin and
STIM1/ORAI1 complex, neither at the apical nor at the basal
membranes (Fig. 6b, c). Moreover, FITC-albumin uptake was
inhibited by the clathrin-mediated endocytosis blocker chlor-
promazine14, but not by nystatin that can selectively inhibit lipid
raft/caveolae-mediated endocytosis15 (Fig. 6d). The

internalization of ORAI1 protein into lysosome was also reduced
by chlorpromazine (Supplementary Fig. 13). These data suggest
that STIM1/ORAI1 is specifically linked to clathrin-mediated
endocytosis.

Spatial organization of F-actin and STIM–ORAI–AMN com-
plexes. Cytoskeleton reorganization is an alternative mechanism
for regulating SOCE and endocytosis16,17. We have previously
demonstrated that increased F-actin content reduces SOCE, while
depolymerization of F-actin restores SOCE16. Here we found that
although the endoplasmic reticulum (ER) Ca2+ store depletion
induced STIM1/ORAI1/AMN clustering at the PM–ER junctions,
it did not change the organization of F-actin (Fig. 7a). The
STIM1/ORAI1/AMN clusters were located between but did not
overlap with F-actin bundles at both the apical and basal mem-
branes (Fig. 7b). Disruption of F-actin by cytochalasin D did not
affect SOCE and FITC-albumin uptake in PTECs, while calyculin
A and U73122, two compounds that increase cortical
F-actin, significantly reduced SOCE (Fig. 7c) and FITC-albumin
endocytosis (Fig. 7d). These data suggest that F-actin can act as a
physical barrier in the PM–ER junctional areas and thus affect
SOCE and subsequently protein reabsorption.

Discussion
Our results indicate that ORAI isoforms are highly expressed in
proximal tubules and downregulated in patients with DN. Inhi-
bition of ORAI expression or channel activity by pharmacological
blockers or siRNAs or dominant-negative transgenic mice (DN-
Orai1) reduces the uptake of albumin by PTECs. In vivo
administration of an ORAI channel blocker aggravates protei-
nuria in diabetic mice. We have also explored the mechanisms of
albuminuria caused by ORAI channel inhibition. The enhanced
ORAI channel internalization and physical interaction with the
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endocytic receptor protein AMN are critical steps for albumin
endocytosis, which may account for the reduced capacity of
albumin uptake in the diabetic kidney. Our findings suggest that
ORAI channel activity is critical for protein reabsorption in the
kidney and give insights into ORAI/STIM in the regulation of
endocytosis of albumin mediated by the AMN/cubilin/megalin
endocytic receptor (Fig. 8). The concept of Ca2+ and ORAI-
dependent endocytosis could extend to other cell types, since
these receptors and channels are expressed in various tissues and
are responsible for the reabsorption of other proteins or mole-
cules18,19. The cycling of ion channel complexes through clathrin-
coated vesicles has important implications in the pathophysiology
of diabetic kidney disease and may also be related to the disease
processes of ORAI1/STIM1 mutations9,20–26.

Receptor-mediated endocytosis in proximal tubules is respon-
sible for the reabsorption of albumin in kidney. The endocytic
receptor is known to consist of three components: megalin,
cubilin and AMN. Megalin (600 kDa) and cubilin (460 kDa) are
two large receptors present in apical membranes of absorptive
epithelia18. Different from megalin, cubilin does not contain a
transmembrane segment and its surface expression relies on
anchoring to AMN13, a small (48 kDa) single-transmembrane
protein. Cubilin and AMN can form a complex independent of
megalin, which is called CUBAM and is responsible for the
absorption of cobalamin (vitamin B12)19. However, for albumin
uptake in the kidney, megalin, cubilin and AMN are all required
since deficiency of any of the three proteins has been shown to
cause albuminuria in patients27–29. We have found in this study
that ORAI channels directly associate with at least one compo-
nent of the endocytic receptor in PTECs. Upon Ca2+ store
depletion, these channels, membrane receptors and intracellular
endocytic mediators are concentrated at the PM–ER junctions,
suggesting that the contact sites of this specialized membrane are

