Does exercise training prescription based on estimated heart rate training zones exceed the ventilatory anaerobic threshold in patients with coronary heart disease undergoing usual-care cardiovascular rehabilitation?: A United Kingdom perspective.

Sean Pymer¹

Simon Nichols²*

Jonathon Prosser³

Stefan Birkett⁴

Sean Carroll⁵

Lee Ingle⁵

Corresponding Author: *Dr Simon Nichols, Centre for Sport and Exercise Science, Sheffield Hallam University, Sheffield, UK (S.J.Nichols@shu.ac.uk)

Institutions:

¹Academic Vascular Surgical Unit Hull York Medical School, Hull, UK.

²Centre for Sport and Exercise Science, Sheffield Hallam University, Sheffield, UK

³Atrium Health, Centre for Exercise and Health, Coventry, UK

⁴School of Sport & Wellbeing, University of Central Lancashire, Preston, UK

⁵Department of Sport, Health & Exercise Science, University of Hull, Hull, UK.

Funding – Sean Pymer is funded by a University of Hull PhD scholarship.

Word Count 3,128 (excluding abstract, tables, figures, references).
Abstract

Background: In the United Kingdom (UK), exercise intensity is prescribed from a fixed percentage range (% heart rate reserve; %HRR) in cardiac rehabilitation (CR) programmes. We aimed to determine the accuracy of this approach by comparing it with an objective, threshold-based approach incorporating the accurate determination of ventilatory anaerobic threshold (VAT). We also aimed to investigate the role of baseline cardiorespiratory fitness status, and exercise testing mode dependency (cycle v treadmill ergometer) on these relationships.

Design/Methods: A maximal cardiopulmonary exercise test was conducted on a cycle ergometer or a treadmill before and following usual-care circuit training from two separate CR programmes from a single region in the UK. The heart rate corresponding to VAT was compared to current heart rate-based exercise prescription guidelines.

Results: We included 112 referred patients (61 years [59-63]; body mass index 29 kg·m\(^{-2}\) [29-30]; 88% male). There was a significant but relatively weak correlation \((r=0.32; P=0.001)\) between measured and predicted %HRR, and values were significantly different from each other \((P=0.005)\). Within this cohort, we found that 55% of patients had their VAT identified outside of the 40-70% predicted HRR exercise training zone. In the majority of participants (45%), the VAT occurred at an exercise intensity <40% HRR). Moreover, 57% of patients with low levels of cardiorespiratory achieved VAT at <40% HRR. Whereas, 30% of patients with higher fitness achieved their VAT at >70% HRR. VAT was significantly higher on the treadmill than the cycle ergometer \((P<0.001)\).

Conclusion: In the UK, current guidelines for prescribing exercise intensity are based on a fixed percentage range. Our findings indicate that this approach may be inaccurate in a large proportion of patients undertaking CR.

Word Count: 274 words

Key words: cardiac rehabilitation, exercise prescription, cardiorespiratory fitness, ventilatory anaerobic threshold.
Cardiovascular rehabilitation (CR) is a multi-disciplinary secondary prevention programme that has been shown to contribute to reduced hospital admissions, and improvements in patient quality of life, following a cardiac event. (1-4) Historically, a 1% improvement in peak oxygen uptake ($\text{VO}_{2\text{peak}}$) resulting from exercise-based CR, was thought to confer a 2% reduction in premature mortality. (5) Similarly, every 3.5 ml·kg$^{-1}$·min$^{-1}$ increment in $\text{VO}_{2\text{peak}}$ has been associated with a 12-13% survival benefit (6, 7) in men referred for exercise testing. Therefore, it is essential that the prescribed dose of exercise is sufficient to stimulate improvements in $\text{VO}_{2\text{peak}}$ following CR. Recent systematic reviews and meta-analyses have shown that increased exercise intensity is an important factor in achieving superior outcomes in patients with cardiovascular disease. (8, 9)

The prescribed dose of exercise can be influenced by manipulating exercise frequency, duration, type/mode, and/or intensity [exercise dose]. (10) In the United Kingdom (UK), current long-term exercise training guidelines for patients undertaking CR, recommend exercise training intensities between 40-70% heart rate reserve (HRR), oxygen uptake reserve (VO_2R), or a Borg rating of perceived exertion (RPE) between 11-14. (11, 12) Both continuous and interval training at an objective physiological threshold has been shown to have a beneficial impact by improving $\text{VO}_{2\text{peak}}$. (13) Training at or above the ventilatory anaerobic threshold (VAT), often referred to as the first ventilatory threshold (VT1), indicates the point above which, further increments in work rate are increasingly supplemented through anaerobic metabolism. (14-17) Despite being associated with mild metabolic perturbations, (16, 17) regular exercise bouts conducted at work rates equivalent to VAT are well tolerated, (18) and induce physiological adaptation leading to improved cardiorespiratory fitness (CRF) and other cardiovascular risk factors. (19, 20) However, whilst
work rates corresponding to VAT may represent a minimum intensity needed to improve CRF, metabolic gas equipment and calibrated ergometers are often not available in a CR setting in the UK. Prescribing exercise as a percentage of measured HRR, or most typically estimated HRR, is often a more practical and realistic alternative in UK cardiac rehabilitation settings.(10)

