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ZARISKI DENSITY AND COMPUTING IN ARITHMETIC GROUPS

A. DETINKO, D. L. FLANNERY, AND A. HULPKE

ABSTRACT. For n > 2, let Γn denote either SL(n, Z) or Sp(n, Z). We give

a practical algorithm to compute the level of the maximal principal congruence

subgroup in an arithmetic group H ≤ Γn. This forms the main component

of our methods for computing with such arithmetic groups H . More generally,

we provide algorithms for computing with Zariski dense groups in Γn. We use

our GAP implementation of the algorithms to solve problems that have emerged

recently for important classes of linear groups.

1. INTRODUCTION

This paper is the next phase in our ongoing project to build up a new area of

computational group theory: computing with linear groups given by a finite set

of generating matrices over an infinite field. Previously we established a uniform

approach for handling such groups in a computer. This is based on the use of

congruence homomorphisms, taking advantage of the residual finiteness of finitely

generated linear groups: a realisation of the ‘method of finite approximation’ [13].

We verified decidability, and then obtained efficient algorithms for solving prob-

lems such as testing finiteness and virtual solvability. We also implemented a suite

of algorithms to perform extensive structural investigation of solvable-by-finite lin-

ear groups.

Most finitely generated linear groups, however, are not virtually solvable, and

computing with those groups is largely unexplored territory. Obstacles include

undecidability of certain algorithmic problems, complexity issues (e.g., growth of

matrix entries), and a dearth of methods. In [11], we initiated the development

of practical algorithms for arithmetic subgroups of semisimple algebraic groups G
defined over the rational field Q. We were motivated by the pivotal role that these

groups play throughout algebra and its applications, and the concomitant demand

for practical techniques and software to work with them.

At this stage we restrict attention to G possessing the congruence subgroup

property: each arithmetic group H ≤ G(Z) contains the kernel of the congruence

homomorphism on G(Z) modulo some positive integer m, the so-called principal

congruence subgroup (PCS) of levelm. Prominent examples are G(Z) = SL(n,Z)
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2 A. DETINKO, D. L. FLANNERY, AND A. HULPKE

and Sp(n,Z) for n > 2 (see [2]). The congruence subgroup property allows us to

reduce much of the computing to the environment of matrix groups over finite

rings; but we first need to know (the level of) a PCS in H . In [11] we showed that

construction of a PCS in an arithmetic group H ≤ SL(n,Z) is decidable. As a

consequence, this proves that other algorithmic questions (e.g., membership test-

ing, orbit-stabilizer problems, analyzing subnormal structure) are decidable, and

yields algorithms for their solution.

The current paper gives a practical algorithm to compute a PCS in an arithmetic

subgroup H ≤ Γn = SL(n,Z) or Sp(n,Z) for degrees n > 2. More precisely, we

compute the level M = M(H) of H , i.e., the level of the unique maximal PCS in

H . Knowing M , we can undertake further computation with H (this subsumes all

algorithms from [11]).

In contrast to computing with a virtually solvable linear group, computing with

an arithmetic group H ≤ Γn entails reduction modulo ideals that may not be max-

imal. Moreover, we must consider images of H modulo all primes. Fortunately,

H and Γn are congruent modulo p for almost all primes p. This property holds in

a wider class, namely subgroups of Γn that are dense in the Zariski topology on

SL(n,C), respectively Sp(n,C). Density is weaker than arithmeticity, easier to

test, and indeed furnishes a preliminary step in arithmeticity testing (see [36] for

justification of the significance of this problem). Dense non-arithmetic subgroups

are called thin matrix groups. If H is dense (either arithmetic or thin), then by

the strong approximation theorem H surjects onto SL(n, p), respectively Sp(n, p),

modulo all but a finite number of primes p [30, p. 391]. We design effective al-

gorithms to compute the set Π(H) of these primes for finitely generated H ≤ Γn
containing a transvection. As a by-product, we get a simple algorithm to test den-

sity of such groups (albeit for odd n only if Γn = SL(n,Z)). Computing Π(H)
when H does not have a known transvection will be dealt with in a subsequent

paper [12]. Our next major result shows that the algorithm to compute the level

of the maximal PCS of an arithmetic subgroup also finds the minimal arithmetic

overgroup L of a finitely generated dense subgroup H of Γn. Algorithms for the

arithmetic group L (e.g., as in [11]) can thereby be used to study H .

When computing with arithmetic groups, the relevant congruence images are

over finite rings Zm := Z/mZ (for virtually solvable groups, the images are over

finite fields). We prove some essential results about subgroups of GL(n,Zm) in

Section 2.3. These underlie Subsection 2.4, wherein we present our algorithm

to compute the level M of an arithmetic group in Γn. Section 3 is dedicated to

density testing and computing Π(H) for a finitely generated dense group H ≤
Γn. In Section 4, we use our algorithms to solve computational problems that

have recently emerged for important classes of groups. The experimental results

Oct 26 2016 14:55:09 EDT
Version 3 - Submitted to MCOM

This is a pre-publication version of this article, which may differ from the final published version. Copyright restrictions may apply.



ZARISKI DENSITY AND COMPUTING IN ARITHMETIC GROUPS 3

demonstrate the efficiency of our algorithms. Finally, in Section 5 we discuss our

GAP [15] implementation of density testing algorithms, including those from [34].

2. THE LEVEL OF AN ARITHMETIC SUBGROUP

In this section we develop techniques for computing the level of an arithmetic

group in Γn.

2.1. Setup. We adhere to the following notation. Let R be a commutative unital

ring. The symplectic group of degree n = 2s over R is

Sp(n,R) = {x ∈ GL(n,R) | xJx> = J}

where

J =
(

0s 1s

−1s 0s

)
.

