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Abstract

Background: The manual diagnosis of neurodegenerative disorders such as Alzheimer’s disease (AD) and related
Dementias has been a challenge. Currently, these disorders are diagnosed using specific clinical diagnostic criteria and
neuropsychological examinations. The use of several Machine Learning algorithms to build automated diagnostic
models using low-level linguistic features resulting from verbal utterances could aid diagnosis of patients with
probable AD from a large population. For this purpose, we developed different Machine Learning models on the
DementiaBank language transcript clinical dataset, consisting of 99 patients with probable AD and 99 healthy controls.

Results: Our models learned several syntactic, lexical, and n-gram linguistic biomarkers to distinguish the probable
AD group from the healthy group. In contrast to the healthy group, we found that the probable AD patients had
significantly less usage of syntactic components and significantly higher usage of lexical components in their
language. Also, we observed a significant difference in the use of n-grams as the healthy group were able to identify
and make sense of more objects in their n-grams than the probable AD group. As such, our best diagnostic model
significantly distinguished the probable AD group from the healthy elderly group with a better Area Under the
Receiving Operating Characteristics Curve (AUC) using the Support Vector Machines (SVM).

Conclusions: Experimental and statistical evaluations suggest that using ML algorithms for learning linguistic
biomarkers from the verbal utterances of elderly individuals could help the clinical diagnosis of probable AD. We
emphasise that the best ML model for predicting the disease group combines significant syntactic, lexical and top
n-gram features. However, there is a need to train the diagnostic models on larger datasets, which could lead to a
better AUC and clinical diagnosis of probable AD.
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Background
Alzheimer’s disease (AD) is the most common form of
dementia [1–4]. However, the manual diagnosis of AD
and other types of dementia is currently challenging
[5–8]. Moreover, AD has been typically diagnosed
through extensive neuropsychological examinations using
a series of cognitive tests containing a set of questions
and images [9–12]. For example, the Mini-Mental State
Examination (MMSE) and theMontreal Cognitive Assess-
ment (MoCA) screening tools are composed of a series
of questions and cognitive tests that assess different cog-
nitive abilities [13]. With a maximum score of 30, an
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MMSE score of 27 and above is suggestive of not having
a dementia related disease [4]. The challenge with these
cognitive tests is that they are administered manually.
Also, the accuracy of the tests depends on the clinician’s
level of experience and their ability to diagnose different
sub-types of the disease [14, 15]. Often, researchers and
clinicians need to combine other cognitive tests with the
MMSE [15, 16]. In most cases, a reasonably long interval
of up to two years is necessary to use the MMSE to dis-
tinguish between the sub-types of dementia; for example,
from Mild Cognitive Impairment (MCI) to AD [4, 17]. As
the dementia subtypes include probable and possible AD,
Vascular Dementia, Dementia with Lewy Bodies (DLB),
Mixed Dementia, Parkinson’s Disease and others1, it is
challenging for the MMSE to manually distinguish effec-
tively between all these possible categories over a large
population [16].
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Research has also shown that the reliability of the
neuropsychological examinations for diagnosing AD and
related dementias could be limited. For example, the
National Institute on Aging and the Alzheimer’s Associa-
tion workgroups on diagnostic guidelines for Alzheimer’s
disease has called for effective methods (other than the
usual neuropsychological measures through mental sta-
tus examination) that could be used to diagnose AD and
related dementia [18, 19]. As part of the recommen-
dations in [19], an effective diagnostic measure should
include amnestic and nonamnestic presentations that are
able to capture cognitive deficits from retelling a recently
observed scenario, language presentation (lexical, syn-
tactic, and others), visuospatial presentation of objects
and their semantic interpretations, and executive function
such as reasoning with a sense of judgment in accomplish-
ing a specific task.
As opposed to the ad hoc use of neuropsychologi-

cal examinations, linguistic ability captured from verbal
utterances could be a good indication of symptoms of AD
and other dementia related diseases [20]. The premise is
that neurodegenerative disorders (ND) deteriorate nerve
cells that control cognitive, speech and language processes
[21], which consequentially translates to how patients
compose verbal utterances [22]. According to [23], syn-
tactic processing in acquired language disorders such as
Aphasia in adults has shown promising findings, encour-
aging further study in identifying effective syntactic tech-
niques. Similarly, [24] emphasised the significance of
lexical-semantic components of a language, part of which
is observable during utterance acquisition at a younger
age. Locke’s work further highlighted that as the lexical
capacity increases, syntactic processing becomes auto-
mated, thence leading to changes in language. As such, it
was inferred that the effects of a specific language disorder
can cause changes to the lexical and syntactic processes
governing language and verbal utterances.
In [3], the efficacy of using complex syntactic features

to classify MCI – which is a precursor to AD – was
demonstrated. That study is relevant, as it used spo-
ken language characteristics to discriminate between 37
patients with MCI and 37 in the healthy elderly group.
In that work, a total of 21 linguistic features from speech
and syntactic measures including pause and syntactic
annotations were extracted. Seven linguistic features were
found to be statistically significant for immediate logic
memory. A combination of several test scores and those
linguistic features achieved up to 86.1% AUC. On the
other hand, our current work distinguishes patients with
probable AD using several low-level syntactic and lexi-
cal features, which are more representative of the lan-
guage space of both the disease and the healthy controls.
In this work, we also introduced for the first time an
extensive use of word n-grams to detect patients with

probable AD with up to 1000 useful and discriminating
features.
Similarly, [25] investigated the significance of lexical

and syntactic features from the verbal narratives of AD
patients by performing several statistical tests based on
121 elderly participants comprising 60 subjects with AD
and 61 healthy subjects. Their lexical features were com-
posed of word-finding difficulties, immediate word rep-
etition of isolated words, word revisions, semantic sub-
stitutions, and phonemic paraphasias. For syntactic fea-
tures, coordinated sentences, subordinated sentences, and
reduced sentences were examined. Upon performing and
making comparisons between the parametric Student’s
t-test (t) and the non-parametric Mann-Whitney test
(U), only word-finding difficulties, immediate repetitions,
word revisions, coordinated sentences, and reduced sen-
tences were found to be statistically significant with p
= 0.001 at the 95% Confidence Interval (CI). Further
posthoc analysis with the Wald test (Wald X2) showed
that immediate word repetitions, word revisions, and
coordinated sentences could be used to distinguish those
patients with AD from the healthy elderly group. While
[25] did not perform any evaluation usingMachine Learn-
ing (ML) algorithms, we focus on the feasibility of effec-
tively distinguishing the patients with probable AD from
the healthy elderly group by learning additional syntac-
tic, lexical, and n-gram features with an effective ML
algorithm.
More recently, [26] proposed a machine learning tech-

