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Design and Characterisation of 
Metallic Glassy Alloys of High 
Neutron Shielding Capability
J. C. Khong1, D. Daisenberger2, G. Burca3, W. Kockelmann3, A. S. Tremsin4 & J. Mi1

This paper reports the design, making and characterisation of a series of Fe-based bulk metallic glass 
alloys with the aim of achieving the combined properties of high neutron absorption capability and 
sufficient glass forming ability. Synchrotron X-ray diffraction and pair distribution function methods 
were used to characterise the crystalline or amorphous states of the samples. Neutron transmission 
and macroscopic attenuation coefficients of the designed alloys were measured using energy resolved 
neutron imaging method and the very recently developed microchannel plate detector. The study found 
that the newly designed alloy (Fe48Cr15Mo14C15B6Gd2 with a glass forming ability of Ø5.8 mm) has the 
highest neutron absorption capability among all Fe-based bulk metallic glasses so far reported. It is a 
promising material for neutron shielding applications.

Since the 1980s, researchers in Inoue’s group in Tohoku University and Johnson’s group in California Institute of 
Technology have discovered a series of La-, Mg-, Zr-, Pd-, Fe-, Cu-, and Ti-based multicomponent alloys with 
large undercooling and low critical cooling rates (1–100 K/s) for glass forming1. All these alloys can be cast into 
bulk ingots or cylindrical bars with diameters in a range of a few millimetres to a few centimetres and were called 
bulk metallic glasses (BMGs)1–3. Most of the BMG alloys developed so far have high ultimate tensile strength3, 
high elastic limit4, and exceptionally high corrosion5 and wear resistance6 properties compared to their crystal-
line counterparts with the similar compositions. However, most of the alloys have very low ductility, typically < 
2% in compressive, and < 1% in tensile load conditions1. Hence, structural engineering applications of BMGs 
have stalled because of the low ductility4. Recently, many attempts have been made to develop some of the BMGs 
into coating materials to make use of their exceptional corrosion and wear resistance capabilities. For example, 
Zhang, et al.7, Basu, et al.8 and Singh, et al.9 investigated the possibility of making Fe-based amorphous coatings 
using high velocity oxygen fuel (HVOF)7, laser selective deposition8 and spark plasma sintering9 methods. One 
particular promising Fe-based alloy is Fe48Cr15Mo14C15B6Y2 (named as Fe-B6Y2 hereafter)3. It has a glass forming 
ability of ~9 mm and can be manufactured into amorphous coatings of millimetre thickness onto different metal 
matrix materials. Blink, et al.10 at the Lawrence Livermore National Laboratory, USA investigated systemically 
a number of Fe-based BMG alloys with the aim of using them as coating materials for containers to store spent 
nuclear fuel10. They designed a new Fe-based alloy called SAM2X5 (Fe49.7Cr17.7Mo7.4W1.6Mn1.9Si2.4B15.2C3.8) and 
used HVOF method to spray successfully amorphous coatings on top of prototype nuclear waste containers10. 
The SAM2X5 amorphous coating not only provides very high corrosion resistance (14.3 to 15.9 μ m/year in 90 °C 
seawater, and 26.1 to 29.7 μ m/year in 90 °C NaCl solution), but also a certain level ionised radiation (especially 
neutrons) shielding capability10 for the nuclear waste containing long half-life radioactive elements or isotopes, 
for example, Cm-244 (18.1 years), Pu-238 (87.74 years), Pu-240 (6560 years), and Am-241 (433.6 years)11.

At the end of 2015, there are 441 nuclear power reactors in operation globally12, generating a total electricity of 
382.9 GW(e). Thirty countries currently use nuclear power and about the same number are considering, planning 
or actively working to include it in their energy mix; and 68 new reactors are currently under construction12.

The US nuclear industry estimated that the total amount of commercial spent fuel was 71,775 metric tons at 
the end of 2013, including 22,233 metric tons in dry storage and other separate storage facilities13. It increases 
by an average of 2,150 metric tons annually for the entire US nuclear power industry. A long-term solution for 
high level and long lived radioactive waste is to store them in geologically stable repositories for natural decay14.
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Hence, for containers to store the spent nuclear wastes, their materials must be able to withstand simultane-
ously the corrosion and oxidation caused by the humid and/or corrosive storage environment for very long time, 
and also have as much as possible neutron shield capability.