The 40% HRR threshold is cited as the lowest effective exercise intensity for improving CRF in patients undertaking CR.(10, 12) The individual VAT is widely accepted to occur between 45-65% HRR in healthy and cardiac patients,(8) with lower values reported in patients with a chronic cardiovascular disease.(10) However, the distribution of VAT values, and its relation to exercise capacity, is unclear in patients undertaking CR. How commonly VAT occurs within discrete exercise intensity ranges is also under-reported in patients with coronary artery disease. Tan et al (21) showed that the mean VAT was equal to 82% of maximal heart rate (HR), in 19 cardiac patients referred for a cardiopulmonary exercise test (CPET) prior to CR, (21). However, the mode of exercise testing may also influence when an individual’s VAT occurs.

In the UK, the mode of exercise testing varies between CR programmes. This means that a patient’s exercise prescription could be based on a number of different submaximal exercise tests, including the 6-min walk test, incremental shuttle walk test, step test, or cycle ergometry. The differing metabolic responses to cycling compared with walking may affect a patient’s peak oxygen uptake ($V\dot{O}_{2peak}$), and the occurrence of VAT. This, in turn, may significantly affect the accuracy of exercise intensity prescription. These issues have not been addressed sufficiently within UK guidelines for exercise prescription in CR programmes. This information may help practitioners to optimise a patient's initial exercise
prescription and maximise the improvements associated with exercise training programmes. This is especially important when the frequency and duration of CR sessions are finite. We aimed to determine the accuracy of the standard UK approach for prescribing exercise in patients undertaking CR by comparing it with objective measures of exercise prescription, namely $\dot{V}O_2^{\text{peak}}$ and VAT. Secondary aims were to determine how exercise modality (exercise testing with cycle versus treadmill ergometer), and baseline levels of CRF affected the concordance of VAT and HRR measures.

Methods

Data was collated from the baseline assessment of two separate cohorts who undertook a maximal effort CPET to volitional exhaustion prior to commencing a CR programme. The methods for these studies have previously been reported.\(^{(22, 23)}\) Ethical approval was provided by the Yorkshire and Humber – Sheffield National (12/YH/0072) and Humber Bridge NHS (12/YH/0278) Research Ethics Committees. Briefly, patients were recruited following a referral to CR for angina, myocardial infarction (MI), coronary artery bypass graft (CABG), or percutaneous coronary intervention (PCI). Patients attended a baseline study assessment, where written informed consent was obtained. CPET was conducted on a cycle ergometer following a 25W incremental protocol, or on a treadmill following the modified Bruce protocol,\(^{(24)}\) adopting previously outlined test termination and maximal effort criteria.\(^{(15, 25)}\) Breath-by-breath metabolic gas exchange data were collected using an Innocor (Innovision, Glamsbjerg, Denmark) or Oxycon-Pro metabolic cart (Jaeger, Hoechburg, Germany), respectively, which were calibrated according to manufacturers’ instructions and current recommendations.\(^{(26)}\) Peak values were averaged over the final 30
seconds of the CPET. VO$_{2\text{peak}}$ was reported in absolute values (L·min$^{-1}$) and standardised to each patient's body mass (ml·kg$^{-1}$·min$^{-1}$). Individualised VAT was independently determined by two investigators (using the average of the middle five of every seven breaths plotted in the V-slope method, and verified using the ventilatory equivalents.(14, 27) Where investigators reported different VAT values, a third reviewer was consulted and the threshold value agreed by consensus. The VAT was reported in L·min$^{-1}$ and ml·kg$^{-1}$·min$^{-1}$ and expressed as a percentage of directly-determined and predicted VO$_{2\text{peak}}$.(28) The HR at VAT was then established and reported as a ratio of HRmax and HRR determined from CPET, and as a ratio of predicted HRmax and HRR with relevant adjustment for the effects of beta-blockade on maximal heart rates as follows [10]):

$$((205.8 - (0.685 \times \text{age})) - 30 \text{ beats per min if taking beta-blockers})$$