bona fide hotspots for endocytosis. The STIM1/ORAI1 complex
is colocalized with clathrin only at the apical membrane after
Ca2+ store depletion, which is accordant with the fact that the
albumin uptake by PTECs is mainly through the apical surface
facing the tubular lumen. This also suggests that the cultured
PTECs retain the membrane polarity of epithelial cells, and well
mimick the endocytosis mediated by apically expressed cubilin
and megalin in vivo30. We also excluded the involvement of
caveolae/raft-dependent endocytosis in albumin uptake by
PTECs, which is consistent with the previous observation in
opossum kidney epithelial cells that megalin/cubilin-mediated
endocytosis is dependent on clathrin, but not on caveolin31. The
recruitment of clathrin to STIM1/ORAI/AMN complex may be
operated by AMN and megalin, as both of them contain NPXY
motifs at their cytoplasmic tails, which function as binding sites
for proteins involved in clathrin-coated endocytosis32. The con-
sequence of STIM1/ORAI/AMN complex endocytosis may fur-
ther decrease the SOCE and thus lead to impairment of albumin
uptake and progressive albuminuria.

The PM–ER junctional area and F-actin are visualised using
TIRF objective after Ca2+ store depletion. We found that the
endocytosis of albumin in PTECs does not require the structural
basis of F-actin, which is in agreement with an early study that
cytochalasin D only reduced less than 5% of albumin uptake in
opossum kidney epithelial cells33. We also showed that excessive
F-actin has a negative impact on SOCE and albumin uptake, which
is consistent with previous observations by us16 and others34 that
excessive F-actin could act as a physical barrier between PM and
ER, and thus block the interaction between STIM1 and ORAI
channels and SOCE. The impairment of SOCE further leads to the
reduction of albumin uptake in PTECs seen in the study.

Store-operated Ca2+ influx is a predominant Ca2+ entry
mechanism in non-excitable cells that serves essential functions
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from gene expression to cell growth35. Here we have shown that
ORAI channels are preferentially expressed in proximal tubules,
but weakly expressed in the glomerulus. The expression was sig-
nificantly downregulated in in vitro cell models by high glucose
and in the biopsy samples from type 1 diabetic patients with DN.
Conversely, ORAI isoforms, as well as STIMs, were upregulated by
insulin and this upregulation was prevented by an insulin receptor
signaling inhibitor. These data suggest that a dynamic balance
between glucose and insulin levels is required in determining
ORAI channel expression in the tubules. Loss of balance results in
the reduction of ORAI expression in patients with DN. Upregu-
lation of ORAIs and STIMs was observed in the cultured vascular
cells and tissues from diabetic mice36 and cultured human
mesangial cells37, such discrepancy in gene expression could be
due to the difference of cell type and the stage of diabetes, because
rodent models of diabetes normally fail to develop advanced
kidney phenotypes and end-stage renal disease, and only mimic
the early changes of human diabetic kidney38,39. We have not
directly compared the difference of store-operated Ca2+ entry
between normal and diabetic patients due to the limited resource
of fresh kidney tissue samples from patients with type 1 diabetes;
however, the decreased store-operated Ca2+ influx has been
reported in retinal microvascular smooth muscle cells from dia-
betic rats, and such reduction can be restored by application of
insulin40. SOCE was also increased by insulin-like growth factor 1
(IGF-1) stimulation in a mouse myoblast cell line (C2C12)41.
Taken together, these evidences suggest that insulin not only
activates store-operated Ca2+ entry via insulin receptors and tyr-
osine kinase signaling, but also increases ORAI channel expression

as seen in this study, suggesting that stimulation of insulin sig-
naling may become a molecular strategy to prevent the loss of
ORAI channel expression and function in patients with DN.