nique to classify patients with primary progressive Apha-
sia from connected speech. In that work, distinguishing
syntactic and semantic features were identified from three
different groups, which included patients with semantic
dementia (SD), progressive nonfluent Aphasia (PNFA),
and healthy controls. Unlike the healthy controls, high
usage of nouns were found to characterise the SD group,
while high usage of verbs characterises the PNFA group.
In contrast, our study focuses on distinguishing between
the patients with probable AD from the healthy controls.
Also, our study includes the use of syntactic, lexical, and
n-gram features for building diagnostic models.
As such, in this paper, we investigate an effective com-

putational diagnostic model for predicting probable AD
from verbal utterances. A potential clinical usefulness
of this work is the ability to predict the probable AD
phenotype, which might have surpassed the MCI stage.
More importantly, there is a reasonable interval in the
pathological pathway between the prodromal AD and full-
blown AD or Dementia [27, 28]. There is also growing
evidence for the likelihood of predicting the AD patho-
logical process in the brain even before clinical symptoms
emanates [28, 29]. As such, it is still important to detect
the probable AD phenotype from the elderly population.
We believe that the detection of probable AD could help
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early intervention before progressing to the full-blownAD
or Dementia where symptoms become substantially pro-
nounced [28]. In addition, our work proposed a simple yet
effective technique to automate the diagnosis of the dis-
ease on a large-scale using speech transcripts only. We
see this as part of the efforts to actualize an automated
telediagnostic tool for the remote diagnosis or screen-
ing of the disease from a large population where the
manual administration of the neuropsychological exam-
inations could be limited. Also, the diagnostic model
could help do a probable assessment of patients with the
disease for possible rehabilitation of aspects of their lan-
guage (cognitive) dysfunction and necessary recommen-
dation of social support that could decrease the caregiver’s
burden [30, 31].
We use several linguistic features from the transcribed

verbal utterances produced by 99 healthy control individ-
uals and 99 probable AD patients from the DementiaBank
dataset2.We proposed the diagnostic models based on the
effective Artificial Intelligence (AI) techniques in Natural
Language Processing (NLP), combined with a reliable ML
algorithm that learns several low-level linguistic features
and identifies the probable AD group from the healthy
elderly group. The computational models proposed in this
paper use three essential components of language. First,
we explore the lexical information contained in the vocab-
ulary space of the patients with AD [32, 33]. Second,
we use the syntactic representation and constituents to
understand the variations in the complexity of grammar
usage between the healthy and disease groups [32, 34].
Finally, we introduce the n-gram model [35], which cap-
tures the pattern of the sequence of words in the language
of the disease and healthy elderly groups. We empha-
sise that the machine learning approach has proven to be
effective in clinical diagnostics [3, 12, 36, 37]. Our predic-
tive models achieved a better Area Under the ROC Curve
(AUC) in distinguishing the probable AD group from the
healthy elderly group.

Methods
It is common in clinical research to conduct an investiga-
tion on the actual patients (or subjects). However, previ-
ous research studies havemade available a series of clinical
datasets that reduce the investigation time considerably.
Although this study did not involve direct interaction
with actual patients, we retrospectively focused on under-
standing the linguistic patterns from the verbal utterances
found of existing patients. Earlier, we have discussed those
utterances to be present in the transcription files con-
tained in the DementiaBank dataset, and we will describe
the dataset further in the dataset section. In this paper, our
focus was to use extensive syntactic, lexical, and n-gram
features for building the diagnostic models. As such, we
identified a total of the top 1000 features for the probable

AD and healthy elderly groups in our dataset. The features
combine syntactic, lexical, and n-gram features from a
possible 16,926 feature space. 9 of those features are syn-
tactic, 14 are lexical features, 1 is a confounding factor
(age), and the remaining 976 are explicit word n-grams
derived from the vocabulary space of both probable AD
and healthy elderly groups. We will describe the features
in detail later in this section. We performed statistical
tests on the extracted features. Both the Student’s t-
test (t) and the Mann-Whitney test (U) were performed
and followed by Multiple Logistic Regression (MLR) that
showed the most significant features. The final ML mod-
els were built using a reliable learning algorithm, which
we will discuss later. We compared our technique with
[3, 25, 37] as benchmark papers.

Datasets
In this study, an existing DementiaBank clinical dataset
was used. The dataset resulted from a longitudinal study
on Alzheimer’s disease and related Dementia, conducted
by the University of Pittsburgh School of Medicine,
which was funded by the National Institute on Aging3.
The dataset contains transcripts of verbal interviews of
patients with probable and possible AD, MCI, and other
related dementia. Participants responded to the inter-
view in the English language based on the description
of the Cookie-Theft picture component, which is part of
the Boston Diagnostic Aphasia Examination (BDAE) [38].
Note that the BDAE Cookie-Theft picture has been shown
to be clinically relevant in identifying linguistic deficits
in both Alzheimer’s disease and Aphasia patients [39].
Although language transcripts from other descriptions
are available as part of the AphasiaBank4 corpus (e.g. the
descriptive BrokenWindow picture and the narrative Cin-
derella fairy tale picture), those transcripts are specifically
for patients with Aphasia.
During the interview, patients were given the Cookie-