Notice that Sp(2, R) = SL(2, R). Let tij(m) = 1n +meij ∈ SL(n,R), where eij
has 1 in position (i, j) and zeros elsewhere. Define

En,m = 〈tij(m) : i 6= j, 1 ≤ i, j ≤ n〉

if Γn = SL(n,R), and

En,m = {ti,s+j(m)tj,s+i(m), ts+i,j(m)ts+j,i(m) | 1 ≤ i < j ≤ s}
∪ {ti,s+i(m), ts+i,i(m) | 1 ≤ i ≤ s}

if Γn = Sp(2s,R). The En,m are elementary subgroups of Γn of level m ([11,

Section 1.1], [17, pp. 223–224]). For R = Z or Zr we have En,1 = SL(n,R) if

Γn = SL(n,R) and En,1 = Sp(n,R) if Γn = Sp(n,R).

We denote by ϕm the reduction modulo m homomorphism on R = Z or R =
Zr, and its entrywise extension to GL(n,R). This congruence homomorphism

maps Γn onto SL(n,Zm) or Sp(n,Zm) respectively. For Γn = SL(n,Z) and n >

2, the normal closure EΓn
n,m is the principal congruence subgroup (PCS) of level m,

i.e., the kernel of ϕm on Γn, denoted Γn,m [11, Proposition 1.6]. Similarly, EΓn
n,m

is the kernel Γn,m of ϕm on Γn = Sp(n,Z) when n > 2 [2, Proposition 13.2]. Let

H ≤ Γn. As usual Π := Π(H) is the set of primes p such that ϕp(H) 6= ϕp(Γn).

If |Γn : H| is finite then H contains some Γn,m [2]. Indeed, H contains a unique

maximal PCS; its level is defined to be the level M = M(H) of H .

2.2. Decidability. Let n > 2. Decision problems for arithmetic groupsH in Γn =
SL(n,Z) were discussed in [11, Section 3.1]. Here we cover Γn = Sp(n,Z) as

well.

Lemma 2.1. If Γn,m ≤ H then ϕk(H) = ϕk(Γn) for k coprime to m.

Proof. Cf. [11, Remark 1.18]. �
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4 A. DETINKO, D. L. FLANNERY, AND A. HULPKE

Denote the set of prime divisors of a ∈ Z by π(a).

Corollary 2.2. If H has level M and Γn,m ≤ H then Π ⊆ π(M) ⊆ π(m).

Proposition 2.3. Let H ≤ Γn be arithmetic. Then computing the level of a PCS in

H is decidable.

Proof. We can compute c = |Γn : H| by the Todd-Coxeter procedure. The core

HΓn is a normal subgroup of Γn contained in H , and |Γn : HΓn | divides m := c!.
So xm ∈ HΓn for all x ∈ Γn. Thus En,m ≤ HΓn , and Γn,m ≤ H . �

Corollary 2.4. If H ≤ Γn is arithmetic then testing membership of g ∈ Γn in H

is decidable.

Knowing the level m of any PCS in H , we can determine |G : H| and the level

M ofH . Therefore, computingM is equivalent to computing |Γn : H|. According

to [16, pp. 531–532], an arithmetic subgroup H ≤ G(Z) of an algebraic Q-group

G ≤ GL(n,C) is given explicitly if there is an effective way to test membership of

elements of G(Z) in H , and we have an upper bound on |G(Z) : H|. By Proposi-

tion 2.3 and Corollary 2.4, every arithmetic subgroup of G = SL(n,C) or Sp(n,C)
is explicitly given. This guarantees decidability of certain algorithmic problems for

these groups, as in [16] (see also [11, Section 3.1]).

In practice, we would not compute M or |Γn : H| as in the proof of Propo-

sition 2.3: the runtime of the Todd-Coxeter procedure may be arbitrarily large.

Subsection 2.4 gives a practical method for computing M . This requires extra

results, to be presented in the next subsection.

2.3. Existence of supplements of congruence subgroups over Zm. Denote the

kernel of the reduction modulo r homomorphism ϕr on ϕm(Γn) = SL(n,Zm) or

Sp(n,Zm) by Kr. Let p be a prime. Our main objective in this subsection is to

prove the following theorem.

Theorem 2.5. Let a, n ≥ 2, and G = SL(n,Zpa) or Sp(2n,Zpa). Then Kpa−1

has a proper supplement in G if and only if G is one of

(1) SL(2,Z4), SL(2,Z9), SL(3,Z4), SL(4,Z4).

Part of the symplectic group case of Theorem 2.5 is treated in [19].

We need several preparatory lemmas.

Lemma 2.6. Let a ≥ 2.

(i) The kernel Kpa−1 of ϕpa−1 : SL(n,Zpa)→ SL(n,Zpa−1) is{
1n + pa−1x

∣∣ x ∈ Mat(n, {0, 1, . . . , p− 1}), trace(x) ≡ 0 mod p
}
.
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ZARISKI DENSITY AND COMPUTING IN ARITHMETIC GROUPS 5

(ii) Multiplication in Kpa−1 translates to matrix addition in Mat(n,Zp):

(1n + pa−1x)(1n + pa−1y) = 1n + pa−1z

where z ≡ x + y mod p. In particular, Kpa−1 is an elementary abelian

p-group.

Proof. By induction on n, det(1n + pa−1x) = 1 + pa−1tr(x), so (i) follows. The

other part is obvious. �

Lemma 2.7. Let a ≥ 3 and G = SL(n,Zpa) for n ≥ 2 or G = Sp(n,Zpa) for

n ≥ 4. Then K = Kpa−1 is a central subgroup of L = Kpa−2 and has no proper

supplement in L.