Currently, the materials that are often selected for making nuclear waste containers are copper, iron, stain-
less steels, titanium alloys and nickel-based alloys15. These materials have low neutron shielding capability, and 
coatings on top of those materials are needed to contain neutron radiation. The SAM2X5 was reported to have 
a neutron macroscopic attenuation coefficient (MAC) of 7.14 cm−1 at the thermal neutron energy (25.3 meV), 
which is more than 3 times higher than that of the borated stainless steel (2.28 cm−1) and twice as good as that of 
the Gd doped nickel-based alloy, C-410 (Ni-Cr-Mo-Gd, 3.84 cm−1).

At present, the SAM2X5 is the best Fe-based amorphous alloys in terms of the combined capability of glass 
forming, neutron shielding and corrosion resistance reported in open literatures. Although extensive studies 
have been carried out to search for and/or design materials with combined very high hardness, high corrosion 
resistance together with high radiation shielding capability, solutions have not been found so far. In this paper, we 
report our recent research on designing a series of new Fe-based amorphous alloys with the aim of achieving the 
highest possible neutron shielding capability and sufficient glass forming capability.

Design and making of the alloys
We designed and made a total of 15 Fe-based alloys with different compositions in the past 4 years through 3 
rounds of progressive improvement in alloy compositions, glass forming ability and neutron shielding capability. 
The details can be found in Chapter 6 of Khong’s PhD thesis16. Due to the page limit, we just chose four typical 
alloys designed in this research (the chemical compositions are listed in Table 1) to describe our alloy development 
strategy and the important results. We used synchrotron X-ray diffraction (SXRD) to study the transition from 
crystalline to amorphous states for the alloys made under different cooling rates. The neutron shielding properties 
of these alloys were measured using the energy resolved neutron imaging technique available at the UK spallation 
neutron and muon source (ISIS, the Rutherford Appleton Laboratory, UK).

For the alloys shown in Table 1, Fe-B6Y2 is the Fe48Cr15Mo14C15B6Y2 alloy reported by Ponnambalam, at el3, 
and was used here as the baseline to benchmark the glass forming ability and neutron transmission of the other 
four alloys. Fe is chosen as the matrix element because of its abundant resource and low cost. Cr and Mo are the 
major elements for contributing the corrosion and wear resistance properties for Fe based BMGs17,18. C contrib-
utes the hardness of the system. More importantly, C and B atoms have smaller radii and form the metalloids 
required for high glass-forming ability19. For enhancing neutron absorption, Gd was chosen because it has the 
highest total neutron cross section among all natural metal elements20,21. Figure 1 shows that, at the neutron 
energies below ~50 meV, the neutron cross section of Gd is nearly two orders of magnitude higher than that of 
B. Above ~50 meV, the neutron cross section of Gd begin to fall off but is still higher than B. However, in the 
energy range from ~500 meV to ~300 eV, i.e. within the resonance neutron energy range (1 eV–1 keV)22, the total 
cross section of Gd is lower than that of B except at the resonance peak energies. Therefore B can compensate the 
decrease of the total cross section of Gd in this energy range. In the fast neutron energy region (1 keV–10 MeV)22, 
although the total cross sections of both elements reduce significantly, Gd is still about 5–6 times higher than that 
of B20,21. In the designed alloys, Gd and B are therefore the most important elements that provide the capability of 
shielding neutrons over a wider energy range. The ultimate goal of this study is to design and tailor the concen-
trations of Gd, and B, and other major elements in the alloys to achieve the maximum neutron shielding capacity 
with highest possible glass forming ability. The Methods section describes in details how the alloys were made and 
analysed using synchrotron X-ray diffraction and neutron imaging methods.

