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8 L. G. Kovács and linear groups

A. S. Detinko and D. L. Flannery

Dedicated to the memory of Laci Kovács

Abstract

We survey the legacy of L. G. Kovács in linear group theory, with a par-

ticular focus on classification questions.

Classifying linear groups is an old problem. For given degree n > 1, field F,

and group type, the task is to list irredundantly all subgroups of GL(n,F) of that

type up to GL(n,F)-conjugacy. If possible, each conjugacy class representative

should be specified by a generating set of matrices. Examples of the group type

are: finite, soluble, nilpotent, quasi-simple, maximal in its class (provided that each

relevant subgroup of GL(n,F) is contained in a maximal), irreducible, primitive,

monomial, generated by matrices with special properties (e.g., pseudoreflections),

and so on.

To narrow the scope and thereby have a reasonable hope of solving a linear

group classification problem, we impose extra conditions, such as the following.

• Characteristic: zero (F = C, the complex field, or F = Q, the rationals, are

typical instances); positive (mostly finite F).

• Degree: ‘small’, or otherwise restricted, according to the prime factorisation

of n.

Furthermore, although GL(n,F)-conjugacy is a natural classification criterion, we

might ask for isomorphism class representatives instead. We may even limit our-

selves to classifying subgroups of SL(n,F) or PSL(n,F).
Laci Kovács had an abiding interest in linear group theory. He was one of the

first to realise the suitability of computer algebra systems as an environment for
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linear group classification: using a computer to aid in the compilation of lists, and

applying implemented lists to solve related algorithmic problems.

Much of Laci’s research dealing with representation theory and permutation

groups has strong intersections with linear group theory. Especially pertinent here

are the asymptotic bounds that he proved for finite soluble and nilpotent groups.

We mention a few of these results, to give context; the paper by G. R. Robinson in

this volume contains more detail.

In [9], Laci and J. D. Dixon derived a bound in terms of n and F on the number

of generators of a finite nilpotent subgroup of GL(n,F), where F is a finite degree

extension of its prime subfield. Then Laci, R. M. Bryant, and Robinson extended

that result to any finite group generated by its soluble radical and generalised Fit-

ting subgroup [3]. The case of soluble linear groups was crucial (note also the

paper [26] with H.-S. Sim on the number of generators of an abstract finite soluble

group). But perhaps the most striking achievement in this area is [25]. Laci and

Robinson prove that a finite completely reducible linear group of degree n over

any field can be generated by
⌊

3n
2

⌋

elements. Further contributions to linear group

theory include [24], which establishes complete reducibility of representations of

the monoid of n× n matrices over a finite field.

Below we discuss a research programme founded by Laci in the 1990s, that

targeted difficult linear group classification problems. We describe how the objec-

tives of this programme were carried out with some of his students and postdoc-

toral researchers. Laci guided the development of techniques and formulated major

strategies in this programme.

1 Background

We begin with a sketch of historical background. See [32, Chapter III] and [34,

Chapter 3, §4] for comprehensive surveys.

Early interest in soluble linear groups over finite fields stemmed from their

connection to soluble permutation groups. C. Jordan gave a method (which can be

viewed as an archetypal group-theoretic algorithm) to construct such linear groups

from those of smaller degree. Jordan’s treatment is cumbersome and does not give

a full classification up to conjugacy. For finite groups in characteristic zero, it

essentially suffices to classify the irreducible ones, dispensing with small degrees

first. Degrees 2 and 3 were investigated by Jordan and F. Klein, amongst others.

H. F. Blichfeldt’s wonderful book [2] covers finite complex linear groups of degree

at most 4.

It became customary to ignore imprimitive groups. The emphasis was rather

on primitive subgroups of SL(n,C) or their images in PSL(n,C), and sometimes
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groups were determined only up to isomorphism. The standard justification for

this is as follows. Let F be algebraically closed, and Z be the scalar subgroup of

GL(n,F). Given G ≤ GL(n,F) we may define H ≤ SL(n,F) such that GZ =
HZ . Suppose that G is irreducible (resp., primitive). Then H is irreducible (resp.,

primitive), H and G have isomorphic central quotients, and H is finite precisely

when G/Z(G) is finite. An advantage of this reduction is that there are only finitely

many conjugacy classes of finite primitive subgroups of SL(n,F). However, as

W. Feit has pointed out [17], producing a classification in GL(n,C) from one in

SL(n,C) or PSL(n,C) is not at all straightforward. †

Classifying finite primitive (or quasiprimitive) subgroups of SL(n,C) gained

popularity in the lead-up to the classification of finite simple groups. After Blich-

feldt, authors including R. Brauer, Feit, W. C. Huffman, J. H. Lindsey II, and

D. B. Wales gave accounts for n ≤ 10 (see [15, pp. 76–78] and [16]).

Another wave of activity began in the late 1940s, as soluble linear groups

were recognised to play a fundamental role in the theory of infinite soluble groups.