Proof. Since 2a− 3 ≥ a,

(1n + pa−1x)(1n + pa−2v) = 1n + pa−1x+ pa−2v

= (1n + pa−2v)(1n + pa−1x)

in Mat(n,Zpa). Thus K ≤ Z(L).

The subgroup K is generated by pth powers of elements of L. If L = KU then

K = Lp = KpUp ≤ U ; hence U = L. �

Lemma 2.8. Let G = Sp(4,Zp2) and H = Sp(2,Zp2), p odd. Denote by C, D

the kernel of ϕp on G, H , respectively. If there is a proper supplement of C in G

then there is a proper supplement of D in H .

Proof. The assignment

λ :
(

a b

c d

)
7→


a 0 b 0
0 1 0 0
c 0 d 0
0 0 0 1


defines an embedding λ : H → G. Clearly λ(D) ≤ C. Let N be the subgroup of

C whose elements are of the form 14 + pr where

(2) r =


0 v1 0 w1

−w3 v2 w1 w2

0 v3 0 w3

v3 v4 −v1 −v2

.
Then N complements λ(D) in C, and is normalized by λ(H). Therefore N is a

normal subgroup of W = Cλ(H) = Nλ(H).

The natural epimorphism κ : W → H with kernel N maps C to D. Suppose

that S is a supplement of C in G. Then κ(S ∩W ) supplements D in H; if it does

not do so properly then κ(S ∩ C) = D. Assuming this, we prove that C ≤ S, i.e.,

S = G.
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6 A. DETINKO, D. L. FLANNERY, AND A. HULPKE

Note that S ∩ C E G. As Lemma 2.6 indicates, we may view C as an additive

subspace of Mat(4,Zp), replacing 14 + px by its relic x with entries in {0, 1, . . . ,
p− 1}. Since S ∩ C surjects onto D, it must contain a relic a = r + e31 with r as

in (2). Let b1 = 14 + e13 ∈ G and a1 = a − ab1 = e11 + e13 − e33 + v3(e12 −
e43) + w3(e23 + e14). Then a2 = 1

2(ab11 − a1) = e13 ∈ S ∩ C.

Since G contains a permutation matrix t for (1, 2)(3, 4), e24 = et13 ∈ S ∩ C.

We construct more elements in S ∩ C. Let d1 = 14 + e31, d2 = 14 + e14 + e23,

and d3 = 14 + e32 + e41. Then

1
2(ad12 − a

d−1
1

2 ) = e11 − e33; conjugating by t gives e22 − e44,

1
2(ad32 − a

d−1
3

2 ) = e12 − e43; conjugating by t gives e21 − e34,

1
2(−ad12 + a

d−1
1

2 + ad1d22 − ad
−1
1 d2

2 ) = e14 + e23,

1
2(2a2 − ad12 − a

d−1
1

2 ) = e31; conjugating by t gives e42,

−a2 + ad12 + ad32 − a
d1d3
2 = e32 + e41.

Modulo p, the relics of C are exactly those matrices x such that Jx is symmetric.

ThusC has Zp-dimension 10. It is readily checked that e13, e24, and the eight other

elements of S ∩C just listed are linearly independent. So they comprise a basis of

C. Therefore C ≤ S as claimed. �

Everything is in place to prove Theorem 2.5.

Proof. If there were a proper supplement of Kpa−1 in G then there would be a

proper supplement of Kpa−1 in Kpa−2 . So fix a = 2 by Lemma 2.7.

We appeal to [3], [41, Theorem 1], and [42]. If G is not one of the groups in

(1), or if G = Sp(n,Zp2) for n ≥ 6 but G 6= Sp(6,Z4), then these results imply

that Kp lies in the Frattini subgroup of G. Therefore G does not have a proper

supplement.

A standard GAP computation reveals that if G is one of the groups in (1) then

Kp is properly supplemented.

Since Sp(2, R) = SL(2, R), it remains to prove non-supplementation of Kp

in Sp(6,Z4) and Sp(4,Zp2). The latter follows from Lemma 2.8 for p > 3; the

remaining parts may be verified by GAP computations. �

2.4. Computing the level. In this subsection we develop an algorithm to com-

pute the level M of an arithmetic group H ≤ Γn, provided that the set π(M) of

primes dividing M is known. To fulfil this requirement, we determine the precise

relationship between π(M) and Π(H).

2.4.1. By Corollary 2.2, Π(H) ⊆ π(M). We will prove conversely that the odd

part of π(M) coincides with Π(H). Furthermore, we show how to decide whether

M is even.
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ZARISKI DENSITY AND COMPUTING IN ARITHMETIC GROUPS 7

Below, Σ stands for either SL or Sp (if Σ = Sp then of course the degree is

even).

Lemma 2.9. Let n ≥ 3, p be a prime, a ≥ 1, and G = Σ(n,Zpa). Every proper

normal subgroup of G lies in the solvable radical R of G, unless G = Sp(4,Z2a),

which has a subgroup of index 2 containing R = ker ϕ2 (the only proper normal

subgroup of G not in R).

Proof. It is easily seen that R is the full preimage in G of the center of Σ(n, p)
under ϕp. If G = Sp(4,Z2a) then G/R ∼= Sym(6). Excluding this case, G/R is

simple. By Theorem 2.5 and induction, if N 6⊆ R is a proper normal subgroup of

G then n = 3 or 4 and p = a = 2. GAP computations confirm that such an N

does not exist in SL(3,Z4) or SL(4,Z4). The remainder of the proof is consigned

as a straightforward exercise. �

We thank Derek Holt for sharing the next lemma and its proof with us. Recall

that a section of a group G is a quotient of a subgroup of G.