Theft picture and were told to discuss everything they
could see happening in the picture. The patients’ ver-
bal utterances were recorded and then transcribed into
the CHAT transcription format [40]. The CHAT tran-
scription format5 is the result of a set of computational
tools developed to expedite the automated transcription
of audio data for research purposes. This format is used
commonly in child language research as part of the Child
Language Data Exchange System (CHILDES) [40], which
is a component of the TalkBank6 project. In this study,
we extract the transcribed patient sentences from the
CHAT files and then pre-process the sentences for fea-
ture extraction. Although some demographic details are
available in the DementiaBank dataset, we have selected
only age, in addition to the extracted features, in order
to measure the significance of the disease with respect
to age.
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Participants
The DementiaBank dataset categorised the participants
into Dementia, Control, and Unknown groups. The
Dementia group consists of 169 probable and possi-
ble AD patients. The AD patients have an approximate
age range of 49 to 90 years. On the other hand, the
Control group consists of 99 healthy elderly individu-
als without any reported diagnosis and with an approx-
imate age range of 46 to 81 years. Since our study
focuses on the binary diagnosis of patients with prob-
able AD from the healthy elderly group, we formed
the AD group with the first 99 probable AD patients,
equal to the number of healthy control individual avail-
able in the dataset. Note that the probable AD patients
correspond to patients with a probable diagnosis of
Alzheimer’s disease. Thus, in our experiments, we will
use the 99 probable AD patients to discriminate the 99
healthy control individuals. It is inferred that using the
patients with probable AD could improve the sensitiv-
ity of our model to correctly predict surfacing linguistic
deficits that may eventually lead to full-blown AD or
Dementia.
Finally, it is important to mention that the longitudi-

nal study that was conducted on the participants in the
DementiaBank dataset includes multiple visits at differ-
ent time intervals, some as far apart as one to two years.
As such, in our study, the selected 99 subjects are based
on the transcript files from the last visit to each of the
participants in the probable AD and Control groups. For
the purpose of this paper, we will subsequently refer to
the probable AD group as PrADG and the healthy elderly
control group as HEG.

Feature extraction
Several features were extracted from the transcript files.
First, we extracted every CHAT symbol in the tran-
script files and stored them according to their frequencies
and positions in each sentence. We emphasise that some
CHAT symbols represent both explicit and implicit fea-
tures that describe the lexical capability of each patient.
For example, having the CHAT symbol [//] at a specific
position within a sentence implies that the patient was
retracing a verbal error, which precedes that position, and
at the same time attempting to make a correction. Sim-
ilarly, the CHAT symbol [/] indicates immediate word
repetition [40]. On the other hand, it is non-trivial to
extract the syntactic features without performing syntac-
tic parsing on the sentences. As such, using the Stanford
Parser [41], we generated the syntactic tree structure of
each sentence and extracted features as appropriate.

Syntactic features
We investigated a number of features that are seen to
demand complex syntactic processing, including the three

syntactic features (coordinated, subordinated, and reduced
sentences) evaluated by [25] and the dependency distance
feature evaluated in [3, 42]. Again, all syntactic features are
extracted from the syntactic tree structures produced by
the Stanford Parser. The proposed syntactic features are
as follows:

• Coordinated sentences: Coordinated sentences are
those whose clauses are combined using coordinating
conjunctions. The number of occurrences for this
feature per patient narrative is obtained based on the
frequency of the coordinating conjunction
Part-Of-Speech (POS) tag (CC) detected in the parse
tree structure.

• Subordinated sentences: Subordinated sentences
are those that are subordinate to the independent
primary sentence to which they are linked. Similarly,
the number of occurrence for this feature per patient
narrative is obtained based on the frequency of the
sub-sentences indicated by the POS tag (S) detected
in the parse tree structure.

• Reduced sentences: Following the definition set out
by [25], this feature represents those subordinated
sentences without a conjunction but with nominal
verb forms (which are either participles or gerund).
To obtain the count for this feature, the frequencies
of POS tags (VBG and VBN) are used.

• Number of predicates: The number of predicates
found in every patient’s narrative can be seen as
another estimation of the sentence complexity. The
predicates are extracted using a rule-based algorithm,
which locates transitive verbs that are followed by
one or more arguments. We emphasise that the
importance of predicate-argument structures has
been explored in the literature for text classification
tasks [43, 44].

• Average number of predicates: The average
number of predicates per patient narrative is
investigated to study its effect.

• Dependency distance: This feature was used in the
study of [42] as a way to measure grammatical
complexity in patients with Alzheimer’s disease. The
distance value is calculated based on the sum of all
the dependency distances, in which each dependency
distance is the absolute difference between the serial
position of two words that participate in a
dependency relation.

• Number of dependencies: For a purpose similar as
to the syntactic dependency distance, the number of
unique syntactic dependency relations found in every
patient’s narrative is examined.

• Average dependencies per sentence: We also
consider the average number of the unique
dependency relations per sentence.
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• Production rules: Production rules derived from
parse trees have been explored in a number of NLP
related classification tasks [45, 46]. We investigate
this feature by counting the number of unique
production rules in the context-free grammar form
extracted from each patient’s narrative.

Lexical features
The lexical features used in this study include the
revision and repetition features proposed in [47] and
evaluated in [25]. The remaining features include the
lexical features that show better improvement with
our models.

• Utterances: The total number of utterances per
patient was computed. Each utterance is identified to
start from the beginning of verbal communication to
the next verbal pause length, such as punctuation or a
CHAT symbol that represents a specific break in
communication [48]. A sentence could have one or
more utterances and an utterance could be one word,
a phrase or a clause. It has been identified that
utterance acquisitions create the grammatical lexicon
for a language [24]. Thus, we hypothesise that the
absolute number of utterances in a conversation could
show the linguistic strength of a potential patient.

• Mean Length of Utterances (MLU): We measure
the structural organisation of sentences using the
MLU. The MLU is the ratio of the total number of
words to the number of utterances [48]. MLU has
been specifically used to measure grammar growth in
children with Specific Language Impairment (SLI)
[49]. In this study, we investigate the significance of
MLU in determining language disorder in patients
with AD.

• Function words: We compute the total number of
function words in the patient’s narrative. Function
words coordinate the meaning of a sentence, and
they are essential attributes to brain and language
processing [50].

• Unique words: We measure the total number of
unique words as the absolute word count minus the
number of immediately repeated words.

• Word count: We estimated the total word count
including repeated words.