D. A. Suprunenko and his students obtained various classifications of soluble linear

and permutation groups. Usually just the maximal soluble subgroups of GL(n,F)
are described (each soluble subgroup lies in a maximal). For example, [30, The-

orem 6, p. 167] classifies the maximal irreducible soluble subgroups of GL(p, q)
up to conjugacy, p prime, with an explicit generating set stated for each conjugacy

class representative (cf. [6]). Many of the classification results for soluble matrix

and permutation groups by Suprunenko and his school are summed up in [31]. That

book also contains a classification of the maximal primitive soluble subgroups of

Sym(n), where n ∈ {pq, pq
2

, pqr | p, q, r prime}.

Other notable classifications are in prime or prime-square degree: minimal

irreducible groups [33, p. 2986], and irreducible p-groups over an algebraically

closed field (S. B. Conlon). Aside from this work, and in contrast to the insoluble

case, exhaustive classifications of soluble linear groups were rarely attempted—

until the advent of the research school directed by Laci.

2 The Kovács School

Some time ago, Laci, J. Neubüser, and M. F. Newman proposed an algorithm to

construct maximal subgroups of low index in a finitely presented group [28, pp. 2–

4]. Their algorithm relies on having a list of the primitive subgroups H of Sym(n)
where n is the subgroup index. If H is soluble then n = pm for some m and prime

p, and listing these permutation groups is equivalent to classifying the irreducible

†‘Don’t fall into the trap I fell into, Blichfeldt only classified the groups in dimension 4 in

PGL(4,C). It is a long way to go to GL(4,C).’
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soluble subgroups of GL(m, p) up to conjugacy. The need for such information

motivated the PhD project of Laci’s student Mark Short [28].

Short’s overall approach is based on theory of maximal irreducible soluble sub-

groups of GL(n,F), as in [30, Chapter V] and with antecedents in work of Jordan.

Chapters 3–5 of [28] furnish a classification of the irreducible soluble subgroups

of GL(2, q) for odd q (A. Hulpke later found that two conjugacy classes of mono-

mial groups were missing). Other necessary results for GL(r, q), r an odd prime,

and for primitive soluble subgroups of GL(4, q), are provided. The listing in [28,

Chapter 7] of imprimitive groups of degree 4 is supplemented by a CAYLEY com-

putation. Using the methods in his thesis, Short classified the irreducible soluble

subgroups of GL(n, p) up to conjugacy for all pn < 256. He implemented this

classification as a data library and made it publicly available.

A subgroup of GL(n, q) of order coprime to q can be ‘lifted’ to an isomorphic

copy in GL(n,C), and the lifting respects absolute irreducibility. Despite this link,

classification problems over C have a different flavour to those over finite fields.

One complicating factor is that a classification of finite subgroups of GL(n,C)
might entail an infinite list (whereas there are only finitely many finite primitive

subgroups of SL(n,C) up to conjugacy). For the lists discussed here, we may

introduce a parametrisation on certain families of matrices, so that each listed group

is designated by an integer string that corresponds to a generating set made up from

the parametrised families. A model for this sort of listing scheme is exhibited in [4].

Conlon classifies the finite irreducible p-subgroups of GL(p,F), where F is a field

not of characteristic p with all p-power roots of unity. Such a group is conjugate

to a subgroup G of the full monomial matrix group Cp∞ ≀ Cp. The subgroup of

diagonal matrices in G has index p and (to guarantee irreducibility) must be non-

scalar. Conlon gave presentations for groups in his list, and proved that any two of

them are conjugate if they are isomorphic.

Attacks on other monomial group classification problems have followed the

same basic pattern as in [4]. Suppose that G ≤ GL(n,C) is monomial. Let π be the

natural projection of G into Sym(n) whose kernel D is the subgroup of diagonal

matrices (that is, π sends non-zero matrix entries to 1). First, all candidates for

π(G) are written down; namely the transitive T ≤ Sym(n). Then we solve (S),

the T -submodule problem: find all D normalised by T such that if ker π = D then

G is irreducible. The next step is the extension problem (E) for each T and its

accompanying T -modules. Lastly, we solve the conjugacy problem (C), showing

that each GL(n,C)-conjugacy class is represented exactly once in our final list.