Increased glomerular filtration is another factor related to DN.
The increase in blood pressure and flow may lead to functional
and structural changes resulting in high glomerular permeability.
The glomerular expression of ORAI channels is not evident in the
normal human kidney tissue section in this study, and fewer cells
are stained in the glomerulus, however, store-operated Ca2+

influx and expression of other Ca2+-permeable channels, such as
TRP, have been demonstrated in primary cultured mesangial
cells42,43 and podocytes44, suggesting that other Ca2+-permeable
channels may be predominant in the regulation of glomerular
function. ORAI channels are also expressed in the intrarenal
arteries (Supplementary Fig. 1d), suggesting that ORAI or SOC
may also be involved in the dysfunction of the renal micro-
circulation in diabetes. In our DN-Orai1 transgenic mice model,
the sodium-glucose cotransporter 2 promoter is used for specific
proximal tubular expression, therefore the potential contributions
by the changes of glomerular filtration barrier or renal micro-
circulation may also coexist under certain conditions, which
needs to be further investigated.

In conclusion, ORAI store-operated channels exist in human
proximal tubules. Impairment of ORAI channel expression or
channel activity leads to a decreased albumin absorption by
proximal tubular cells and results in proteinuria. Ca2+ influx
through ORAI channels are critical for the endocytosis of albu-
min via clathrin-coated vesicles, including the ORAI/STIM/
AMN/cubilin/megalin endocytic receptor complexes.
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Methods
Animals. Akita type 1 diabetic mice (C57BL/6-Ins2Akita/J) were obtained from the
Jackson laboratories and bred at Lund University. For the streptozotocin (STZ)-
induced type 1 diabetic model, adult C57BL/6 J mice were administered STZ
(Sigma-Aldrich; 55 mg kg−1 body weight, pH 4.5) or citrate buffer (vehicle) by
intraperitoneal (i.p.) injections once a day for 5 days. The animal studies were
approved by the Malmö/Lund Animal Care and Use Committee, and abided by the
Guide for the Care and Use of Laboratory Animals published by the Directive
2010/63/EU of the European Parliament. Diabetic and control mice were treated
twice daily with intraperitoneal (i.p.) injections of BTP2 (Tocris Bioscience, UK;
0.29 mg kg−1 body weight per day) for 3 days. Treatment with BTP2 was performed
after at least 4 weeks of diabetes for STZ-induced mice, and 10 weeks of age for
male Akita mice, which had been diabetic for at least 6 weeks according to the
onset age of diabetes at 4 weeks old. Urine was collected during a 2-h period on day
5 after the first injection of BTP2. Albumin concentration was determined by
ELISA (Albuwell M kit, Exocell Inc., USA) and creatinine using a picric acid-based
assay (Creatinine Companion; Exocell Inc., USA) and an enzymatic colorimetric
assay (COBAS, Roche; USA) according to the manufacturer´s instructions.

Generation of transgenic mice. The plasmid pRP[Exp]-CMV> loxp-stop-loxp:
EYFP-mOrai1(E108Q) was constructed and linearized by NotI. The construct
pGL2-sglt2–5pr-mut-Cre was obtained from Dr. Michel Tauc45and linearized by
ScaI. The F0 transgenic mice (C57/BL6) were generated by pronuclear injection of
linearized DNA fragments by Cyagen Biosciences (Suzhou, China). Genotyping of
F0 mice and offspring were conducted by PCR using the CMV-F and EcoRI-
mOrai1-R primers with a size of 2778 bp, and Psglt2-F and Cre-polyA-R primers
with a size of 5238 bp (Supplementary Table 2). Mice carrying the mOrai1(E108Q)
and Cre transgenes were bred with wild-type C57/BL6 mice separately and then
crossed to generate double-positive (mOrai1(E108Q)+/Cre+) offspring. The
transgenic mice were bred in Southwestern Medical University and the experi-
mental procedures were approved by the Ethical Committee of Southwest Medical
University.