• Character length: We measure the absolute
character length of the patient’s narrative.

• Total sentences: This is the complete number of
sentences in the patient’s description.

• Repetitions: This is the number of immediate word
repetitions in the patient’s narrative [25, 47].

• Revisions: This feature estimates the count of pause
positions where the patient retraced a preceding
error and then made a correction [25, 40, 47].

• Morphemes: To capture the morphology structure
of the patient’s narrative, we measured the number of
morphemes. Each morpheme represents a word or a
part of it that cannot be further divided [51].

• Trailing off indicator: we captured the number of
instances at which a patient trails off before
completing an utterance or a sentence. The trailing
off indicator is part of the CHAT symbols [40].

• Word replacement: we identified instances where a
patient used incorrect word or phrase in an utterance
and makes an attempt to reuse the right word or
phrase. The word replacement indicator is part of the
CHAT symbols [40].

• Incomplete words: there are instances where a
patient did not produce all the syllables or letters of a
word. For example, a patient might say just goi in
going. The non-completion of a word indicator is
part of the CHAT symbols [40].

• Filler words: individual words that are attached to
the CHAT fusion marker symbol are identified as
filler words. The words appear in the form of uh or
ehm. The fusion marker is part of the CHAT
symbols [40].

N-gram features - bigrams and trigrams
The use of word n-grams is popular in NLP especially
for developing language models that can characterise
the lexical usage in the grammar contained in a dataset
[32, 52]. A word n-gram is the sequence of words iden-
tified as an independent representation of a part of the
grammar of an utterance or a sentence [52]. n, in this
case, represents the number of words in the sequence.
For instance, when n is 1, it is called a unigram, which
has only one word. Similarly, a bigram and a trigram have
n equal to 2 and 3 respectively, and it is not uncom-
mon to use higher order n-grams (i.e. n ≥ 3) for clinical
machine learning tasks [32]. For the purpose of this study,
our n-grams consist of bigram and trigram features only,
which are from the transcripts of both the disease and
control groups. We put emphasis on bigrams and tri-
grams because both feature types have been known to
have performed with reasonable accuracy in other NLP
and ML tasks [53]. Since n-gram features can be enor-
mous, we will only evaluate their contributions for dis-
tinguishing the PrADG from the HEG during our ML
experiments.

Results and discussion
Statistical evaluation of syntactic and lexical features
One of the challenges that we encountered in evaluat-
ing the features above is that some features are just not
very evenly distributed. An exception to that is the con-
founding feature age. For age, it is our assumption that the
DementiaBank study was designed to cover normally dis-
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tributed participants regarding age range. For the other
generated features, it is understandable, since each patient
would give specific attributes that show the severity of
the disease over time. As such, we performed one para-
metric test (Student’s t-test (t)) and one non-parametric
test (Mann-Whitney test (U)) and then compared the
results of the two tests [25]. We used a 95% confidence
interval (CI) for both lower and upper bounds, and a
p < 0.05 showed statistical significance. All tests per-
formed are two-tailed using the IBM Statistical Package
for the Social Sciences (SPSS) version 20.0.07. The para-
metric and non-parametric tests achieved similar 2-tailed
significance results in both cases as shown in Table 1.
We therefore chose the parametric results for further
statistical evaluation.

Our analysis showed that the statistically significant
syntactic features of the PrADG have lower means com-
pared to the HEG. Our observation is that the probable
AD group appear to have difficulties in constructing com-
plex sentences, unlike the control group. We suggest that
effective use of predicates and reduced structures could be
of vital importance to appropriately measure the linguis-
tic capability in patients with probable AD. On the other
hand, statistically significant lexical features of the PrADG
have higher means compared to the HEG, except for
MLU with just 1.38 difference (PrADG=2.65; HEG=4.03;
p <0.000). This result makes sense, for example, the
PrADG performed more immediate word repetitions and
made more revisions on grammatical errors in their nar-
rative. The PrADG has a higher number of utterances

Table 1 Statistical analysis of syntactic and lexical features from the PrADG and HEG based on Student’s t-test

PrADG HEG t df p 95%

MEAN(SD) MEAN(SD) CI(Difference)

Confounding feature

Age 70.45(8.916) 65.26(8.388) 3.621 148 <0.000* 2.36 to 8.01

Syntactic features

Coordinated sentences 5.09(3.22) 4.85(2.99) 0.55 196 0.584 -0.63 to 1.11

Subordinated sentences 5.42(3.63) 5.13(3.19) 0.60 196 0.547 -0.66 to 1.25

Reduced sentences 2.95(2.48) 4.08(2.57) -3.15 196 0.002* -1.84 to -0.42

Number of Predicates 5.54 (3.44) 6.94(3.53) -2.83 196 0.005* -2.38 to -0.43

Avr. predicates per sentence 0.42(0.19) 0.58(0.22) -5.48 196 <0.000* -0.22 to -0.10

Number of dependencies 100.90(53.36) 100.81(51.44) 0.01 196 0.990 -14.60 to 14.78