To characterise where a patients VAT occurred in relation to established training zones, the VAT values were categorically assigned to exercise intensity groups of <40%, 40-49%, 50-59%, 60-69%, 70%, and >70% of measured, and predicted HRR. Adjustment for β-blockades were made where appropriate,(12). We assessed how many patients had a VAT that occurred within the exercise training intensity ranges recommended by UK CR guidelines, namely 40-70% HRR, or an RPE between 11-14.(11, 12) Patients were sub-categorised according to individual CRF levels as low (<5 METs for women, <6 METs for men), moderate (5<7 METs for women, 6<8 METs for men), and high CRF (≥7 METs for women, ≥ 8 METs for men), based on exercise capacity (MET) thresholds derived from the international literature and previously applied to cardiac patients in the UK.(29) These sub-groups were then
categorised based on the HRR zone that the individualised VAT occurred within. We also
conducted sub-analyses on patients who undertook their CPET either on a treadmill or cycle
ergometer.

Data analysis
Statistical analysis was conducted using SPSS version 24 (IBM, NY, USA). When data was not
normally distributed, normalisation of the distribution was attempted using \log_{10}
transformation. Logarithmically transformed data was analysed in its transformed state and
reported as an arithmetic mean to allow for meaningful interpretation. Normally distributed
and transformed data were analysed using a univariate general linear model with
significance set at arbitrary level ($P<0.05$), and is presented as mean (95% confidence
intervals), and partial-eta squared (η_p^2) effect sizes, with 0.01, 0.06, and 0.14 denoting
small, moderate, and large effects, respectively (30). For non-normally distributed data, a
Mann-Whitney U test was conducted with median and range reported. Categorical data was
analysed using a Chi-squared test of independence and reported as percentage and
frequency. When ≥1 cell had an expected value <5, the Fisher’s exact test was used.

Results
Patient Characteristics
One-hundred and twelve ($n=112$) cardiac patients were included for analysis (61.3 years
[59.4-63.1]; 29.3 kg·m$^{-2}$ [28.5-30.1]; 88% male). Forty-two patients ($n=42$; 37.5%) undertook
their CPET on a cycle ergometer. Patients on a cycle ergometer achieved 79.1% of their
predicted HRmax [74.6-83.6%], an RPE of 18 [17-18], and a peak respiratory exchange ratio
(RER) of 1.02 [1.00-1.05). Seventy (n=70) patients undertook CPET on a treadmill. Patients conducting CPET on a treadmill achieved 82.3% [79.7-84.9]% of predicted HRmax), an RPE of 17.8 [17.3-18.3], and a peak RER of 1.09 [1.06-1.11]). 77% and 86% of the patients undergoing cycle and treadmill testing, respectively, were prescribed beta-blockers. The majority of patients had a diagnosis of myocardial infarction (MI) with primary (32.5%) or elective (28.9%) PCI. There was a greater prevalence of active smokers (P=0.017) in those that conducted a CPET on a cycle ergometer. There were significant between-group differences for age (P=0.012; \(\eta^2=0.054\)), and resting HR (mean difference 5.8bpm (95% CI 1.0-10.5bpm) P=0.032; Table 1) between the test modality groups. 42 out of 112 patients, were classified within the lower cardiorespiratory fitness group, 50 in the moderate-fit group, and 20 in the high-fit group (Table 2).

VAT, HRR zones, and CRF categories

Measured HRR (72 ± 15 bpm) derived from maximal CPET demonstrated only a modest correlation with predicted HRR (77.99 ± 20.42bpm) (using current UK CR guidelines (r=0.32; P=0.001). However, the directly determined and predicted HRR/peak HR variables were significantly different from each other (mean difference = 6.74bpm (95% CI 2.99-10.49bpm) P=0.001). The VAT occurred within 40-70% of directly determined HRR range in 61.6% of patients. In the remaining 38.4% of patients, 33.9% achieved their VAT at <40% HRR, and in 4.5% of patients, their VAT did not occur until >70% HRR. For predicted HRR, VAT occurred within 40-70% HRR in 44.6% of patients. Of the remaining 55.4% of patients, 45.4% achieved VAT at <40% HRR, and 9.8% at >70% HRR (Table 2).
The VAT occurred between 40-70% of predicted HRR in 21.4% of patients undertaking cycling exercise. The majority (76.2%) of patients exceeded the VAT at <40% HRR. For patients undertaking CPET on a treadmill, 58.5% of patients had a VAT that occurred between 40-70% of predicted HRR, and 27.1% had a VAT that occurred at <40% HRR. Interestingly, the VAT occurred between 40-70% of predicted HRR in 35.8% of patients that were categorised as having a low CRF. 57.1% of patients exceeded their VAT at <40% of their HRR. For higher-fit patients, VAT occurred between 40-70% of predicted HRR in 50% of patients, at <40% HRR in 20%, and >70% HRR for the remaining 30% of patients (Table 2).