Lemma 2.10. (D. F. Holt.) Let S be a finite nonabelian simple group that is not a

section of PSp(4, 2), i.e., S is not isomorphic to Alt(5) or Alt(6). Suppose that S

is a section of a finite classical group G of degree n in characteristic p.

Then there exists a finite classical group Ĝ of degree n in characteristic p, or of

degree less than n, such that a subgroup of Ĝ/Z(Ĝ) is isomorphic to S.

Proof. Suppose that G is a counterexample with n minimal and |G| minimal for

this n, with S a quotient of H ≤ G and |H| minimal as well. Since S is simple, it

must be a section of G/Z(G). We may therefore assume that Z(G) ≤ H . When

H = G, the non-solvable group G/Z(G) is either simple (then the lemma holds

for Ĝ = G); or, if it is O+
4 (q), a direct product of two copies of PSL(2, q) (then

we can take Ĝ = PSL(2, q)). So suppose that H 6= G. We apply Aschbacher’s

theorem [1] to H .

If H is in class C1, C3, or C4, then S is a section of a classical group of smaller

degree in characteristic p, contrary to the minimality of n. If H ∈ C2 ∪ C7 then

either the same is true or S is a section of Sym(n) with n ≥ 5. However, Sym(n)
has a faithful representation of degree n− 1 (in any characteristic).

If H ∈ C5 ∪ C8 then S is a section of a smaller classical group of degree n in

characteristic p, contradicting minimality of |G|.
If H ∈ C6 then n = rk > 2 is an odd prime power and P is a section of

PSp(2k, r). Unless k = r = 2 we have 2k < n. In the remaining case k =
r = 2, S would have to be a section of PSp(4, 2); which was ruled out from the

beginning. �
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8 A. DETINKO, D. L. FLANNERY, AND A. HULPKE

Lemma 2.11. Let n ≥ 3 and p, q be distinct primes. If P = PΣ(n, q) is a section

of Σ(n, p), then P = PSL(3, 2) or PSp(4, 2).

Proof. Suppose that P = PΣ(n, q) is a section of the classical groupG = Σ(n, p).

By Lemma 2.10, P will be isomorphic to a subgroup of Ĝ/Z(Ĝ) for a classical

group Ĝ of degree less than n, or of degree n and in the same characteristic p as G.

This implies that P has a faithful projective representation ρ of degree less than n,

or of degree n in characteristic p 6= q.

Let Σ = SL. By [25, p. 419], the smallest degree of a non-trivial projective

representation of PSL(n, q) in characteristic p 6= q and for (n, q) 6= (3, 2) is at

least qn−1− 1 > n. In characteristic q, the minimal degree is n by [24, p. 201]. So

the existence of ρ disposes of this option.

Now let Σ = Sp. The same references as above give the smallest degree dp(n, q)
of a faithful projective representation of PSp(n, q) in characteristic q as dq(n, p) =
n, in coprime characteristic p 6= q as dp(n, q) = 1

2(q
n
2 − 1) for odd q, dp(n, 2) =

2
n
2
−2(2

n
2
−1 − 1) for n > 6, and dp(6, 2) = 7 > 6. Unless (n, q) = (4, 3), the

existence of ρ once more gives a contradiction.

The only remaining case is P = PSp(4, 3) as a section of PSp(4, q) for q 6= 3.

Inspection of the maximal subgroups of PSp(4, q) (see [6, Tables 8.12 and 8.13])

shows that this is impossible. �

By happenstance the exceptions of Lemma 2.11 are close to those of Theo-

rem 2.5 and Lemma 2.9 (degree at most 4 and characteristic a power of 2). So the

prime p = 2 will be treated as exceptional if the degree n is 3 or 4. If n > 4 or p is

an odd prime then we call the pair (n, p) unexceptional.

Lemma 2.12. Let n ≥ 3, a ≥ 1, q ≥ 3 be odd, and p be a prime not dividing q

such that (n, p) is unexceptional. Suppose that U ≤ Σ(n,Zpaq) = Σ(n,Zpa) ×
Σ(n,Zq) maps onto Σ(n,Zpa) under natural projection of the entire direct product

onto its first factor. Then U contains Σ(n,Zpa).

Proof. The group U is a subdirect product of its projections A, B into Σ(n,Zpa)
and Σ(n,Zq), respectively, where A is all of Σ(n,Zpa). Assuming first that q =
rb is a prime power, we claim that B ≤ U , i.e., U = A× B. If not, then A and B

have isomorphic non-trivial quotients. By Lemma 2.9, any non-trivial quotient of

A has a quotient isomorphic to A/R ∼= PΣ(n, p), where R is the solvable radical

of A. In turn, A/R must be a section of the radical quotient PΣ(n, r) of Σ(n,Zq):

but this contradicts Lemma 2.11.

Suppose now that q = rbs with r prime and gcd(r, s) = 1. By the preceding

paragraph, Σ(n,Zpa) ≤ ϕparb(U). Thus U ∩ Σ(n,Zpas) projects onto Σ(n,Zpa)
modulo pa. The lemma follows by induction. �
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ZARISKI DENSITY AND COMPUTING IN ARITHMETIC GROUPS 9

Theorem 2.13. Let n > 2 and H ≤ Γn be arithmetic of level M > 1. Suppose

that (n, p) is unexceptional and ϕp(H) = Σ(n, p). Then p - M .

Proof. Assume that ϕpk−1(H) = Σ(n,Zpk−1) for some k ≥ 2. Then ϕpk(H) is a

supplement of kerϕpk−1 in Σ(n,Zpk), so ϕpk(H) = Σ(n,Zpk) by Theorem 2.5.

Hence ϕpk(H) = SL(n,Zpk) for all k ≥ 1 by induction.