Avr.dependency per sentence 8.21(2.69) 8.78(2.36) -1.58 196 0.115 -1.28 to 0.14

Dependency distance 16.21(7.75) 17.09(7.05) -0.83 196 0.405 -2.95 to 1.197

Production rules 128.61(52.00) 126.75(46.35) 0.26 196 0.791 -11.95 to 15.67

Lexical features

Utterances 50.52(35.61) 31.05(15.49) 4.99 196 <0.000* 11.77 to 27.16

MLU 2.65(1.70) 4.03(2.25) -4.86 196 <0.000* -1.94 to -0.82

Function words 58.00(35.84) 59.71(35.33) -0.34 196 0.736 -11.68 to 8.27

Unique words 115.92(63.96) 116.03(59.92) -0.01 196 0.990 -17.48 to 17.26

Word count 127.79(72.62) 127.69(68.45) 0.01 196 0.992 -19.68 to 19.88

Character length 562.35(313.33) 583.21(316.65) -0.47 196 0.642 -109.15 to 67.44

Total sentences 14.01(8.33) 12.48(5.56) 1.52 196 0.131 -0.46 to 3.51

Repetitions 2.09(3.08) 0.70(1.03) 4.27 196 <0.000* 0.75 to 2.04

Revision 4.54(5.27) 2.02(2.20) 4.38 196 <0.000* 1.38 to 3.65

Number of morphemes 117.35(76.56) 117.09(69.65) 0.02 196 0.980 -20.25 to 20.78

Trailing off 0.85(1.18) 0.14(0.38) 5.67 196 <0.000* 0.46 to 0.95

Word replacement 1.28(1.37) 0.44(0.77) 5.30 196 <0.000* 0.53 to 1.15

Incomplete words 5.56(4.05) 3.11(3.42) 4.59 196 <0.000* 1.39 to 3.49

Filler words 6.47(6.89) 4.30(3.53) 2.79 196 0.006* 0.64 to 3.71

*PrADG Probable Alzheimer’s Disease Group (N=99), HEG Healthy Elderly Group (N=99), SD Standard Deviation, df degree of freedom, CI Confidence Interval
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because of pauses and syntactic errors. In many cases, we
observed that the PrADG retraced their errors, which led
to more utterances. The PrADG also tended to express
themselves for a longer duration in their narrative, leading
to an increase in the number of sentences.We suggest that
a higher number of the significant lexical features could
help distinguish the patients with probable AD from the
healthy group.
We then conducted a post hoc test using the MLR

analysis on the resulting significant features from the t-
test. The analysis further demonstrated the distinguishing
strength of the features to predict the disease groups from
the healthy elderly group. Because age is a common fac-
tor attributed with AD and the PrADG is on average five
years older than the HEG (PrADG=70.45; HEG=65.26;
p <0.000), we adjusted for the effect of age as a confound-
ing feature in the MLR analysis. We present the results of
the analysis using the Wald test (Wald X2) and the Odds
Ratio (OR) or Exp(B) at the 95% CI as shown in Table 2.
The OR emphasises the likelihood of having probable

AD when the description contains the distinguishing fea-
tures. Lower β values decrease the probability of having
probable AD. In Table 2, we see that there were signifi-
cant 20% (OR=1.20, p = 0.025) odds that reduced sentences
would appear in the picture descriptions of patients with
probable AD compared to the healthy controls. Similarly,
we observed significant 35% (OR=1.35, p = 0.034) odds
that MLU would predict the PrADG compared to the
HEG. On the other hand, the odds that age and Trailing
off would predict the PrADG significantly reduced by 9%
(OR=0.91, p = 0.002) and 73% (OR=0.27, p = 0.003). This
evaluation leaves out the number of predicates, average
predicate per sentence, utterances, repetitions, revisions,
word replacement, incomplete words, and filler words.
Interestingly, repetitionswere found to be a significant dis-
tinguishing feature in [25], albeit on 121 patients. In our
case, we assume that repeated words would be less signif-
icant given the small data sample while the absolute count
of predicates in a discourse (not at the sentence level)
could bemore representative of the groups instead of their
average per sentence. We will compare the ML predictive
performance of our significant features to [3, 25], and also
[37] which is a precursor to this study.

Evaluations with ML algorithm
We built different feature models and performed different
sets of the experiment to verify the hypothesis that auto-
matic diagnostic models can predict probable AD with
reasonable performance (Additional file 1). We developed
our models with the Sequential Multiple Optimisation
(SMO), which is a variant of the Support Vector Machines
(SVM) algorithm ([54]). As such, the SMO implementa-
tion of the SVM in the Waikato Environment for Knowl-
edge Analysis (WEKA) Java API8 was used in our experime
nts [55].Hence,wewill refer to that implementation as SVM.
As shown in Table 3, we identified the optimal kernel

and hyperparameters for tuning the SVM on a separate
development set by using Auto-Weka [56] with the top
combined 1000 features. Since the DementiaBank dataset
contains multiple visits to the participants, we used the
transcript files from the second to the last visit to create
the development set from which we identified the hyper-
parameters. That set consists of random 40 transcript
files from the patients with probable AD and random 40
transcript files from the healthy controls. Note that the
development set is not a subset of the actual PrADG and
HEG data used for training and testing our model. On the
other hand, the training and testing data consists of tran-
script files from the last visit only (i.e. 99 probable AD and
99 Control). The interval between the two visits is at least
one year. We will evaluate our predictive models on the
last visit PrADG and HEG data only.
We measured the performance of our ML models with

the ROC [3, 57, 58]. The area under the ROC curve,
known as the AUC, is commonly used for evaluating the
performance of clinical diagnostic and predictive models
[59]. The AUC makes a tradeoff between the sensitiv-
ity (true positive rate) and the specificity (true negative
rate) [60–62]. The sensitivity is the percentage of positive
instances which were accurately classified as positive. On
the other hand, the specificity computes the percentage
of negative instances which were accurately classified as
negative. In evaluating a classifier, the ROC curve plots
the sensitivity against 1-specificity (false positive rate) [3,
58, 59]. That curve shows the growth of the classifica-
tion threshold from the very positive threshold where
every instance is classified as positive to the very negative

Table 2 Multiple logistic regression analysis on confounding, syntactic, and lexical features from the PrADG and HEG

Features β S.E Wald X2 p OR 95% CI or OR

Age -0.095 0.030 9.70 0.002* 0.91 0.86 to 0.96

Reduced Sentences 0.185 0.083 5.02 0.025* 1.20 1.02 to 1.41

MLU 0.300 0.142 4.49 0.034* 1.35 1.02 to 1.78

Trailing off -1.300 0.437 8.85 0.003* 0.27 0.12 to 0.64

Constant 2.319 2.108 1.21 0.271 10.17 -

*PrADG(N=99); HEG(N=99); S.E Standard Error, OR Odds Ratio or Exp(β), CI Confidence Interval
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Table 3 Best hyperparameters found for SVM on PrADG/HEG validation dataset (PrADG=40;HEG=40) with Auto-Weka