After the success of [4], composite degrees present a new challenge. The

second author, another student of Laci’s, classified the finite irreducible linear p-

groups of degree p2 for p = 2 [18]. We say a little bit about the methods used

(some of which appear in [1, 28] too). The submodule lattice of a direct sum of
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modules may be assembled from isomorphisms between sections of the summands,

via a well-known theorem due to Goursat and Remak. This is applied to solve (S).

Second cohomology features in the solution of (E) and (C): |H2(T,D)| is an upper

bound on the number of conjugacy classes of G ≤ GL(4,C) such that π(G) = T
and ker π = D. Lyndon-Hochschild-Serre spectral sequences are used to calculate

the requisite orders. For each T and D, precisely |H2(T,D)| extensions G of D
by T in GL(4,C) are constructed. Any remaining conjugacy between these ex-

tensions is eliminated by ad hoc means. Having dealt with the 2-groups, Flannery

went on to classify all finite irreducible monomial subgroups of GL(4,C) [19].

At this juncture it is appropriate to note a question in the province of the sub-

module listing problem (S), that arose out of an algorithm suggested by Conlon

for decomposing group characters. Let p be a prime, V be the central quotient

of Cp∞ ≀ (Cp)
n, and N be any finite normal subgroup of V . Conlon conjectured

that the centre Z of V/N has order at least pn. Examples are known where Z ∼=
Cn
p , Z ∼= Cpn , and |Z| is much greater than pn. When n = 1 there is nothing to

prove. Conlon verified his conjecture for 2 ≤ n ≤ 4 by a combination of hand and

machine calculations.

As far as we know, Conlon’s conjecture is unresolved. Laci’s student Zoltán

Bácskai made progress towards an affirmative proof, but eventually changed his

thesis topic to classifying finite irreducible monomial subgroups G of GL(p,C).
Insoluble groups now crop up: π(G) = T ≤ Sym(p) is either ‘compulsory’ (i.e.,

soluble, Alt(p), or Sym(p)); or ‘sporadic’, with just 11 values of p less than 1000
giving such a transitive group. Bácskai obtained a complete classification for p ≤
11, and for arbitrary prime degree p when T is compulsory. In particular, the

solution of (S) for all T occupies Chapters 3 and 4 and Section 7.1 of [1] (observe

that a finite soluble monomial subgroup of GL(p,C) is irreducible if and only if its

diagonal matrix subgroup is non-scalar). Bácskai’s thesis, which should be in the

literature, contains many valuable results on linear group classification.

An irreducible linear group of prime degree is either primitive or monomial.

Dixon and A. E. Zalesskii classified finite primitive subgroups of SL(p,C), and in-

soluble finite monomial groups of prime degree over an algebraically closed field,

in [11, 12, 13]. The paper [11] has a traditional aim—classifying primitive uni-

modular linear groups over C—and makes critical use of the classification of finite

simple groups.

A further milestone in the Kovács programme was supplied by Burkhard Höf-

ling, who worked as a postdoctoral researcher with Laci. In a long and interesting

paper [21], Höfling settles the case of imprimitive non-monomial finite irreducible

groups over C in smallest degree. He begins by considering the general situation

of G ≤ GL(2n,C) with an unrefinable imprimitivity system of size 2. Either

G has just one system, or it has three ([21, Theorem 2.4] is a broader statement;
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its proof cites [23]). This yields an initial split in the classification. To construct

all G, one needs to know all primitive groups of degree n. Thus, as part of his

solution in degree 4, Höfling classified the finite primitive subgroups of GL(2,C)
up to conjugacy. Each such group is contained in a central product of scalars

with a primitive subgroup of SL(2,C), and the latter were classified previously [2,

Chapter III]. Höfling’s lists, together with [1, 19] and [2, Chapters V, VII] filled out

to GL(n,C), would complete the Kovács programme in degrees less than 5 over

C. Degree 5 is surely achievable too, with [1, 11] as a foundation.

Laci’s student Hyo-Seob Sim wrote several papers on metacyclic linear groups.