Results and Discussion
Designed alloys and their glass forming ability. Figure 2 shows the acquired 2D diffraction patterns 
(only a bit more than a half of the whole pattern is shown for those showed in Fig. 2b,c) and the corresponding 
integrated 1D profiles (stacked together with an equal distance of 1 ×  105 in Y direction) for the Ø2 mm sections 
of the Fe-B16, Fe-B16Gd3 and Fe-B15Gd2 alloy samples.

Compared to the lab-based X-ray diffraction technique used in characterising the SAM2X5 coatings10, mno-
chromatic synchrotron X-ray is much more sensitive in picking up nano crystal23 formed in the cast bars. The pair 
distribution function (PDF) derived based on the diffraction dataset is an ideal technique to study the short (< 
5 Å) and medium (5 Å~20 Å) range atomic structures24, especially for metallic glasses25. While long atomic range 
often refers an atomic distance of > 20 Å26.

The empirical rules proposed by Inoue27 are used mainly in designing the alloys. They are based on (1) multi-
ple elements, (2) significant atomic size mismatch > 12% and (3) negative heats of mixing among the three main 

Alloy
Nominal composition  

(atomic percent)
Glass forming ability 

(diameter, mm)

Fe-B16 Fe52Cr19Nb4.5Mn2Si2.5B16C4 < Ø 2

Fe-B16Gd3 Fe50Cr22Nb4Si5B16Gd3 < Ø 2

Fe-B15Gd2 Fe48Cr15Mo14C6B15Gd2 < Ø 2

Fe-B6Gd2 Fe48Cr15Mo14C15B6Gd2 Ø 5.8

Fe-B6Y2 Fe48Cr15Mo14C15B6Y2 Ø 5.8

Table 1.  The compositions of the designed alloys and their glass forming ability.
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elements in the alloys. The designed alloys consist of elements of large atomic radius [Gd (1.74 Å) and Y(1.80 Å)], 
medium [Fe (1.28 Å), Cr (1.30 Å), Mn (1.32 Å), Mo (1.39 Å) and Nb (1.46 Å)], and small [C (0.77 Å), B (0.78 Å) 
and Si (1.02 Å)] atoms28. B, C, and Si are also metalloid elements for improving glass forming ability29. Fe-B16 was 
designed based on the composition of SAM2X510 but replacing the very high melting point elements Mo (2896 K) 
and W (3695 K) with Nb (2750 K). The aim is to lower the melting temperature of the alloy, and at the same time 
to retain the glass forming ability. Unfortunately, the crystalline peaks in the integrated 1D profile and the Bragg 

Figure 1. Total neutron cross section as a function of neutron energy for Gd-157 and B-10 isotopes20, 
and the calculated cross sections for the naturally occurring Gd that consists of 6 stable isotopes, and 
naturally occurring B that has two isotopes21. In the field of nuclear reactor physics22, neutrons can be roughly 
divided into three groups based on their energies: (1) thermal neutrons (25 meV–1 eV), (2) resonance neutrons 
(1 eV–1 keV), and (3) fast neutrons (1 keV–10 MeV).

Figure 2. The selected 2D SXRD patterns acquired from the 2.5 ± 0.1 mm thick disk-shaped samples cut off 
from the different diameter sections of the as-cast step bars, and the corresponding integrated 1D profiles. 
(a) The 2D diffraction pattern acquired from the Fe-B6Gd2 alloy, (b) the Ø2 mm sections from the Fe-B16, Fe-
B16Gd3, and Fe-B15Gd2 alloys, (c) different diameter sections from Fe-B6Gd2 alloy, and (d) different diameter 
sections from Fe-B6Y2 alloy.
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spots in the 2D pattern (especially the needle-shaped features present in the 2D diffraction pattern) indicate that, 
for this particular composition, crystal structures form with possible change of orientation during the solidifica-
tion process. Similar needle-shaped features were reported in the in situ study of TiAl during the transformation 
from α  to γ  phases using SXRD30. In our study, the research focus is on identifying the critical diameters of the 
as-cast step bars where transitions from crystalline to full amorphous state occur, hence the detailed structures of 
those crystalline phases formed in the non-amorphous diameter sections were not characterised.