Cell culture and transfection. The full length of human ORAI1, ORAI2 and
ORAI3 cDNAs were amplified from human aortic endothelial cells (PromoCell,
Heidelberg, Germany), and clathrin light chain and caveolin-1 were amplified from
human PTECs by RT-PCR and cloned into a tetracycline-regulatory vector16. The
plasmid cDNAs of ORAIs tagged with cyan (CFP) or red (mCherry) fluorescent
proteins were stably expressed in HEK-293 T-REx cells (Invitrogen, UK). For
electrophysiological experiments, the tetracycline-inducible ORAI1-3 cells were co-
expressed with STIM1-EYFP. The gene expression of ORAIs was induced by 1 µg
ml−1 tetracycline for 24–72 h before recording. The non-induced cells without
addition of tetracycline or the non-transfected cells were used as controls. Cells
were grown in DMEM-F12 (Gibco, UK) medium containing 10% fetal calf serum
(FCS), 100 units ml−1 penicillin and 100 µg ml−1 streptomycin. Cells were main-
tained at 37 °C under 95% air and 5% CO2 and seeded on coverslips prior to
experiments.

The human proximal tubular cell line (HK-2) was purchased from LGC
standards (Catalog number CRL-2190, UK). These cells were originally derived
from normal adult human renal cortex and immortalized by transduction with
human papilloma virus 16 (HPV-16) E6/E7 genes. Cells were maintained in
DMEM/F-12 medium with 5 mM glucose and supplemented with 10% FCS, 10
mM HEPES and antibiotics. Cells were seeded on coverslips for patch recording or
in 35-mm dishes at 80% confluence for albumin uptake assay. Electroporation was
performed for siRNA transfection into HK-2 cells using Neon® transfection system
(Invitrogen). The concentration of ORAI siRNAs was 200 nM. The efficiency
achieved ~90 % at optimized conditions (20-ms pulse with 1300 V amplitude),
which was assessed by cotransfection with a red fluorescent protein (DsRed)
plasmid cDNA as a reporter. ORAI siRNAs were purchased from Sigma and the
sequences were given in Supplementary Table 2. The scramble siRNA was also
from Sigma. The successful silencing of ORAI expression by siRNAs was confirmed
by real-time PCR, yielding a 45% reduction of expression for ORAI1, 82% for
ORAI2 and 74% for ORAI3 when compared to scramble controls. Jurkat cells were
purchased from LGC standards (Middlesex, UK) and cultured in RPMI 1640
medium containing 10 % FCS, 100 units ml−1 penicillin and 100 μg ml−1

streptomycin.

Primary culture of human proximal tubular cells. Proximal tubular cells were
isolated from human renal tissue after nephrectomy from portions of the kidney
not involved in renal cell carcinoma. The kidney tissue was collected in cold Hank’s
buffered salt solution (Invitrogen) and transported into the lab immediately. The
tissue was cut into approximately 2–8 mm3 pieces by using a sharp blade then the
fragments were incubated in 35-mm culture dishes using DMEM/F12 medium
with Glutamax (Invitrogen) containing 10% FCS, 100 units ml−1 penicillin and 100
mgml−1 streptomycin. Cells were kept at 37 °C in the incubator with a humidified
atmosphere of 5% CO2 in air. After 24–48 h culture, cells with the same shape were
transferred into a T-75 flask to expand the cell numbers. The cultured proximal
cells were confirmed by lectin staining. Cells at passage 2–3 were used to avoid age-
dependent phenotypic changes. This study was approved by the Hull and East

Riding research ethical committee and all patients gave their informed consent in
accordance with the principles of the Declaration of Helsinki.

Quantitative RT-PCR. Total RNA was extracted from snap-frozen normal kidney
samples using Trizol (Invitrogen). The RNA was reverse transcribed with moloney
murine leukemia virus reverse transcriptase using random primers and oligo dT
primers (Promega). Quantitative RT-PCR was performed using StepOne™ Real-
Time PCR System (Applied Biosystems, UK). The primer set was designed across
introns to avoid genomic DNA contamination and synthesized by Sigma-Genosys.
The PCR primer sequences were given in Supplementary Table 2. Each reaction
volume was 10 μl, which contained 1 × SYBR Green PCR master mix (Applied
Biosystems), 5 μl cDNA, 0.75 μl 300 nM forward primer, 0.75 μl 300 nM reverse
primer. Human β-actin was used as an internal standard for quantification. Water
was used as a non-template control and non-reverse transcribed samples were run
in parallel to exclude genomic DNA contamination. The PCR cycle was pro-
grammed as an initial cycle of 50 °C for 2 min followed by 95 °C for 10 min, then 50
repeated cycles of 95 °C for 15 s denaturation and 54 °C annealing temperature for
30 s, and primer extension at 72 °C for 30 s. The reactive conditions for real-time
PCR were optimized by monitoring the melting temperature curve and by elec-
trophoresis on agarose gels. The PCR products were confirmed by direct
sequencing.