Figure 1 shows the inter-quartile range for VAT as a percentage of predicted HRR, based on CRF category, and exercise testing modality. The VAT occurred at a higher percentage of VO$_{2\text{peak}}$ in patients with a higher CRF. This observation was also evident when CPET was conducted on a treadmill for all CRF categories, but most apparently in the moderate and high-fit groups.

Directly measured compared with predicted cardiorespiratory fitness variables

Mean VO$_{2\text{peak}}$ was not significantly different between exercise modality groups in absolute units ($P=0.644; \eta_p^2=0.002$), or relative to body mass ($P=0.359; \eta_p^2=0.008$) (Table 3). However, absolute ($P=0.027$) and relative ($P=0.001$) VAT was significantly different across the different CRF groups. VAT occurred at a higher percentage of predicted ($P=0.003; \eta_p^2=0.08$) and measured VO$_{2\text{peak}}$ ($P<0.001; \eta_p^2=0.151$), and HRR ($P<0.001; \eta_p^2=0.132$) in patients exercising on the treadmill. Measured HRR ($P=0.012; \eta_p^2=0.056$), and HR at VAT ($P=0.016; \eta_p^2=0.052$) were significantly higher in the treadmill group. There was a significant
between-group difference for predicted HRmax adjusted for β-blockade (P=0.003; Table 4). However, there was no difference in predicted HRR (P=0.863; Table 4) or VO_{peak} between groups (P=0.815, <0.001). Figures 2a and 2b highlight individual case studies which demonstrate how the predicted HRR method can either over- or under-estimate individualised exercise prescription versus directly determined HRR and VAT.

Discussion

This study aimed to determine the accuracy of the standard UK approach for prescribing exercise in patients undertaking CR. This method of determining target heart rates for exercise training in cardiac patients relies largely on predictive methods for determining maximal HR (including patients taking beta-blockade). We sought to compare it with a more objective measure of exercise prescription, namely the VAT derived from respiratory gas exchange during a maximal CPET. Our findings indicate that current UK CR exercise prescription guidelines appear susceptible to substantial inaccuracy with more than half of our cohort achieving a VAT outside the recommended target range of 40-70% HRR. We found that 45% of patients had VAT identified at <40% HRR, and in 9% of patients, VAT was identified at >70% HRR, suggesting that the required exercise intensity spectrum is wider than the recommended 40-70 HRR%.

When considering baseline cardiorespiratory fitness, the proportion of patients whose VAT occurred outside the guidelines increased. 57% of low-fit patients achieving VAT at <40% HRR, and 30% of high-fit patients achieving VAT at >70% HRR, confirming that VAT occurs later with increasing CRF in cardiac patients. (31) For those who achieved VAT at <40% HRR,
their exercise prescription may overly exceed VAT and prove too challenging, whilst for
those that achieve VAT >70%HRR, their prescription is unlikely to induce a training stimulus
and prove too easy. We speculate that this may contribute to the 23% attrition rate recently
reported in UK CR,(32) as some patients overly exceed their training stimulus (i.e. low fit
patients), which may be uncomfortable, whilst some do not reach it, thus providing minimal
benefit (i.e. high fit patients), both of which may cause patients to discontinue CR.

Therefore, a one size fits all approach, relying on predictive methods for maximal HR and
estimated HRR to prescribe exercise appears ineffective. Exercise prescription within cardiac
rehabilitation settings needs to be more accurate, patient specific and fine-tuned, ideally
based on ventilatory markers, actual HRR and baseline fitness category determined via
CPET.(33) One option could be to shift from ‘range-based’ to ‘threshold-based’ CR exercise
prescription, with moderate-high intensity exercise, corresponding to work rates between
VAT and critical power, being recommended.(17) Based on the current data, CPET would aid
prescription to ensure that all patients achieved VAT during CR, whilst also ensuring it is not
overly exceeded. This is important given that certain cardiac patients, namely those who
may be more deconditioned, often perform activities of daily living at levels of VO$_2$ that
exceed VAT.(34) Therefore, exercising in steady-state conditions above VAT is vital for these
patients, but may not be possible if it is exceeded. In the late 1970s, limitations in the
relative percent method (i.e %HRR) for prescribing exercise intensity were identified, with a
study by Katch et al showing this method failed to consider individual metabolic
differences,(35) yet it is still a recommended approach today.(8,10) More recent
investigations have proposed a more individualised exercise prescription based on
ventilatory thresholds to personalise individualised training load based on metabolic
responses.(36, 37) Recently, Weatherwax et al reported that in sedentary adults, 12 weeks
of aerobic exercise training based on an individualised exercise prescription using VAT had a
greater effect on the incidence of training response compared to a standardised approach
using HRR. While the exact mechanisms are still not entirely understood, it is believed that
exercise intensity prescribed with the use of ventilatory thresholds takes into consideration
individual metabolic characteristics which are overlooked when using relative percent
methods. (38)