Fe-B16Gd3 was designed based on Fe-B16 by replacing C4 with Gd3 and removing Mn completely. The aim is to 
have the highest atomic percentage of (B +  Gd), i.e. 19 at.%, and also to study the possibility of using B without C 
to retain the glass forming capability.

The 1D profile shows that, compared with that of Fe-B16, the crystalline peaks are less intense, and the insert 
2D pattern shows a faint halo ring and therefore suggests that the amorphous nature has improved. The result 
shows that the adding of 3 at.% Gd gives an apparent benefit in improving the glass forming capability.

Encouraged by the results from Fe-B16 and Fe-B16Gd3, we designed alloy Fe-B15Gd2. The diffraction pattern 
obtained from this alloy (Fig. 2b) shows even less crystalline features than that for Fe-B16Gd3. The 1st and 2nd 
amorphous halos are now visible in the 2D pattern and faint crystalline features are present in the integrated 1D 
profile. The results from Fe-B15Gd2 suggest that, with a further tuning of composition, it should be possible to 
design an alloy with more stable amorphous state. By reference to the Fe-B6Y2 alloy reported by Ponnambalam 
et al.3 and the recent work by Lavorato et al.31, it seems that the key for the fine tuning of the alloy composition is 
to tailor the ratio of C and B. Based on this judgment, the alloy Fe-B6Gd2 was made by replacing Y2 with Gd2 and 
retaining the ratio of C:B =  15:6.

Figure 2c shows the integrated 1D profiles (stacked with an equal distance of 1.5 ×  104 in Y direction) for the 
Ø2, 3, 4, 5.8 and 7.7 mm sections and the selected (corresponding) 2D diffraction patterns for the alloy Fe-B6Gd2. 
Clearly, for the sections of diameter less than or equal to Ø5.8 mm, a full amorphous state is achieved. Crystalline 
peaks only appear in the Ø7.7 mm diameter section, indicating that this alloy has a glass forming ability of at 
least ~Ø5.8 mm. We also studied the benchmark alloy, Fe-B6Y2, and the results are showed in Fig. 2d. Similarly to 
Fe-B6Gd2, a full amorphous state is retained up to Ø5.8 mm section. In the Ø7.7 mm section, minor crystalline 
peaks appear in the integrated 1D profile as sharp ring patterns appear in the corresponding 2D pattern. Based 
on the SXRD studies, we conclude that the alloy Fe-B6Gd2 has a similar glass forming ability as the widely studied 
Fe-based metallic glass alloy, Fe-B6Y2.

To further characterise the amorphous state of the different diameter sections of the as-cast bars of the 
Fe-B6Gd2 and Fe-B6Y2 alloys, the pair distribution function (PDF) was used, and the results are showed in Fig. 3a 
and Fig. 3b for the different diameter sections (stacked with an equal distance of 6 in Y direction).

For Fe-B6Gd2 (Fig. 3a), all G(r) profiles are very similar until Ø5.8 mm, which all show the typically broad and 
diffuse peaks (the 1st, 2nd and 3rd peaks as marked on Fig. 3a) in the short and medium atomic ranges. However, 
at Ø7.7 mm, the three peaks become sharper, especially for the 3rd peak. In addition, a series of small sharp peaks 
appear beyond the 3rd peaks in the medium atomic range region. Actually, the corresponding 2D/1D diffraction 
patterns for the Ø7.7 mm section (Fig. 2c) clearly show that crystalline phases occur at Ø7.7 mm. We did not 
conduct any further analyses on those crystalline phases, because it is out of the scope of this study, and does not 
affect the conclusion of the research reported in this paper.