Algorithm Seed Training time Optimisation method Hyperparameters

SVM-top-1000- 2 3 hours SMAC -C 1.4786727172414378 -N 1 -K "RBFKernel -G

PrADG/HEG 0.0014243946679106075”

seed = random integer for randomising the data during training; SMAC is a Bayesian optimisation method proposed as part of Auto-Weka

threshold where every instance is classified as negative.
When the sensitivity of a classifier is 0.0 and the speci-
ficity is 1.0, then the confidence score of the classifier is
below the set threshold. Conversely, when the specificity
is 0.0 and sensitivity is 1.0, it means the confidence score
of the classifier is above the set threshold. A random clas-
sifier has an AUC of 0.5 with a diagonal line connecting
the origin (0, 0) to the final point (1, 1). An AUC of 1.0
starts the ROC curve from (0, 0) to (1, 0), hence a perfect
classifier [59], which ranks all positive instances above all
negative instances. Note that the AUC is the equivalent of
the Wilcoxon-Mann-Whitney statistic [63], which shows
that a classifier is likely to rank randomly selected posi-
tive cases higher than randomly selected negative cases.
While different clinical diagnostic scenarios make dif-
ferent tradeoff with the AUC, an AUC that is greater
than 0.75 is usually recommended for clinical purposes
[3, 58, 64].
To conduct an informed comparison with the find-

ings from our baselines, we estimated the AUC using the
leave-pair-out cross-validation (LPOCV), which produces
an unbiased estimate of the AUC, especially for clinical
diagnostics [3, 58]. Choosing LPOCV as a reliable clini-
cal evaluation technique has also been extensively argued
and justified in the literature [65, 66]. Unlike other cross-
validation techniques, every pair of positive and negative
cases are evaluated on a model trained on the rest of
the cases. For example, since our dataset consists of 99
PrADG subjects and 99 HEG subjects, each round of the
LPOCV selects a unique pair of one PrADG and one HEG
subjects as the test set for evaluating a model trained with
the remaining 98 PrADG and 98 HEG subjects. The eval-
uation score is the classifier’s confidence c, computed for
each example in the example test pair, and can be used to
calculate the Wilcoxon-Mann-Whitney statistic using the
AUC implementation9 in the WEKA Java API. The AUC
is defined as follows:

c(p, n) =
{
1 if c(p) > c(n)

0 otherwise (1)

AUC(c,P,N) = 1
|P||N |

∑
p∈P

∑
n∈N

c(p, n) (2)

where c(e) is the classifier’s confidence score for an exam-
ple e, P is a set of positive (PrADG) examples, and N is a
set of negative (HEG) examples.We also compute the vari-
ance of the AUC and then report the standard deviation

[3, 58]. The variance σ 2
AUC is computed as follows, where

A denotes the AUC:

σ 2
AUC =

A(1 − A) + (|P| − 1)
(

A
2−A − A2

)
+ (|N | − 1)

(
2A2

1+A − A2
)

|P||N |
(3)

Baselines
We performed our evaluation in comparison with the
significant features identified in the three related papers
[3, 25, 37]. We have implemented the 3 significant fea-
tures proposed in [25] as part of our model, which are
coordinated sentences, revision, and repetition. In [3], the
Wechsler Logical Memory task [67], was used to collect
language and speech data from a narrative memory task,
which required the subjects to listen to a story and then
recall everything they can from the story. That procedure
allowed the subjects to formulate original language struc-
tures on their own. The task also helps to capture both
linguistic and memory deficiencies from the participants
by using various language and speech measures. As such,
we implemented all the 7 Wechsler Logical Memory I sig-
nificant features from [3], which includeWords per clause,
Part-Of-Speech cross-entropy, content density, Standard
Pause Rate, Total Phonation Time, Phonation Rate, and
Transformed Phonation Rate. Note that these features
were extracted from our dataset (Additional file 2)
and not from the dataset used in [3].
As discussed in the Datasets section, it is worth men-

tioning that the language and speech data from the
Cookie-Theft picture description task upon which we
built our models was collected differently from theWech-
sler Logical Memory task. Nevertheless, the Cookie-Theft
picture description task required the subjects to formulate
their language structures by describing the Cookie-Theft
scenes in no particular order. This process is quite impor-
tant in diagnosing patients with AD as many linguistic
defects will likely show in the inability of the patients to
describe the scenes meaningfully. Also, we did not con-
sider the Wechsler Logical Memory II significant features
as a baseline, because that task captures much longer
memory deficiencies by making the subjects recall the
story after 30 minutes or more. Our goal was to detect
immediate linguistic deficiencies from the patients, which
could aid quick diagnostics rather than delay them. Finally,
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additional lexical and n-gram features have been used to
extend the significant features in [37].

Diagnostic task
Aside from the 23 syntactic and lexical features discussed
earlier, our dataset generated 16,903 n-gram features.
Altogether, we generated 16,926 features. As such, we
combined all syntactic, lexical, and n-gram features, and
used the Information Gain (IG) [68] together with the
Ranker algorithm inWEKA to select the top ranked com-
bined 1000 features (top-combined-1000) upon which we
built our diagnostic model. We believe that feature selec-
tion is essential to building our model as it leads to
overall better performance compared to using all possi-
ble features with many redundancies [68]. Thus, using
the LPOCV, we performed experiments to determine
the performance of the top-combined-1000 features. Also,
we evaluated an additional eight other different feature
groupings, among which are the 23 syntactic and lexi-
cal features (23-syntactic-lexical-only), top-1000-n-gram-
only features, and the three baselines’ features (i.e. [3, 25,
37]). As shown in Table 4, our model gave a better AUC
with the top-combined-1000 (AUC=0.93; s.d.=1.89) and
the top-1000-n-gram-only (AUC=0.91; s.d.=2.14) features,
where s.d. denotes standard deviation. More importantly,
most of our proposed features performed better than the
three baselines implemented in this study.
In comparison to the word alignment features in [58],

our top-combined-1000 and top-1000-n-gram-only mod-
els showed better AUC, although those authors did not
use the same set of probable AD patients in our dataset.
The alignment features include graph-based content word
summary score (AUC=0.70; s.d.=3.2); graph-based content

Table 4 Classification AUC and standard deviation comparison
between the proposed and baseline features on the PrADG/HEG

Models AUC(s.d.)