If M = paq with gcd(p, q) = 1 then Γn,q ≤ H by Lemma 2.12. Since H has

level M , this forces a = 0. �

Corollary 2.14. Suppose thatH ≤ Γn is arithmetic, n > 2, and ϕp(H) = ϕp(Γn)
for all odd primes p. Then the level of H is a 2-power. If additionally n ≥ 5 and

ϕ2(H) = ϕ2(Γn) then H = Γn.

Remark 2.15. There are finitely generated subgroups H of Γn with infinite index

such that Π(H) = ∅; see [21, 39].

Let H ≤ Γn for n > 2. Define

δH(m) = |Γn : Γn,mH|.

That is, δH(m) = |ϕm(Γn) : ϕm(H)|. We record a few properties of the delta

function.

Lemma 2.16. Let m, m′ be positive integers.

(a) If m
∣∣m′ then δH(m)

∣∣δH(m′).

(b) Suppose that H is arithmetic of level M , so δH(M) = |Γn : H|. Then

(i) δH(m)
∣∣δH(M)

(ii) δH(m) = δH(M) if and only if M
∣∣m.

The next theorem gives a criterion to test whether M is even (when 2 6∈ Π).

Theorem 2.17. Let n > 2 and H ≤ Γn be arithmetic of level M > 1. Let q be the

product of all odd primes in Π(H). ThenM is even if and only if δH(q) < δH(4q).

Proof. By Theorem 2.13, q is the product of all odd primes dividing M .

If M is odd then Γn,4qΓn,M = Γn,q, so δH(4q) = δH(q).

For the rest of the proof, suppose that M is even: say M = 2ls, l ≥ 1, s ≥ 1
odd. By Lemma 2.16, δH(s) < δH(2ks) for 1 ≤ k ≤ l. So choose the least k and

least multiple r of q dividing s such that δH(r) < δH(2kr). Then let m = 2kr,

A = ϕ2k(H), B = ϕr(H), and N = ϕm(Γn,r ∩H).

If A 6= Σ(n,Z2k) then by the same argument as in the first paragraph of the

proof of Theorem 2.13 (here avoiding the exceptions for p = 2 in small degrees),

ϕ4(H) 6= Σ(n,Z4). So δH(q) < δH(4q).

Henceforth A = Σ(n,Z2k). Then ϕ2k(N) is a proper (normal) subgroup of A:

otherwise, Γn,r ≤ Γn = (Γn,r ∩H)Γn,2k ⇒ Γn,r ≤ (Γn,r ∩H)(Γn,2k ∩ Γn,r)⇒
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10 A. DETINKO, D. L. FLANNERY, AND A. HULPKE

Γn,r ≤ (Γn,r ∩ H)Γn,m ⇒ δH(r) = δH(m). By Lemma 2.9, ϕ2k(N)R 6= A

where R is the solvable radical of A. Since R contains the kernel of ϕ2 on A,

ϕ2(N) 6= Σ(n, 2). We conclude that δH(r) < δH(2r). Therefore k = 1.

Let L = ϕm(Γn,2 ∩H). Then L 6= ϕm(H) and A/ϕ2(N) ∼= B/ϕr(L). Let K

be the kernel of ϕq on ϕr(H), i.e., K = ϕr(H) ∩ ϕr(Γn,q) = ϕr(H ∩ Γn,q). We

show thatKϕr(L) 6= B. This will imply that ϕ2q(H) is a proper subdirect product

of A = ϕ2(H) and ϕq(H), so δH(q) < δH(2q) ≤ δH(4q) as desired.

If A/ϕ2(N) is solvable then |A : ϕ2(N)| = 2 by Lemma 2.9. Thus Kϕr(L) 6=
B because K has odd order. If A/ϕ2(N) is not solvable then neither is B/ϕr(L),

and the result again follows. �

For n > 2 and any H ≤ Γn, define

(3) Π̃(H) =

{
{2} ∪Π(H) if n ≤ 4, 2 6∈ Π(H), and δH(4q) > δH(q)

Π(H) otherwise

where q is the product of all odd primes in Π(H). Combining Theorems 2.13

and 2.17 yields the next theorem.

Theorem 2.18. If H is arithmetic of level M > 1 then π(M) = Π̃(H).

We leave the problem of finding Π(H) aside for the moment, returning to it in

Section 3.

2.4.2. Now we aim for our promised algorithm to compute M from π(M).

Lemma 2.19.

(i) Suppose that δH(kpa) = δH(kpa+1) for some prime p, positive integer a,

and k coprime to p. Then δH(kpb) = δH(kpa) for all b ≥ a.

(ii) Let p, a, and k be as in (i). Then δH(lpb) = δH(lpa) for all b ≥ a and any

multiple l of k such that π(l) = π(k).

Proof. (i) If b > a+1 is minimal subject to δH(kpb) 6= δH(kpa) then δH(kpb−2) =
δH(kpb−1) = δH(kpa). So Γn,kpb−2 ≤ Γn,kpb−1H , implying that Γn,kpb−2 ∩H is

a proper supplement of Γn,kpb−1 in Γn,kpb−2 . Since

Γn,kpb−2/Γn,kpb
∼= Γn,pb−2/Γn,pb ,

with Γn,kpb−1/Γn,kpb corresponding to Γn,pb−1/Γn,pb under the isomorphism, this

contradicts Lemma 2.7.