Figure 3. Reduced pair distribution function, G(r), calculated from the 1D SXRD profiles for different diameter 
sections of the step-bars of (a) Fe-B6Gd2 and (b) Fe-B6Y2 alloys.
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As for Fe-B6Y2 (Fig. 3b), it is very interesting to find that, for the diameter sections until Ø5.8 mm, the PDFs 
are almost identical to the corresponding PDFs showed in Fig. 3a. At Ø7.7 mm, the features of the first 3 peaks 
remain quite similar to those of the Ø5.8 mm case in terms of the peak position and the intensities. Beyond the 
3rd peak (> ~7.6 Å), a series of small peaks appear in a repeated manner, suggesting crystalline phases appear at 
this diameter section, but apparently less intense than the Ø7.7 mm case showed in Fig. 3a. Both Y and Gd have 
3 valence electrons with very similar ionization energy (600 kJ/mol for Y, and 593.4 kJ/mol for Gd), and similar 
atomic radius (1.80 Å for Y, and 1.74 Å for Gd). Compared Fig. 3a with 3b, it is interesting to find that the swap of 
Y with Gd resulted in almost identical atomic structures in the short and medium atomic distance regions, i.e. the 
same structures for the 1st, 2nd and 3rd atomic shells for the two alloys. Such identical structural information can 
only be obtained by using the PDF analyses on the data acquired from SXRD, which is impossible when lab-based 
XRD was used as in the work of Lavorato, et al.31 and that of Blink, et al.10 where much uncertainty remained on 
whether or not the cast plates31 and coatings10 made by them contained nanocrystalline phases. The combined 
SXRD and PDF analyses conclude that amorphous states can be achieved for both Fe-B6Gd2 and Fe-B6Y2 alloys 
up to Ø5.8 mm. The similar glass forming ability of Fe-B6Gd2 as that of Fe-B6Y2 indicates that Fe-B6Gd2 is a prom-
ising material for making amorphous coatings32.

Neutron transmission. We used the pulse neutron beam produced by the spallation neutron source at ISIS, 
Rutherford Appleton Laboratory, UK to study the neutron absorption capabilities of the designed alloys. The 
details of sample preparation and experimental set up are described in the Methods section as well.

Figure 4 shows the averaged MAC and neutron transmission for the four alloys. The MAC of SAM2X5 at 
25.3 meV is also showed on Fig. 4a (the green square).

Clearly, Fe-B6Y2 has the lowest MAC in this neutron energy range followed by Fe-B16. Actually, in both Fe-B6Y2 
and Fe-B16, the neutron absorption contributions are mainly due to B, which has a total neutron cross section21 
of 767 barn at 25.3 meV, and significantly higher than that of Cr (3.05 barn), Nb (1.15 barn), Mn (13.3 barn), Si 
(0.171 barn), C (0.0035 barn), Mo (2.48 barn), and Y (1.28 barn). Whereas, in addition to B, both Fe-B6Gd2 and 
Fe-B15Gd2 alloys contain Gd (49700 barn at 25.3 meV). In theory, Gd should provide approximately 2 orders of 
magnitude higher in neutron absorption than that of B in the energy range below ~50 meV. In this study, the neu-
tron transmission measurement, and the calculated MAC in Fig. 4a give more systematic data for us to evaluate 
the designed alloys’ performance in terms of neutron absorption versus neutron energy. In the neutron energy of 
> 200 meV, the four alloys actually show approximately the similar MAC trends in Fig. 4a. It is interesting to see 
that Fe-B15Gd2 has almost the same profile as that of Fe-B16 in the neutron energy of > 400 meV, because the two 
alloys just have 1 at.% difference in B, while the 2 at.% Gd added into Fe-B15Gd2 does not enhance the neutron 
absorption capability anymore above 400 meV. This is simply because the drop of the neutron total cross section 
of Gd in that energy range as showed in Fig. 1. The insert figure in Fig. 4a also shows that the MAC of Fe-B16 is 
higher than that of Fe-B6Gd2 when neutron energy is > 180 meV, indicating that B is taking over Gd in that energy 
range to provide the neutron absorption capability. Hence, both Gd and B are the essential alloy elements for 
designing alloys with high neutron absorption capability in a wider neutron energy range.

Fe-B15Gd2 is slightly better than Fe-B6Gd2 with the addition of the B component. However, the SXRD data 
show that Fe-B15Gd2 is a crystalline alloy, which will most likely to significantly reduce the corrosion resistance33. 
While Fe-B6Gd2 has a glass forming ability of Ø 5.8 mm, and the glass nature of the alloy allows a much more 
homogeneous distribution of Gd and B elements in the glassy matrix. Therefore at microlevel, the effect of neu-
tron absorption will be much more homogeneous.