Western blotting and co-immunoprecipitation. Kidney samples were homo-
genized. Cells were lysed with 2 × sample buffer and the proteins were separated on
10% SDS-PAGE gel before transferring onto a nitrocellulose membrane46. The blot
was then incubated with polyclonal anti-ORAI1 (ACC-060), anti-ORAI2 (ACC-
061) or anti-STIM1 (ACC-063) at 1:500 dilution (Alomone Labs, Jerusalem, Israel),
and anti-ORAI3 (#4117) at 1:500 dilution (ProSci Incorporated, Poway, CA, USA)
overnight at 4 °C, respectively, and washed with phosphate buffered saline (PBS)
and then incubated with a goat anti-rabbit IgG-HRP (1:2000 dilution) (A0545,
Sigma). The specific binding of anti-ORAI1 and anti-ORAI2 antibodies was con-
firmed by using the lysates from HEK293 cells overexpressing ORAI1 and ORAI2
proteins tagged with mCherry fluorescence (Supplementary Fig. 14). Rabbit anti-β-
actin (1:2000 dilution) (SAB4301137, Sigma) was used as an internal standard for
protein quantification. Visualisation was carried out using ECLplus (Amersham
Biosciences) and developed onto an X-ray film or photographed by a gel document
system. The quantification was carried out using ImageJ (NIH, USA) software.
Immunoprecipitation of endogenously expressed STIM1, ORAI1 and AMN pro-
teins in PTECs was performed with a Pierce Classic IP Kit (Thermo Fisher Sci-
entific, USA), and rabbit anti-STIM1 at 1:500 (ACC-063, Alomone Labs, Jerusalem,
Israel), rabbit anti-Orai1 at 1:500 (sc-68895, Santa Cruz) and mouse anti-AMN at
1:500 (sc-365384, Santa Cruz) antibodies were used.

Immunohistochemistry. Kidney biopsies collected from diabetic type 1 patients
for clinical reasons and paraffin blocks containing nephrectomy samples from non-
diabetic individuals were used with ethical approval by local research ethics
committee. The diabetic kidney samples were confirmed by pathological and
clinical diagnosis. Samples from 8 patients (6 males and 2 females, average age of
51.3 ± 4.2 years) were used, all presenting histopathological alterations, including
mesangial expansion, arteriolar hyalinosis, global glomerular sclerosis, accumula-
tion of mesangial matrix material, and renal interstitial expansion. Six age-matched
non-diabetic normal kidney samples from patients with kidney tumor were stained
in parallel for comparison as normal controls. Paraffin-embedded kidney tissue
sections with a thickness of 3 μm were immunostained with rabbit anti-ORAI1
(ACC-060), anti-ORAI2 (ACC-061), anti-ORAI3 (Catalogue No. 4117), anti-
STIM1 (ACC-063) and anti-STIM2 (ACC-064) antibodies using VECTASTAIN
ABC kit (Vector Laboratories). ORAI1, ORAI2, ORAI3, STIM1 and STIM2 pri-
mary antibodies at 1:250 dilutions were used and the tissue sections were incubated
at 4 °C overnight, followed by biotinylated anti-mouse/rabbit immunoglobulins at
1:1000 for 20 min. The peroxidase conjugated lectin from Arachis hypogaea
(Sigma) was used as a positive staining control. Incubation with antigen pre-
absorbed antibodies or without primary antibody was used as a negative control.
Immunostaining was quantified by imaging software (Image-Pro Plus, Media
Cybernetics, USA), under blind conditions. The anti-Orai1 (sc-68895), anti-Orai2
(sc-292103) and anti-Orai3 (sc-292104) antibodies purchased from Santa Cruz
Biotech (Dallas, USA) were also used at 1:100 dilution for immunostaining to
confirm the tissue distribution of ORAIs in human kidney.