23-syntactic-lexical-only 0.80(3.12)

23-syntactic-lexical-Roark-7 0.82(2.98)

11-t-test-syntactic-lexical-sig. 0.81(3.05)

3-MLR-syntactic-lexical-sig. 0.70(3.71)

top-combined-1000 0.93(1.89)

top-1000-n-gram-only 0.91(2.14)

Orimaye-5-baseline 0.75(3.43)

Delira-3-baseline 0.54(4.06)

Roark-7-baseline 0.73(3.53)

23-syntactic-lexical-only = proposed syntactic and lexical features;
23-syntactic-lexical-Roark-7 = proposed syntactic and lexical features combined
with Roark’s Wechsler Logical Memory I 7 significant features;
3-MLR-syntactic-lexical-sig. = MLR significant features; 11-t-test-syntactic-lexical-sig.
= t-test significant features; top-combined-1000 = top ranked 1000 features
consisting of syntactic, lexical, and n-gram features; top-1000-n-gram-only = top
1000 bigrams and trigrams without syntactic and lexical features
Boldfaced means better results

word word-level score (AUC=0.82; s.d.=2.6); Berkeley con-
tent word summary score (AUC=0.68; s.d.=3.3); Berkeley
content word word-level score (AUC=0.83; s.d.=2.5); BLEU
(AUC=0.70; s.d.=3.2); and Unigram precision (AUC=0.63;
s.d.=3.4). Unlike [58], we did not limit the participants’
descriptions to a certain number of words.
The performance of the 23 syntactic and lexical fea-

tures (AUC=0.80; s.d.=3.12) demonstrates their vital roles
in identifying the linguistic biomarkers in patients with
probable AD. We see that the result supports the statisti-
cal analysis presented in Table 1. We observed significant
differences between the means of the features from the
PrADG and HEG statistically. The model with t-test sig-
nificant features results in a significantly better AUC than
all our baselines, and the model with just three MLR sig-
nificant features (AUC=0.70; s.d.=3.71) gives a better AUC
than the three significant features in the [25] baseline.
Note that we did not consider confounding feature age
as part of the statistical significant features to the SVM
because confounding features are known to introduce bias
to AUC [62]. Significantly, we recorded a better AUC
by combining the 23 syntactic and lexical features with
the significant features from [3] (AUC=0.82; s.d.=2.98).
We see this improvement as a positive indication that
our model has the potential to be improved with further
significant features.
We see that the top-combined-1000 and the top-1000-

n-gram-only features are the particular strength of our
models because of their statistical significance on the
DementiaBank dataset. Unlike some other lexical features,
the n-gram features do not require any manual annotation
and can be easily collected on any other clinically recom-
mended picture in the same manner as the Cookie Theft
picture for the purpose of training a predictive model. We
also believe that the n-gram features captured most of the
important linguistic distinctions between the PrADG and
the HEG.
Following the statistical evaluation performed for the

proposed syntactic and lexical features (Table 1), we per-
formed the t-test for the top ranked 20 n-gram features
for both PrADG and HEG to show the importance of n-
grams to the diagnostic task. Note that we generated the
top 20 n-grams in the same way as the top 1000 n-grams.
As shown in Table 5, all the top ranked 20 n-gram fea-
tures show significant p-values at the 95% CI. It is also
of note that most of the n-grams consist of recognisable
object names from the Cookie-Theft picture. For example,
the window, the mother is, the stool, the sink, and cookie
out of. More importantly, the PrADG mostly had lower
means for each of the n-grams compared to the HEG with
mostly higher means. This result is consistent with the
study conducted by [69], which suggests that the HEG
were able to identify and make sense of more objects than
the PrADG.
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Table 5 Statistical analysis of the top 20 n-gram features from the PrADG and HEG based on Student’s t-test

n-gram PrADG MEAN(SD) HEG MEAN(SD) t df p 95% CI(Difference)

the window 0.12(0.38) 0.62(0.82) -5.45 196 <0.000* -0.67 to -0.32

mother is 0.15(0.44) 0.60(0.70) -5.37 196 <0.000* -0.61 to -0.28

be quiet 0.01(0.10) 0.22(0.44) -4.66 196 <0.000* -0.30 to -0.12

is open 0.04 (0.24) 0.31(0.58) -4.29 196 <0.000* -0.40 to -0.15

the mother 0.22(0.46) 0.61(0.74) -4.37 196 <0.000* -0.56 to -0.21

tipping over 0.00(0.00) 0.17(0.43) -3.98 196 <0.000* -0.26 to -0.09

window is 0.01(0.10) 0.19(0.40) -4.43 196 <0.000* -0.26 to -0.10

girl is 0.14(0.40) 0.44(0.57) -4.29 196 <0.000* -0.44 to -0.16

is tipping 0.00(0.00) 0.14(0.35) -4.02 196 <0.000* -0.21 to -0.07

the window is 0.01(0.10) 0.18(0.39) -4.27 196 <0.000* -0.25 to -0.09

the mother is 0.11(0.35) 0.42(0.61) -4.45 196 <0.000* -0.45 to -0.17

of the cookie 0.08(0.31) 0.32(0.49) -4.16 196 <0.000* -0.36 to -0.13

the stool 0.33(0.74) 0.58(0.67) -2.41 196 0.017* -0.44 to -0.04

is overflowing 0.05(0.33) 0.22(0.42) -3.20 196 0.002* -0.28 to -0.07

the sink 0.68(0.91) 1.17(1.01) -3.62 196 <0.000* -0.76 to -0.22

this is 0.25(0.61) 0.02(0.14) 3.68 196 <0.000* 0.11 to 0.36

cookie out 0.00(0.00) 0.11(0.32) -3.50 196 0.001* -0.17 to -0.05

cookie out of 0.00(0.00) 0.11(0.32) -3.50 196 0.001* -0.17 to -0.05

a cookie out 0.00(0.00) 0.10(0.30) -3.32 196 0.001* -0.16 to -0.04

off the cookie 0.01(0.10) 0.14(0.35) -3.59 196 <0.000* -0.20 to -0.06

*PrADG Probable Alzheimer’s Disease Group (N=99), HEG Healthy Elderly Group (N=99), SD Standard Deviation, df degree of freedom, CI Confidence Interval

Finally, we performed the MLR analysis to adjust for the
effect of age on the top-20 n-gram features. The purpose
is to show whether age affects the predictive power of the
n-grams. As shown in Table 6, we see that the odds that
age would predict probable AD significantly reduced by
14%. On the other hand, features such as the window, the
mother, and girl is had statistically significant odds ratios
(OR) of 7.00 (p <0.000), 4.6 (p=0.024), and 6.7 (p <0.000)
for predicting patients with probable AD compared to the
healthy controls. As such, we believe that the lexical, syn-
tactic, and n-gram features have the potential to predict
patients with probable AD with minimal effects from age.