Figure 4b shows the effectiveness of Fe-B6Gd2 alloy for absorbing neutrons if used as a coating material with 
the thicknesses of 0.1, 0.5, 1.0 and 1.5 mm, and the comparisons with the benchmark Fe-B6Y2 alloy. At approx-
imately below 100 meV, Fe-B6Gd2 alloy materials are generally performed much better than those of Fe-B6Y2 
alloy materials. From engineering point of view, only 1/4 or 1/5 of the thickness of Fe-B6Gd2 alloy materials 

Figure 4. (a) The averaged MAC for the four alloys calculated based on the measurement of neutron 
transmission for each case in the range of 5–1000 meV neutron energy. The insert shows an enlarged area for 
the MAC from 200 meV above. (b) The calculated neutron transmission for the Fe-B6Y2 and Fe-B6Gd2 alloys at 
different thicknesses.
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would achieve the similar neutron absorption capability as those of Fe-B6Y2 alloy materials. In the energy range 
of 10–50 meV, the 0.1 mm thick Fe-B6Gd2 alloy has a better neutron absorption capability than the 1.5 mm thick 
Fe-B6Y2 alloy material. So far, Fe-B6Gd2 is an amorphous alloy (with Ø 5.8 mm glass forming ability) with the 
highest neutron shielding capabilities. Currently, long-term corrosion resistance tests and neutron radiation 
induced crystallisation experiments for the designed alloy are underway to evaluate the long-term stability of the 
designed alloys.

Conclusion
A systematic study on designing and developing new Fe-based amorphous alloys with high neutron absorption 
capability has been carried out. The transitions from crystalline to amorphous states for those alloys were char-
acterised using synchrotron X-ray diffraction and pair distribution function methods. It was found that the alloy 
with the composition of Fe48Cr15Mo14C15B6Gd2 has the glass forming ability of at least Ø5.8 mm, similar to that of 
the widely studied bulk metallic glass alloy, Fe48Cr15Mo14C15B6Y2. Neutron transmission measurement confirms 
that Fe48Cr15Mo14C15B6Gd2 is the bulk metallic glass alloy with the highest neutron absorption capability reported 
so far.

Methods
Alloys and sample preparation. The designed alloy compositions are listed in Table 1. For each alloy, ele-
ments with purity of > 99.9% were melted using an arc melting furnace in a Ti-gettered argon atmosphere34, and 
then cast into a copper mould to form step bars with different diameters as shown in Fig. 5.

For each SXRD measurement showed in Fig. 2, the samples were prepared using the following procedure: 
firstly, a 3 mm thick disk-shaped sample was cut off from the middle part of the different diameter sections of 
the as-cast step bar using a precision diamond wheel saw (Buehler IOSMET 1000). Then, the cut surfaces were 
ground using a P1200 SiC grinding paper to remove any irregular cutting groves or traces to ensure that the disk 
samples from different diameter sections have a consistent thickness of 2.5 ±  0.1 mm with smooth surfaces. In 
this way, for each sample, a consistent X-ray transmission thickness and gauge volume for X-ray scattering are 
maintained during the SXRD measurements.

For neutron transmission measurements, thin disk with a thickness of ~0.3 mm were used in the experiments. 
Thin disks with thicknesses of 0.5 mm was first machined off from the middle part of the different diameter sec-
tions of the step bars by electrical discharge machining. Both cut surfaces were ground to P2400 SiC paper, and 
then polished using 6, 3, and 1 μ m diamond suspensions followed by 0.025 μ m colloidal silica. The final thick-
nesses of the polished disks were measured using a micrometre screw gauge (± 1 μ m) and were taken into account 
in the neutron transmission calculations.

Synchrotron X-ray diffraction experiment. The SXRD experiments were carried out at I15, The Extreme 
Condition Beamline, Diamond Light Source, UK. A monochromatic beam of 76 keV (λ =  0.1722 Å and Ø70 μ m 
beamsize was used. A Perkin Elmer flat panel 1621EN 2D detector was used to acquire the 2D diffraction pat-
terns. The sample-to-detector distance was set at 327.65 mm in order to achieve a high range of scattering vectors 
Q, (4π sinθ/λ), of ~20 Å−1. 20 s exposure times were used for each diffraction pattern acquisition. For each sample, 
five background patterns and five diffraction patterns were taken. The tilt, yaw, and sample-to-detector distance 
for all diffraction patterns were calibrated using the diffraction patterns obtained from a standard Si calibrant and 
the FIT2D software35.