Immunofluorescence. Frozen kidney tissue sections (10 µm thickness) were fixed
with 4% paraformaldehyde and permeabilised with −20 °C methanol for 1 min and
0.1% Triton X-100 in PBS for 2 h at room temperature. Sections were incubated in
1% bovine serum albumin (BSA) and then in the appropriate ORAI primary
antibodies at 1:200–500 dilutions in PBS with 1% BSA at 4 °C overnight. After
three times wash with PBS, the tissue sections were then incubated in the sheep
anti-rabbit IgG conjugated with FITC (1:160; Sigma) for 2 h at room temperature.
Double staining was performed for some experiments using Cy3 conjugated
monoclonal anti-α-smooth muscle actin (1:200; Sigma) or TRITC-conjugated
lectin (Sigma). After wash with PBS, sections were mounted using Vectashield
mounting medium containing DAPI (Vector Laboratories). The staining was

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-02094-y

10 NATURE COMMUNICATIONS |8:  1920 |DOI: 10.1038/s41467-017-02094-y |www.nature.com/naturecommunications

www.nature.com/naturecommunications


photographed using a laser confocal microscope acquisition software. For paraffin-
embedded kidney sections (4 µm thickness), primary antibodies at 1:100 dilution,
including rabbit anti-Orai1 (ACC-060 or ACC-062 for mouse tissue, Alomone
Labs), mouse anti-AMN (MAB1860, R&D Systems Inc), goat anti-cubilin (sc-
20607, Santa Cruz) and rabbit anti-megalin (D160443, Sangon, Shangai, China),
and secondary antibodies including donkey anti-rabbit (Alexa Fluor 488), anti-
mouse (Alexa Fluor 555) and anti-goat (Alexa Fluor 647) IgG (ThermoFisher) were
used.

Total internal reflection fluorescence microscopy. Total internal reflection
fluorescence (TIRF) microscopy was performed using a Nikon CFI Apochromat
TIRF objective ( × 100, 1.49 NA) and sCMOS camera (ORCA-Flash4.0 V2,
Hamamatsu, Japan) mounted on an Eclipse Ti-E inverted microscope with Perfect
Focus System (PFS; Nikon). Imaging was performed on PTECs expressing STIM1,
ORAI1-3, AMN, clathrin light chain and caveolin-1 tagged with cyan (CFP),
enhanced yellow (EYFP) or mCherry fluorescent proteins as indicated. CFP, EYFP
and mCherry were excitated by 405-, 488- and 561-nm lasers with corresponding
filter lens, respectively. Colocalization analysis was performed with NIS-Elements
AR v4.30 (Nikon) and 3D surface plot of fluorescent intensities was generated by
Image-Pro Plus 6.0 (Media Cybernetics). Three to five experiments were performed
for each condition.

Albumin uptake assay. Experiments with fluorescein isothiocyanate (FITC)-
albumin were performed on cells grown on 35-mm culture dishes to allow
microscopic examination and protein extraction. HK-2 cells were incubated with
serum free DMEM/F-12 medium for 24 h and treated with ORAI channel inhi-
bitors, endocytosis blockers or F-actin regulators for 30 min, then FITC-conjugated
albumin (FITC-albumin) (Sigma) was added to achieve a final concentration of 50
μg ml−1. After 60 min incubation at 37 °C, the cells were washed with cold serum
free medium containing 10 mgml−1 of unlabelled albumin, and washed again with
cold PBS six times. The cells were lysed in H2O by two freezing and thawing cycles,
followed by sonication. The supernatant was used for fluorescence and protein
assays. The intensity of FITC fluorescence was measured by a fluorophotometry
with an excitation/emission wavelength at 485/532 nm. The cells were also pho-
tographed using a fluorescent microscope.