The current data also indicate that VAT is mode-dependent for the overall cohort and across
all three CRF categories. Similar to previous suggestions, (17) VAT occurred at around 50%
HRR on the treadmill but is 12-15% lower on the cycle. A similar relation has also been
observed in patients with chronic heart failure. (39) This mode dependency is also evident in
terms of predicted HRR zones, which are adopted in most UK CR centres, with >75% of
patients on a cycle ergometer achieving VAT at <40% HRR, compared with just 27% of
patients exercising on a treadmill. Previous research has identified a VAT mode dependency
in cardiac patients based on VO\textsubscript{2}. (40) The current results differ somewhat as they show a
mode dependency for patients who are yet to begin as opposed to those who have finished
CR. Furthermore, in the current study this mode dependency is expressed using HRR, which
is adopted in most CR centres, rather than VO\textsubscript{2}.

UK CR is provided by the state-funded National Health Service, unlike CR operating in other
international and EU countries, (15) the integration of CPET equipment is not currently
incorporated into most UK centres and may prove to be prohibitive. (41) Another possible
solution could be to increase the upper intensity limit of exercise prescription in line with
international guidelines at 80% HRR, especially for patients in a higher fit category. (10, 42)
Of the 10 patients whose VAT occurred at >70% HRR, 6 achieved VAT at <80% HRR. This suggests that increasing the upper range of exercise prescription guidelines could be helpful to a small cohort of patients, and provide greater scope for training progression in those that could tolerate it; aligning UK guidelines closer to those seen internationally. (43) This does not however, address the issue for those who achieved VAT at <40%. A further alternative to personalise exercise prescription across the whole spectrum would be to identify the HR range corresponding to an RPE of 11-13, given that VAT has been shown to occur around this point (44, 45). Submaximal testing is routinely performed in UK CR and identification and utilisation of the HR between these points during testing could ensure more patients are exercising at or around the VAT. One caveat to such an option is that RPE is a subjective tool, meaning that appropriate anchoring of key values would be required for each patient, and this would need to be applied consistently within and between each CR centre in the UK.

To be able to confidently prescribe an individualised exercise programme in a safe and effective manner can be challenging in a cardiac population. The healthcare professional must be able to account for medication usage, presence of non-CV co-morbidities, and for example, adverse events during exercise testing. Hansen and colleagues [46] showed significant inter-clinician variance in prescribing exercise for patients with different CVDs, highlighting the challenges posed. Further training and education is key, however, digital resources are available to assist practitioner decision-making processes. For example, the European Association of Preventive Cardiology recently developed the Exercise Prescription in Everyday Practice and Rehabilitative Training (EXPERT) tool.[47] The EXPERT tool is an interactive, digital training and decision support system that assists healthcare professionals in prescribing clinically effective and medically safe exercise training programmes for CVD
patients. The adoption of tools such as EXPERT should be more widely encouraged and facilitated to support decision making processes around exercise prescription in cardiac populations. The impact of their utility within clinical practice could then be audited to determine changes in efficacy.

Limitations

The key limitation is that the two groups are made up of separate patients who varied on some baseline characteristics. Ideally, all patients would have completed a CPET using both modalities to reduce any individual effect.

Conclusion

To our knowledge, this is the first study of its kind to explore VAT in terms of prescribed HRR zones for cardiac patients to identify the accuracy of current UK CR exercise prescription guidelines. For a large proportion of patients, the guidelines are inaccurate with many patients achieving VAT at <40% HRR, meaning their exercise prescription may be overly challenging. Conversely, 30% of high-fit patients achieved VAT at >70% HRR, meaning their prescription may be too conservative to provide a stimulus. This under/over-prescription may lead patients to unnecessarily discontinue their CR (see Figures 2a and 2b). Therefore, for UK CR, a one size fits all approach is ineffective and a shift from predictive equations and submaximal exercise tests to gold-standard CPET on entry to CR would be required to improve exercise prescription. However, this may not be viable for a number of reasons, meaning that adoption of less conservative guidelines could provide a solution to ensuring that a larger proportion of patients achieve a training stimulus. Furthermore, although
VO2peak did not demonstrate a mode dependency, VAT did. This suggests that it may be necessary to conduct a CPET using both modalities, or tailor exercise prescription based on the modality used. Future research could confirm this mode dependency for HRR at VAT in cardiac patients by testing the same group of patients twice, once during each modality.
Funding

This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.

Conflict of interest

The authors declare that there is no conflict of interest.