(ii) Suppose that there are b ≥ a, and l divisible by k with π(l) = π(k), such

that δH(lpb) 6= δH(lpb+1). By (i), δH(kpb) = δH(kpb+1). Define H̄ = Γn,kpb ∩
Γn,lpb+1H . We observe that Γn,kpb = Γn,kpb+1H̄ and H̄/Γn,lpb+1 is a proper sub-

group of

Γn,kpb/Γn,lpb+1 = Γn,lpb/Γn,lpb+1 × Γn,kpb+1/Γn,lpb+1 .
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ZARISKI DENSITY AND COMPUTING IN ARITHMETIC GROUPS 11

The factors of this direct product have coprime orders: one is isomorphic to the

p-group Γn,pb/Γn,pb+1 ; the other is isomorphic to Γn,k/Γn,l, which is a p′-group

because π(l) = π(k). Hence Γn,kpb+1H̄ = Γn,kpb+1K for some K < Γn,lpb in H̄

such that K ∩ Γn,kpb+1 = Γn,lpb+1 . But then Γn,kpb+1H̄ 6= Γn,kpb . �

The following procedure computes the level of an arithmetic group H . The idea

is to add higher powers of prime divisors of the level while δH increases, until δH
reaches a stabilized value as dictated by Lemma 2.19. (We keep the specification

of input and output completely general at this stage.)

LevelMaxPCS(S, σ)

Input: a generating set S for a subgroup H ≤ Γn; a finite set σ of primes.

Output: an integer N .

For each p ∈ σ let µp = 1 and zp =
∏
q∈σ,q 6=p q.

While ∃ p ∈ σ such that δH(pµp+1 · zp) > δH(pµp · zp)
increment µp by 1 and repeat.

Return N =
∏
p∈σ p

µp .

Remark 2.20. The test for even M in Theorem 2.17 (which is invoked only when

n ≤ 4 and we have discovered that 2 6∈ Π(H)) makes a similar comparison of

indices δH , and can be implemented using the same subroutines as above.

Remark 2.21. A reader might ask whether LevelMaxPCS is unduly complicated:

perhaps the least pa such that δH(pa) = δH(pa+1) is the p-part of the level of an

input arithmetic group? This supposition is false, as the following example (con-

structed from a subdirect product of Γ3,3/Γ3,9
∼= C8

3 with a subgroup of PSL(3, 5)
of order 3) illustrates. Let

H =
〈

Γ3,45,

 1 30 0

0 1 0

0 0 1

,
 −29 0 −30

0 1 0

30 0 31

,
 −29 −45 15

30 1 30

30 0 31

,
 1 0 0

15 −29 −30

30 30 31

,
 16 15 0

−255 −239 0

0 0 1

,
 16 15 30

−255 −239 15

0 0 1

,
 1 0 30

0 1 30

0 0 1

,
 10 0 9

36 −137 66

−99 −453 22

〉.
Then δH(3) = δH(9) = 5616, δH(5) = δH(25) = 124000, δH(15) = 696384000,

and δH(45) = 2089152000. Hence H has level 45, not 15.

Oct 26 2016 14:55:09 EDT
Version 3 - Submitted to MCOM

This is a pre-publication version of this article, which may differ from the final published version. Copyright restrictions may apply.



12 A. DETINKO, D. L. FLANNERY, AND A. HULPKE

This example is a phenomenon of mixed primes: if the level of H is a prime-

power pr for unexceptional (n, p), and δH(pa) = δH(pa+1) for a ≥ 1, then r ≤ a.

The next theorem justifies correctness of LevelMaxPCS in our main situation.

Theorem 2.22. If H = 〈S〉 is arithmetic of level M then LevelMaxPCS with input

S and σ = π(M) terminates, returning M .

Proof. The values of δH encountered in the while-loop are bounded, because δH(m)
divides δH(M) for all m. Thus LevelMaxPCS terminates.

If pa is the p-part of M , and q
∣∣M is coprime to p, then δH(pa+1q) = δH(paq).

So the output N of LevelMaxPCS must divide M . Since π(N) = π(M), this

implies that δH(M) = δH(N) by Lemma 2.19; and M
∣∣N by Lemma 2.16. �

3. COMPUTING WITH ZARISKI DENSE SUBGROUPS

Let n > 2 and H be a finitely generated subgroup of Γn = SL(n,Z) or

Sp(n,Z). We describe how to compute Π(H) when H is arithmetic, or, more

generally, dense. This relies on knowing a transvection t ∈ H (which is true of all

groups in Section 4); and we restrict to odd degree n for Γn = SL(n,Z). Note that

if H is arithmetic then it contains transvections, whereas if H is dense then it need

not even contain a unipotent element [40, Proposition 5.3].

We also provide a simple algorithm to test density of H . Here again H should

contain a known transvection, and n is odd if Γn = SL(n,Z). Less restricted

density testing algorithms are discussed in Subsection 3.2. Then Subsection 3.3

extends LevelMaxPCS to dense input groups.

3.1. Density and transvections. We formulate various conditions for density. The

first result is truly fundamental (see [27], [31], and [35, Theorem 2.4]).

Theorem 3.1. H is dense if and only if ϕp(H) = ϕp(Γn) for some prime p > 3.

Let F be a field. An element t of GL(n,F) is a transvection if it is unipotent and

1n − t has rank 1.

Theorem 3.2 ([43]). Let n > 2 and p be an odd prime. If G ≤ GL(n, p) is

irreducible and generated by transvections, then either G = SL(n, p) or G is

conjugate to Sp(n, p).

Corollary 3.3. Suppose that n > 2, p is an odd prime, and G ≤ GL(n, p) has a

transvection t such that the normal closure 〈t〉G is irreducible. Then G contains

SL(n, p) or a conjugate of Sp(n, p). In particular, SL(n, p) ≤ G for odd n.