Pair distribution function analysis. Fit2D was used to obtain the integrated 1D profiles from the 2D 
patterns acquired from the background and the samples. The 1D profiles were then imported into software pdf-
getX236 for PDF analyses. The procedure is as follow:

Figure 5. A photo and a drawing, showing the dimension of the as-cast step bar. 
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1. The original sample 1D profiles, [Iraw(Q)], were corrected for the normalization factor (N), X-ray polariza-
tion (P), and the calculated Compton scattering ;[Icompton(Q)] from the sample alloy composition using Eq. 1.

= + +( )I Q NP I Q I Q I Q( ) ( ) ( ) ( ) (1)raw coherent compton background

2. The correction was to extract the coherent intensity (Icoherent(Q)) which was converted into the structure 
factor (S(Q)) using Eq. 2 37.
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Where ci and fi are the atomic concentrations and atomic scattering factors38, respectively.
3. Finally, S(Q) was converted into the reduced pair distribution function (G(r)) by Fourier transform using 

the Eq. 3.

∫π= −
∞

G r Q S Q Qr dQ( ) 2 ([ ( ) 1]sin( ) (3)0

Where (r) is the atomic distance in Angstrom.
In theory, the calculation of G(r) needs Q to be available in the range of [0, ∞ ]. However, it is impossible to 

obtain an unlimited Q in real X-ray diffraction measurement, and the practical approach is to obtain a largest 
possible Q. Because Q =  4π sinθ/λ, a high energy (i.e. a shorter wavelength, λ) monochromatic X-ray beam is 
essential for obtaining a larger Q16,34.

Time of flight neutron transmission measurement. The neutron transmission measurements were 
carried out at the beamline ROTAX of the spallation neutron source, ISIS, UK. The spallation neutron source con-
sists of a tungsten target and a cold 110 K methane neutron moderator at a pulse repetition rate of 50 Hz. A chop-
per system consisting of a ‘t-zero’ chopper and a disk chopper were used to filter out gamma radiation generated 
at the time of neutron production in the spallation target and to remove very slow neutrons below 5 meV from the 
incident beam, respectively. The flight path from the moderator to the detector was determined as 15.865 m by a 
calibration measurement, and then was used to calculate the TOF and neutron energies. The thin disk samples 
were carefully placed on a 30 ×  30 mm2 pure Al foil with a thickness of 0.1 mm. The samples were held firmly and 
positioned using Al adhesive at the edge of a sample, leaving most of the area of the sample without any other 
obstacle for the incident neutron beam as shown in Fig. 6a.

A microchannel plate (MCP) detector with Timepix readout39 was used for the measurements. The detector40 
has a detecting area of 28 ×  28 mm2 and 512 ×  512 total pixels with each pixel having a size of 55 ×  55 μ m2. The Al 
foil with the set of samples was then placed in front of the MCP detector and the sample-to-sensor distance was 
about 12 mm. In order to prevent any neutron damage to the readout electronics and reduce background neutron 
scattering, boron carbide shielding (the black sheet showed in Fig. 6a) was also placed around the detector area 
as illustrated in Fig. 6b.

Figure 7a shows the thin disk samples glued on the Al foil and Fig. 7b shows a typical Time-of-Flight (TOF) 
neutron transmission image (radiography) acquired at 80 meV for the thin disk samples. The count rates versus 
neutron energy recorded by the MCP in an ‘open beam’ condition for the Al foil and a selected sample after detec-
tor dead-time correction are shown in Fig. 7c. Open beam means images collected without the samples and the Al 
foil, which were used to normalize the difference in incident neutrons numbers at different energies. The irregular 
shape of the measured profiles are because of (1) a combination of the energy dependent beam flux profile on the 
beamline, (2) varying TOF bin widths for different sections of the covered time regime, and (3) at higher energies 