Author contributions

Both SP and SN have contributed equally to this manuscript, therefore we would like them both to be acknowledged as joint first authors. SN, SC and LI contributed to the design of the work. SN conducted data collection. SN, SB, SP and JP conducted data analysis and drafted the manuscript. SB, JP, SC, LI critically reviewed the manuscript. All gave final approval and agree to be accountable for all aspects of work ensuring integrity and accuracy.
References:

Table 1. Clinical characteristics of patients grouped by exercise modality
Mean (95% CI) † = median and ranges

<table>
<thead>
<tr>
<th>Variable</th>
<th>Pooled (cycle and treadmill data)</th>
<th>Cycle</th>
<th>Treadmill</th>
<th>P-value</th>
<th>Partial eta-squared</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex (male/female)</td>
<td>100/14 (87.70% male)</td>
<td>40/4 (90.0% male)</td>
<td>60/10 (85.7% male)</td>
<td>0.411</td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>61.25 (95% CI; 59.35 to 63.14)</td>
<td>63.13 (95% CI; 60.75 to 65.51)</td>
<td>58.25 (95% CI; 55.21 to 61.29)</td>
<td>0.012*</td>
<td>0.054</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>29.30 (95% CI; 28.54 to 30.07)</td>
<td>30.1 (95% CI; 28.8 to 31.44)</td>
<td>28.8 (95% CI; 29.74 to 27.90)</td>
<td>0.101</td>
<td>0.024</td>
</tr>
<tr>
<td>Resting SBP (mmHg)</td>
<td>131.55 (95% CI; 127.94 to 135.27)</td>
<td>139.57 (95% CI 134.39 to 144.95)</td>
<td>126.74 (95% CI; 122.18 to 131.46)</td>
<td>0.001**</td>
<td>0.099</td>
</tr>
<tr>
<td>Resting DBP (mmHg)</td>
<td>83 (60 to 149)</td>
<td>85.50 (62 to 104)</td>
<td>82 (60 to 149)</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>LVEF (%)</td>
<td>55.77 (95% CI; 54.34 to 57.20)</td>
<td>57.05 (95% CI; 54.35 to 59.75)</td>
<td>54.99 (95% CI; 53.35 to 56.62)</td>
<td>0.167</td>
<td>0.017</td>
</tr>
<tr>
<td></td>
<td>60 (42 to 95)</td>
<td>64 (44 to 95)</td>
<td>56 (42 to 91)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>Resting HR (bpm)†</td>
<td></td>
<td></td>
<td></td>
<td>0.008**</td>
<td></td>
</tr>
</tbody>
</table>

BMI, Body mass index. kg·m⁻², kilogram per metre squared. SBP, systolic blood pressure. mmHg, millimetres of mercury. DBP, diastolic blood pressure. LVEF, left ventricular ejection fraction. HR, Heart Rate. Bpm, beats per minute.

*P<0.05, **P<0.01, ***P<0.001. †, Variables are reported as median (minimum and maximum) values and analysed using a non-parametric test.

Tr, transformed using log₁₀ transformation and reported as arithmetic mean for meaningful interpretation.
Table 2. The occurrence of VAT in relation to predicted HRR training zones, stratified by exercise modality and baseline CRF levels

<table>
<thead>
<tr>
<th>Predicted HRR threshold</th>
<th>Number of patients (%)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pooled cycle and treadmill</td>
<td>Cycle</td>
<td>Treadmill</td>
</tr>
<tr>
<td><40% predicted HRR</td>
<td>51 (45.4%)</td>
<td>32 (76.2%)</td>
<td>19 (27.1%)</td>
</tr>
<tr>
<td>40-49% predicted HRR</td>
<td>24 (21.4%)</td>
<td>5 (11.9%)</td>
<td>19 (27.1%)</td>
</tr>
<tr>
<td>50-59% predicted HRR</td>
<td>15 (13.4%)</td>
<td>4 (9.5%)</td>
<td>11 (15.7%)</td>
</tr>
<tr>
<td>60-69% predicted HRR</td>
<td>11 (9.8%)</td>
<td>0</td>
<td>11 (15.7%)</td>
</tr>
<tr>
<td>>70% predicted HRR</td>
<td>11 (9.8%)</td>
<td>1 (2.4%)</td>
<td>10 (14.3%)</td>
</tr>
<tr>
<td>Total within 40-70% HRR</td>
<td>44.6%</td>
<td>21.4%</td>
<td>58.5%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Baseline CRF category</th>
<th>Low Fit</th>
<th>Mod Fit</th>
<th>High Fit</th>
</tr>
</thead>
<tbody>
<tr>
<td><40% predicted HRR</td>
<td>24 (57.1%)</td>
<td>23 (46%)</td>
<td>4 (20%)</td>
</tr>
<tr>
<td>40-49% predicted HRR</td>
<td>11 (26.2%)</td>
<td>11 (22%)</td>
<td>2 (10%)</td>
</tr>
<tr>
<td>50-59% predicted HRR</td>
<td>2 (4.8%)</td>
<td>8 (16%)</td>
<td>5 (25%)</td>
</tr>
<tr>
<td>60-69% predicted HRR</td>
<td>2 (4.8%)</td>
<td>6 (12%)</td>
<td>3 (15%)</td>
</tr>
<tr>
<td>>70% predicted HRR</td>
<td>3 (7.1%)</td>
<td>2 (4%)</td>
<td>6 (30%)</td>
</tr>
<tr>
<td>Total within 40-70% HRR</td>
<td>35.8%</td>
<td>50%</td>
<td>50%</td>
</tr>
</tbody>
</table>