Lemma 3.4. Suppose that G is an irreducible subgroup of GL(n,F) and t ∈ G is

a transvection such that 〈t〉G is reducible. Then G is imprimitive.
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ZARISKI DENSITY AND COMPUTING IN ARITHMETIC GROUPS 13

Proof. By Clifford’s Theorem, Fn = W1 ⊕ · · · ⊕Wk where k > 1 and the Wi

are irreducible modules for 〈t〉G. Then t|Wi must be a transvection for some i, and

t|Wj = 1Wj for j 6= i. Thus Fn has more than one homogeneous component. �

Corollary 3.5. If H ≤ Γn has a transvection t such that 〈t〉H is not absolutely

irreducible, then H is not dense.

Proof. We may assume thatH is absolutely irreducible, so thatH is imprimitive by

Lemma 3.4. Since ϕp(Γn) is (absolutely) primitive, ϕp(H) 6= ϕp(Γn) for almost

all primes p. �

Corollary 3.6. Let G ≤ GL(n,F) and t ∈ G be a transvection. Then 〈t〉G is

irreducible if and only if G is primitive.

Proof. One direction follows from [43, (1.9)], the other from Lemma 3.4. �

In Proposition 3.7 and Lemma 3.8, H ≤ SL(n,Z) for odd n > 2, or H ≤
Sp(n,Z) for n > 2.

Proposition 3.7. Suppose thatH contains a transvection t. ThenH is dense if and

only if 〈t〉H is absolutely irreducible.

Proof. Put N = 〈t〉H . If H is dense then it is absolutely irreducible and primitive;

so N is absolutely irreducible by Corollary 3.6.

Suppose that N is absolutely irreducible. Since there exists an odd prime p such

that ϕp(N) is absolutely irreducible, and ϕp(N) contains the transvection ϕp(t),

Theorem 3.1 and Corollary 3.3 imply that H is dense. �

Lemma 3.8. H is dense if and only if there are a prime p > 3 and a transvection

t ∈ ϕp(H) such that 〈t〉ϕp(H) is irreducible.

Proof. If H is dense then ϕp(H) = SL(n, p) or Sp(n, p) for a prime p > 3.

Therefore ϕp(H) contains a transvection t, and 〈t〉ϕp(H) = ϕp(H) is irreducible.

The converse follows from Theorem 3.1 and Corollary 3.3. �

Lemma 3.9. Suppose that n > 2 is prime and H is an absolutely irreducible

subgroup of SL(n,Z) containing a transvection. Then H is dense.

Proof. Let t ∈ H be a transvection. If 〈t〉H is not absolutely irreducible then it is

monomial. But t is certainly not monomial. Proposition 3.7 gives the result. �

3.2. Algorithms to test density and compute Π. Assume that n is odd if Γn =
SL(n,Z), and we know a transvection t in H ≤ Γn. By Proposition 3.7, testing

density of H is the same as testing absolute irreducibility of N = 〈t〉H . The latter

may be carried out using the procedure BasisAlgebraClosure in [14, p. 401].
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14 A. DETINKO, D. L. FLANNERY, AND A. HULPKE

This returns a basis of the enveloping algebra 〈N〉Q, as words over an input gener-

ating set S for H . So we have the following density testing algorithm.

IsDense(S, t)

Input: a finite subset S of Γn and a transvection t ∈ H = 〈S〉.
Output: true if H is dense; false otherwise.

A = BasisAlgebraClosure(t, S).

Return true if |A| = n2; else return false.

Remark 3.10. (i) When n is prime, it suffices to test whether H itself is absolutely

irreducible (Lemma 3.9).

(ii) By Corollary 3.5, if 〈t〉H is not absolutely irreducible then H is not dense.

If 〈t〉H is absolutely irreducible and n is even then ϕp(H) could be conjugate to

Sp(n, p), so we must proceed by other means to decide whether H is dense.

We now discuss computing Π for dense H = 〈S〉 ≤ Γn, given a transvection

t ∈ H . Let A = {A1, . . . , An2} ⊆ H be a basis of 〈〈t〉H〉Q. Form the matrix

[tr(AiAj)]ij and denote its determinant by d. Let Π1 be the set consisting of π(d)
together with the prime divisors of all non-zero non-diagonal entries of t. Then

Π ⊆ Π1. To obtain Π, we check whether ϕp(H) = ϕp(Γn) for p running over Π1.

Call this process PrimesForDense(S, t).

If we have an upper bound on the primes in Π(H) then we can find Π(H).

Such a bound may be derived from [7, pp. 10–11] (a quantitative version of strong

approximation). Alternatively, we could use a Hadamard-type inequality for the

matrix determinant associated to a basisA as above. However, the bounds resulting

from either approach are impractically large.

Our algorithms in this subsection need an input transvection. As noted, a dense

group may not contain unipotent elements. Moreover, unipotent elements are

‘rare’ [29]. We make some brief remarks about density testing (in any degree

n > 2) without this constraint.

A dense group is absolutely irreducible and not solvable-by-finite. Both of these

properties can be readily tested [14], which serves as a preliminary check. Note

that ifH is absolutely irreducible and contains a non-trivial unipotent element (e.g.,

a transvection) then H is not solvable-by-finite.

Monte-Carlo and deterministic algorithms for density testing are given in [34].

In Section 5, we compare our implementations of these algorithms and IsDense.

Further afield, see [10] for an algorithm to compute Zariski closures, which could

be applied to test density.
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ZARISKI DENSITY AND COMPUTING IN ARITHMETIC GROUPS 15

3.3. Computing the minimal arithmetic overgroup. Let n > 2 and H = 〈S〉 <
Γn be dense. As Martin Kassabov has pointed out, there are only finitely many

arithmetic subgroups of Γn containing H [23]. Their intersection is the minimal

arithmetic overgroup of H . We generalize Theorems 2.18 and 2.22, thereby prov-

ing that LevelMaxPCS terminates for input H , returning the level of its minimal

arithmetic overgroup.