Electrophysiology and Ca2+ measurements. Whole-cell patch recordings were
performed at room temperature (23–26 °C) as we described previously36,46. Briefly,
signal was amplified with an Axopatch 200B patch clamp amplifier connected to a
digitizer Digidata 1440 and controlled with pClamp software 10 (Molecular
Devices). A 1-s ramp voltage protocol from –100 mV to + 100 mV was applied at a
frequency of 0.2 Hz. Signals were sampled at 10 kHz and filtered at 3 kHz. The
buffered pipette solution contained (mM): 145 Cs-methanesulfonate, 10 BAPTA,
10 HEPES, and 8 MgCl2, and the pH = 7.2 adjusted using CsOH. The standard bath
solution contained (mM): 120 NaCl, 2.8 KCl, 10 CsCl, 2 MgCl2, 10 CaCl2, 10
HEPES, and 8 D-Glucose. The pH was adjusted to 7.4 with 1M NaOH. The
recording chamber had a volume of 150 µl and was perfused at a rate of about 2 ml
min−1. Thapsigargin (1 µM) was added in both pipette and bath solution to deplete
the endoplasmic reticulum calcium store.

For Ca2+ imaging experiments, HK-2 cells were seeded on coverslips for 24 h
and incubated with Fura-PE3 AM (1 μM) for 30 min at 37 °C in Ca2+ free standard
bath solution. The ratio (F340/F380) of Ca2+ dye fluorescence was measured by a
Nikon Ti-E system with NIS-Elements software as we reported previously16,36. All
the experiments were performed at room temperature.

Lysosome protein assay. Lysosomes were isolated from HK-2 cells by ultra-
centrifuge using a Lysosome Enrichment Kit (Thermo Fisher Scientific, USA).
Briefly, cells (~ 1.5 × 108) were detached from the culture dishes with a cell scraper,
washed with ice-cold PBS and spun down at 500 g for 10 min at 4 °C. The cell pellet
was suspended in 800 μl Lysosome Enrichment Reagent A and homogenized by
passing through a 22-gauge syringe needle 10 times. The lysate was mixed with 800
μl Reagent B and centrifuged at 500 g for 10 min at 4 °C. The supernatant (post-
nuclear supernatant, PNS) was mixed with 500 μl OptiPrepTM Cell Separation
Media, transferred to the top of the density gradients in an ultracentrifuge tube,
and centrifuged at 145,000 × g for 2 h at 4 °C. The lysosome band close to the top of
the density gradients was collected and diluted with 3 volumes of PBS, and cen-
trifuged at 18,000 × g for 30 min at 4 °C. The pellet was then lysed for protein
analysis. Antibodies in the Organelle Localization IF Antibody Sampler Kit (Cell
Signaling Technology, USA) were used to examine the presence of different
organelles at each step during lysosome isolation. Biotin-conjugated goat anti-
rabbit IgG secondary antibody (AP132B; 1:1000 dilution,) and HRP-conjugated
streptavidin (#18-152, 1:5000) from Millipore (Darmstadt, Germany) were used to
detect ORAI1 in lysosomal proteins.

Microarray data set and bioinformatics. Human kidney tissue (glomeruli or
tubuli) was microdissected as described previously47. The expression data of genes
of interest in microdissected glomeruli or tubulointerstitium were extracted from
the Nephroseq (https://www.nephroseq.org) diabetic data sets48–50 and the
expression data from 22 Southwestern American Indians enrolled in a randomized,

placebo-controlled clinical trial to evaluate the renoprotective efficacy of losartan in
type 2 diabetes (clinical trial reg. no. NCT00340678, clinicaltrials.gov)51 with early
stage of DN were used. For Nephroseq data sets, the normalized expression data
(median center intensity) were log2-transformed and batch-corrected. Pearson
correlation coefficient was used to evaluate association between gene expression
level and eGFR.

Statistics. All values are expressed as mean± s.e.m. Paired t test was used to assess
statistical differences between two groups, and one-way ANOVA with Bonferroni
or Dunnett’s post hoc analysis was used for multiple group comparisons with
significance indicated if P< 0.05.

Data availability. The data supporting the findings of this study are available
within the article and its Supplementary Information Files or from the corre-
sponding authors upon reasonable request.
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