Limitations
A limitation of this study could be the limited size of the
datasets, which is often a challenge in clinical research.
We believe that an increase in the data sample is likely
to improve the performance of our proposed models for
predicting probable AD from the healthy controls.
The choice of the development set for the Machine

Learning algorithm is also a limitation. In this study, we
used forty random transcript files from “the second to
the last visit" in the DementiaBank dataset to find the
hyperparameters for the SVM algorithm. Although the
longitudinal study has at least a year interval between

Table 6 Multiple logistic regression analysis on confounding and n-gram features from the PrADG and HEG

Features β S.E Wald X2 p OR 95% CI of OR

Age -0.152 0.040 14.56 <0.000* 0.86 0.79 to 0.93

the window 1.946 0.519 14.08 <0.000* 7.00 2.53 to 19.35

the mother 1.526 0.674 5.13 0.024* 4.60 1.23 to 17.23

be quiet 4.263 1.299 10.77 0.001* 71.00 5.57 to 905.46

girl is 1.905 0.541 12.40 0.000* 6.72 2.33 to 19.39

this is -2.967 1.256 5.58 0.018* 0.05 0.00 to 0.60

Constant 7.742 2.512 9.50 0.002* 2302.57 -

*PrADG(N=99); HEG(N=99); SE Standard Error, OR Odds Ratio or Exp(β), CI Confidence Interval
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different visits to the patients, combined with the pos-
sible further deterioration in the cognitive speech of the
patients, it is likely, that the development set forms part of
the training and testing data.
Another limitation of this study is the use of CHAT sym-

bols for the identification of some of the lexical features.
Although the CHAT transcription format has been effec-
tive for analysing speech data [70], it is still not univer-
sally used for speech transcription. Also, currently, speech
transcripts are manually annotated with the CHAT sym-
bols by a carefully trained personnel [40]. As such, the
practical use of some of the lexical features would require
that speech transcripts from potential patients are anno-
tated manually before using the proposed model. Note
that a successful transcription is required to follow the
conventions described in the CHAT Manual [40]. Nev-
ertheless, our top-1000-n-gram-only features are also as
useful as the top-combined-1000 features and could be
better with sufficient data sample. Moreover, the auto-
matic AD transcript annotation with transcript symbols
are potential areas for future research.
Finally, the use of the top performing n-gram features

in this study is confined to the description of the Cookie-
Theft picture. This limitation is understandable since the
objects within the scenes dictate the specific n-gram fea-
tures in the language space of the PrADG and HEG.
Unless a picture with similar objects in the Cookie-Theft
picture is used for collecting the speech transcript, the
use of any other image with different objects is likely to
generate a different set of n-gram features.

Conclusions
The results of our ML experiments and statistical eval-
uations suggest that using ML algorithms for learning
syntactic, lexical, and n-gram features from the verbal
utterances of elderly people could help the diagnosis of
probable Alzheimer’s disease. The outcome of our eval-
uations has verified the efforts of our baseline papers
[3, 25, 58]. However, our study identified more charac-
teristic and representative linguistic features compared
to the benchmark papers. Furthermore, in comparison
to [58], which performed a non-linguistic reference task
with word alignment features on the same Dementia-
Bank dataset with different number of AD patients, our
n-gram models showed better AUC without reducing the
number of words in the language transcripts of the par-
ticipants. Following the results of our experiments, we
emphasise that the bestMLmodel for predicting the prob-
able AD group combines significant syntactic, lexical and
top bigram and trigram (n-grams) features.
Although the proposed diagnostic model has some evi-

dent limitations, we have found that it is capable of cap-
turing cognitive deficits and/or biomarkers from amnestic
and nonamnestic presentations by verbally describing the

clinically relevant Cookie-Theft picture as shown by the
results of our statistical and diagnostic evaluations. We
anticipate that our model has the potential for positive
societal impact to contribute to actualizing an automated
telediagnostic tool for the remote diagnosis or screening
of probable Alzheimer’s disease from a large population.
Moreover, the diagnostic model could facilitate the prob-
able assessment of patients with the disease for possible
rehabilitation of aspects of their language dysfunction and
necessary recommendation of social support that could
decrease economic and caregiver’s burden. We plan to
evaluate our models against the MMSE and MoCA diag-
nostic thresholds on actual AD patients in a developing
country. There is also a need to train the diagnostic mod-
els on larger datasets, which could lead to a better AUC.
Additionally, longitudinal studies are recommended to
improve sample sizes and follow the course of the diseases
over time.

Endnotes
1 http://www.alz.org/dementia/types-of-dementia.asp
2 http://talkbank.org/DementiaBank/
3 http://www.nia.nih.gov/
4 http://talkbank.org/APhasiaBank/
5 http://childes.psy.cmu.edu/manuals/CHAT.pdf
6 http://talkbank.org/
7 http://www-01.ibm.com/software/analytics/spss/
8 http://www.cs.waikato.ac.nz/ml/weka/
9 https://weka.wikispaces.com/Area+under+the+curve

Additional files

Additional file 1: Machine Learning files for all the models presented in
our results, including baseline models. These files contain the transformed
linguistic features from the DementiaBank dataset for both disease and
control groups combined. The files appear in the WEKA Attribute-Relation
File Format (ARFF). (ZIP 78.5 kb)

Additional file 2: Raw transformed data. These files contain the
transformed linguistic features from the DementiaBank dataset and appear
in the Comma Separated Values file format. (ZIP 18.4 kb)
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