Predicted heart rate reserve using current guidelines, accounting for beta-blockade. Baseline fitness category based on Taylor et al. (2016); low fit <5 METs for women and <6 METs for men, mod fit = 5<7 METs for women and 6<8 METs for men, high fit ≥7 METs for women, and ≥8 METs for men. VAT, ventilatory anaerobic threshold. HRR, heart rate reserve. MET, metabolic equivalent where 1 MET = 3.5ml·kg⁻¹·min⁻¹.
Table 3. Cardiorespiratory data based on maximal CPET in patients using cycle and treadmill exercise modalities

<table>
<thead>
<tr>
<th></th>
<th>Pooled</th>
<th>Cycle</th>
<th>Treadmill</th>
<th>P-value</th>
<th>Partial eta-squared</th>
</tr>
</thead>
<tbody>
<tr>
<td>VO_{peak} (L·min^{-1})</td>
<td>2.00 (95% CI; 1.88 to 2.11)</td>
<td>2.03 (95% CI; 1.82 to 2.25)</td>
<td>1.98 (95% CI; 1.83 to 2.12)</td>
<td>0.644</td>
<td>0.002</td>
</tr>
<tr>
<td>VO_{peak} (ml·kg^{-1}·min^{-1}) Tr</td>
<td>22.12 (95% CI; 19.8 to 24.7)</td>
<td>21.43 (95% CI; 18.0 to 25.5)</td>
<td>22.55 (95% CI; 19.7 to 25.8)</td>
<td>0.359</td>
<td>0.008</td>
</tr>
<tr>
<td>HRmax (bpm)†</td>
<td>137 (88 to 181)</td>
<td>131 (88 to 181)</td>
<td>139 (88 to 169)</td>
<td>0.32</td>
<td></td>
</tr>
<tr>
<td>HRR (bpm)</td>
<td>71.5 (95% CI; 67.7 to 75.4)</td>
<td>65.1 (95% CI; 58.9 to 71.3)</td>
<td>75.43 (95% CI; 70.69 to 80.17)</td>
<td>0.009*</td>
<td>0.061</td>
</tr>
<tr>
<td>VAT (ml·kg^{-1}·min^{-1})†</td>
<td>13.1 (8.2 to 29.7)</td>
<td>13.3 (8.2 to 26.0)</td>
<td>16.6 (8.6 to 30.0)</td>
<td>0.001***</td>
<td></td>
</tr>
<tr>
<td>VAT (L·min^{-1})†</td>
<td>1.3 (0.7 to 2.5)</td>
<td>1.15 (0.7 to 2.0)</td>
<td>1.35 (0.7 to 2.5)</td>
<td>0.027*</td>
<td></td>
</tr>
<tr>
<td>HR at VAT (bpm)</td>
<td>94 (95% CI; 91 to 97)</td>
<td>90 (95% CI; 85 to 94)</td>
<td>97 (95% CI; 93 to 101)</td>
<td>0.016*</td>
<td>0.05</td>
</tr>
<tr>
<td>VAT (% of VO_{peak})</td>
<td>67.5 (95% CI; 65 to 70)</td>
<td>61.3 (95% CI; 58 to 65)</td>
<td>71.1 (95% CI; 68 to 74)</td>
<td><0.001***</td>
<td>0.151</td>
</tr>
<tr>
<td>VAT (% of predicted VO_{peak}) Tr</td>
<td>56.8 (95% CI; 52 to 63)</td>
<td>51.8 (95% CI; 45 to 60)</td>
<td>60.1 (95% CI; 53 to 68)</td>
<td>0.003**</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>VAT (% of HRR)</td>
<td>VAT (% of HRmax)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>---------------</td>
<td>-----------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>45.90 (95%CI; 43 to 49)</td>
<td>71.58 (95%CI; 70.1 to 73.1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>39.45 (95%CI; 35.6 to 43.3)</td>
<td>69.81 (95%CI; 66.9 to 72.7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>49.77 (95%CI; 46.5 to 53.0)</td>
<td>72.64 (95%CI; 70.9 to 74.4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><0.001*</td>
<td>0.072 0.029</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CPET, cardiopulmonary exercise test. VO$_{2\text{Peak}}$, Peak oxygen consumption. HRmax, maximum heart rate. Bpm, beats per minute. HRR, heart rate reserve. VAT = ventilatory anaerobic threshold. HR, heart rate. *$P<0.05$, **$P<0.01$, ***$P<0.001$.