In [29], he examines the structure of metacyclic primitive subgroups of GL(n, q),
with the intent to classify these groups when n is an odd prime power (cf. the

classification [8] of nilpotent primitive subgroups of GL(n, q) for all n, q; and

the GAP procedure in [7] that returns the groups for input n, q). Laci and Sim in

[27] give a condition to decide whether two nilpotent metacyclic irreducible groups

G,H ≤ GL(n,F) of odd order are conjugate. They isolate the subgroup GAutG of

G whose elements are fixed under Aut(G), and show that (with caveats) the num-

ber of GL(n,F)-conjugacy classes of subgroups H of GL(n,F) isomorphic to G is

equal to the number of equivalence classes of faithful irreducible F-representations

of GAutG.

3 Related work

Linear group classifications of the kind advocated by Laci are constantly in de-

mand, and hence worth pursuing. The area is effectively still wide open. We

review a sample of other classifications with a computational aspect that relate to

Laci’s concerns.

Dixon and B. Mortimer [10] listed all primitive permutation groups of degree

less than 1000 with insoluble socle. Short originally aimed to match this range of

degrees for soluble groups. B. Eick and Höfling [14] extended the degree bound

far beyond that in [28]. Taking Aschbacher’s categorisation of potentially maximal

subgroups of GL(n, q) as a starting point, they developed an algorithm to classify

the soluble irreducible subgroups of GL(n, p) for pn ≤ 6560. (Höfling later aug-

mented the list, going up to permutation group degree 10000.) Their algorithm

involves testing irreducibility and subgroup conjugacy in GL(n, q). The complex-

ity of this algorithm grows with n and q. More recently, H. J. Coutts, M. Quick, and

C. Roney-Dougal [5] classified the insoluble irreducible subgroups of GL(n, p) for

pn < 4096.

Building on [19], and at the instigation of Laci, Flannery gave methods to

classify the irreducible monomial subgroups of GL(4, q). Subsequently Flannery
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and E. A. O’Brien [20] designed algorithms to list irreducible linear groups of small

degree over finite fields, with analogous classifications over C as an ingredient. The

input field size bounds the integer parameter strings that define generating sets. A

key theorem in [20] asserts that if F is any extension of GF(q), and n ≥ 3 or

q > 3, then a subgroup of GL(n,F) isomorphic to SL(n, q) is irreducible and

conjugate to SL(n, q). The proof of this result is mainly due to Laci and uses

[22]. Implementations of the algorithms of [20] are available in MAGMA. Their

efficiency depends on field arithmetic (as do, e.g., the algorithms of [7, 8]), and they

avoid testing irreducibility or conjugacy. The input field size is unrestricted except

for a tiny number of exceptions. This type of implementation may be compared

with data libraries such as [28], and with the approach of [14], which requires

non-trivial computation in GL(n, q). Techniques similar to those in [20] could be

applied at least up to degree 5.

Classifying irreducible soluble linear groups over a finite field in other special

degrees, such as the product of two primes, is feasible. Suprunenko’s book [31] is

yet to be exploited for this purpose. The resultant algorithms would be practical

for large degrees and fields.

Finally, we note that progress in computational representation theory affords

new avenues for classifying insoluble linear groups over finite fields and C.

4 Concluding remarks

The second author remembers hours spent each week with Laci, seeing the solution

of a problem through to its very end. Laci was extremely generous in sharing his

expertise. The work that he inspired and nurtured in others forms an important part

of his legacy. We owe him a lasting debt.
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[27] L. G. Kovács and H.-S. Sim, Nilpotent metacyclic irreducible linear groups

of odd order, Arch. Math. (Basel) 65 (1995), no. 4, 281–288.

[28] M. W. Short, The primitive soluble permutation groups of degree less than

256. Lecture Notes in Math., 1519, Springer-Verlag, Berlin, 1992.

9



[29] H.-S. Sim, Metacyclic primitive linear groups, Comm. Algebra 22 (1994),

no. 1, 269–278.

[30] D. A. Suprunenko, Matrix groups. Transl. Math. Monogr., vol. 45, American

Mathematical Society, Providence, RI, 1976.

[31] D. A. Suprunenko, Permutation Groups. Navyka i Technika, Minsk, 1996 (in

Russian).

[32] A. E. Zalesskii, Linear groups, Russian Math. Surveys 36 (1981), no. 5, 63–

128.

[33] A. E. Zalesskii, Linear groups. Translated from Itogi Nauki i Tekhniki, Seriya

Algebra, Topologiya, Geometriya, Vol. 21, pp. 135–182, 1983.

[34] A. E. Zalesskii, Linear groups. Algebra, IV, Encyclopaedia Math. Sci., 37,

pp. 97–196, Springer, Berlin, 1993.

10


	1 Background
	2 The Kovács School
	3 Related work
	4 Concluding remarks