Figure 6. Time of flight neutron transmission experiment. (a) A photo, showing samples placed on the 
front face of the MCP detector where the actual detector plate is 12 mm behind the front face, (b) a schematic, 
showing the experimental setup, and neutron images acquired.



www.nature.com/scientificreports/

8Scientific RepoRts | 6:36998 | DOI: 10.1038/srep36998

(shorter TOF values), the influence of the 50 Hz ‘t-zero’ chopper blade moving out of the beam. The drop of count 
rates at ~103 meV is due to change of the bin-width from 20.48 μ s to 0.48 μ s.

For each pixel, the time of arrival of each detected neutron was registered and transferred into a histogram 
of 2676 time channels, i.e. a single measurement results in a stack of many time-of-flight radiographies (Fig. 6c). 
Therefore, to minimise the deadtime effects, the entire TOF range was separated into six regions separated by five 
320 μ s readout gaps and the acquired image sequence was further corrected for the detector deadtime using an 
overlap correction algorithm40. For all thin disk samples, transmission images with the energy range from 5 to 
2 ×  108 meV were collected, but only the energy range from 5 to 1000 meV was analysed to investigate the neutron 
shielding capabilities for various energies of neutrons as Gd total cross section decreases rapidly in the epithermal 
neutron range.

The transmission Ts can then be calculated by dividing the sample images to the open beam images. However, 
in our case we chose a different procedure in order to remove the effect of the Al foil and improve the counting 
statistics. The analysis procedures are outlined below.

Firstly, the TOF neutron intensity was normalised by dividing the raw images data of the samples by the ‘open 
beam’ images. Secondly, the neutron TOF neutron transmission profile of a sample (with Al foil behind it) from a par-
ticular area of ~Ø10 pixels in diameter was extracted from each sample. Three areas were selected from each sample 
and their neutron transmission profiles were averaged, and taken as the transmission profiles for sample plus Al foil.

Secondly, the neutron attenuation generated from the Al foil needs to be corrected. The transmission profile 
of an empty area (with the Al foil but without sample) as shown in Fig. 7b was extracted from an area of the same 
size ~Ø10 pixels in diameter, and data from at least three different such locations were extracted and averaged, 
and taken as the Al only neutron transmission profile. Finally, the sample transmission was obtained by dividing 
the sample plus Al foil neutron transmission profile by the Al only neutron transmission profile.

This operation, of course, assumes that the incident neutron beam is spatially and spectrally homogeneous 
across the effective detector area of 28 ×  28 mm2. Although the incident beam and the detector response are not 
uniform, both are normalized out by the open beam.

Figure 7d shows an example of the corrected TOF neutron transmission profile (the black line) versus the 
calculated TOF neutron transmission profile (red line) for the framed sample showed in Fig. 7b. The measured 
results agree with the calculation between 60 meV and 1000 meV. However, above 1000 meV, the neutron flux was 

Figure 7. (a) The thin disk-shaped samples glued on the Al foil and the Time-of-flight neutron transmission 
measurement, (b) neutron transmission image at 80 meV, for the 12 thin disk samples mounted on the Al foil, 
(c) dead-time corrected TOF results for the open beam, the Al foil and the framed sample in Fig. 7b, (d) a 
corrected TOF neutron transmission profile (the black line) versus the calculated TOF neutron transmission for 
the framed sample (red line) showed in Fig. 7b.
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significantly reduced because of the characteristics of the beamline, and the contribution of background signal 
becomes substantial. This leads to an increased noise level and increased errors in the measurement. Hence, the 
data analyses are limited to the measured data in the neutron energy from 5 to 1000 meV.

Figure 8 shows the measured neutron transmission profiles for the four alloy samples with different diameter 
sections and thicknesses. Because the neutron transmission measurements are dependent on the thickness of the 
sample, for easy comparison, the MAC (Σ t) for each alloy are calculated using the Lambert-Beer’s law in Eq. 4, 
and showed in Fig. 4a.

= Σ−T e (4)s
xt

where Ts is the transmission coefficient, x is the thickness of the sample.
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