†, Variables are reported as median (minimum and maximum) values analysed using a non-parametric test. Tr, transformed using log$_{10}$ transformation and reported as arithmetic mean for meaningful interpretation.
Table 4. Relation between predicted and measured variables stratified by mode of exercise

<table>
<thead>
<tr>
<th></th>
<th>Pooled</th>
<th>Cycle</th>
<th>Treadmill</th>
<th>P-value</th>
<th>Partial etasquared</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predicted HRmax (adj</td>
<td>136 (118 to 174)</td>
<td>138 (126 to 174)</td>
<td>134 (118 to 167)</td>
<td>0.009**</td>
<td></td>
</tr>
<tr>
<td>(adjusted for β-blockade; bpm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAT (% of predicted HRmax adjusted for β-blockade)</td>
<td>67.97 (65.86 to 70.07)</td>
<td>62.74 (59.68 to 65.80)</td>
<td>71.10 (68.50 to 73.71)</td>
<td><0.001*</td>
<td>0.131</td>
</tr>
<tr>
<td>Predicted HRR (adjusted for β-blockade; bpm)</td>
<td>77.85 (95% CI; 75.04 to 80.66)</td>
<td>77.93 (95% CI; 73.19 to 82.68)</td>
<td>77.8 (95% CI; 74.24 to 81.36)</td>
<td>0.965</td>
<td><0.001</td>
</tr>
<tr>
<td>VAT (% of Predicted HRR adjusted for β-blockade)</td>
<td>40.35 (9.57 to 87.93)</td>
<td>30.49 (9.57 to 69.23)</td>
<td>47.06 (12 to 87.93)</td>
<td><0.001*</td>
<td></td>
</tr>
<tr>
<td>Predicted VO2Peak (ml·min⁻¹)</td>
<td>2272.14 (95% CI; 2184.11 to 2360.17)</td>
<td>2258.79 (95% CI; 2114.05 to 2403.53)</td>
<td>2280.35 (95% CI; 2166.68 to 2394.01)</td>
<td>0.815</td>
<td><0.001</td>
</tr>
<tr>
<td>VO2Peak (% of Predicted VO2Peak)</td>
<td>87.85 (95% CI; 84.11 to 91.58)</td>
<td>89.99 (95% CI; 82.64 to 97.35)</td>
<td>86.56 (95% CI; 82.40 to 90.72)</td>
<td>0.380</td>
<td>0.007</td>
</tr>
</tbody>
</table>

HRmax, maximal heart rate. Bpm, beats per minute. VAT, ventilatory anaerobic threshold. HRR, heart rate reserve. VO2Peak, Peak oxygen consumption.

*P<0.05, **P<0.01, ***P<0.001. †, Variables are reported as median (minimum and maximum) values and analysed using a non-parametric test.
Predicted HRR using current guidelines, accounting for beta-blockade. Baseline CRF category based on Taylor et al. (2016); low fit <5 METs for women, and <6 METs for men, mod fit 5<7METs for women, and 6<8 METs for men, high fit ≥7 METs for women, and ≥8 METs for men. VAT, ventilatory anaerobic threshold. HRR, heart rate reserve. MET, metabolic equivalent where 1 MET = 3.5ml·kg⁻¹·min⁻¹.
Figure 2a. A case study highlighting how the 40-70% HRR prediction equation may under-estimate individualised exercise prescription. A 58 year-old male taking beta-blockers with a BMI of 24.8, VO2peak of 35.28 ml·kg⁻¹·min⁻¹ in the high fitness category. CPET was conducted on a treadmill. Solid line corresponds to heart rate at ventilatory anaerobic threshold, which is 125bpm.
Figure 2b. A case study highlighting how the 40-70% HRR prediction equation may over-estimate individualised exercise prescription. A 71 year-old male not taking beta-blockers with a BMI of 25.8, VO2peak of 13.82 ml·kg⁻¹·min⁻¹ in the low fitness category. CPET was conducted on a cycle. Solid line corresponds to heart rate at ventilatory anaerobic threshold, which is 72bpm.