Lemma 3.11. If l is the level of the minimal arithmetic overgroup ofH then π(l) =
Π̃(H) as defined in (3).

Proof. Let C be the overgroup. For any m we have Γn,mH = Γn,mC, because

C = Γn,lH is contained in the arithmetic group Γn,mH . Thus Π(C) = Π(H), and

δH(m) = δH(m′) if and only if δC(m) = δC(m′). The assertion is now evident

from Theorem 2.18. �

Theorem 3.12. LevelMaxPCS with input S and Π̃(H) terminates, returning the

level of the minimal arithmetic overgroup C of H .

Proof. Since δH(m) ≤ |Γn : C| for all m, LevelMaxPCS terminates. Say the

output is M . By Lemma 3.11, π(M) = π(l) and M divides l. Then δC(M) =
δC(l) by Lemma 2.19, so l divides M . �

4. EXPERIMENTAL RESULTS

We implemented the algorithms of Sections 2 and 3 in GAP, relying on the

packages ‘matgrp’ [20] and ‘recog’ [33]. In this section we describe how we used

our implementation to solve problems for important classes of groups that have

been the focus of much activity. Times quoted for all experiments are in seconds,

on a 3.7 GHz Quad-Core late 2013 Mac Pro with 32 GB memory.

4.1. Small subgroups of SL(3,Z). Lubotzky [28] asked whether every arithmetic

subgroup of Γn = SL(n,Z) for n > 2 has a 2-generator subgroup of finite in-

dex. To support an affirmative answer to this question, the following groups were

studied in [26, p. 414]. Let G = 〈x, y, z | zxz−1 = xy, zyz−1 = yxy〉 and

F = 〈x, y〉 ≤ G. For T ∈ Z define the homomorphism βT : G→ SL(3,Z) by

x 7→ XT =

 −1 + T 3 −T T 2

0 −1 2T
−T 0 1

, y 7→ YT =

 −1 0 0
−T 2 1 −T
T 0 −1

,
z 7→ ZT =

 0 0 1
1 0 T 2

0 1 0

.
Lemma 4.1. (Cf. [26, Theorem 2.6].) If T 6= 0 then βT (F ) is dense.
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16 A. DETINKO, D. L. FLANNERY, AND A. HULPKE

Proof. The element b1 = X−1
T Y 3

TXTY
2
TXTY

−1
T XT is a transvection [26, p. 418].

As βT (F ) is absolutely irreducible, the result follows from Lemma 3.9. �

Theorem 4.2. ([26, Theorem 3.1].) If T 6= 0 then βT (F ) is arithmetic.

Earlier attempts to compute |Γ3 : βT (F )| failed [26, pp. 419, 423]. We compute

these indices by first determining π(M) from PrimesForDense({XT , YT }, b1)
via Theorem 2.18. Then M = LevelMaxPCS({XT , YT }, π(M)). Table 1 displays

sample results.

T M Index Time

−1 11 7·19 6.1

−2 26 2197 6.7

1 5 31 5.6

2 25 2177 6

3 3373 2331113·1801 29.2

4 2723 2317279 16

5 53367 243251013·31·3463 143.8

6 28335 2293107·13·31 26.5

7 731021 25345·71019·347821 570.7

8 210191 2467213231 98.6

9 362179 233277·13·226201 1652.1

10 255311·17 2263·5107219·31·307 50.7

11 5·113797 24527·111019·31·157·4051 1344.6

12 2733647 2353107·13·211·1987 721.4

13 13329·227 24327·131161·67·73·709 246

14 2673257 2283371119·61·1087 195.5

15 335367·151 293145107313·3121093 272.5

16 2135·307 263337·31·43·733 259.3

18 25361093 2233277·132398581 844

19 19367·307 24395·72191031·43·127·733 466.6

20 27532999 2363·5107·13·31·613·1129 13309.4

50 255623·1019 2243·5257331·79·148483 2584.7

100 275629·67·193 242355257413·31267·1783 892.6

TABLE 1.

Remark 4.3. Lubotzky’s question has been answered affirmatively [32].
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ZARISKI DENSITY AND COMPUTING IN ARITHMETIC GROUPS 17

Another representation ρk : G→ Γ3 is defined in [26, p. 414] by

ρk(x) =

 1 −2 3
0 k −1− 2k
0 1 −2

, ρk(y) =

 −2− k −1 1
−2− k −2 3
−1 −1 2

 ,

ρk(z) =

 0 0 1
1 0 −k
0 1 −1− k

.
If k ∈ {0, 2, 3, 4, 5} then ρk(F ) is arithmetic. Since a transvection in each group

is known [26, p. 419], as before we can use PrimesForDense to find Π, then

LevelMaxPCS with Theorem 2.18 to compute levels. The ρk(F ) and ρk(G) relate

to open conjectures in [26, Section 5]. Table 2 solves the main problem, namely

finding indices in Γ3. The last column states the time to compute |Γ3 : ρk(G)|.

k Level |Γ3 : ρk(G)| |Γ3 : ρk(F )| Time

0 11 7·19 2·5·7·19 6

2 225·7 212325·7219·31 212335·7219·31 15.4

3 13 223·13261 233213261 7

4 337 243117213·19 263137213·19 11.3

5 2219·31 210335·312127·331 211355·312127·331 49.1

TABLE 2.

4.2. Monodromy groups. Let f(x) =
∏n
j=1(x− aj) = xn +An−1xn−1 + · · ·+

A0 and g(x) =
∏n
j=1(x−bj) = xn+Bn−1xn−1 + · · ·+B0 where aj = e2πiαj and

bj = e2πiβj for αj , βj ∈ C, 1 ≤ j ≤ n. The group H generated by the companion

matrices

A =


0 · · · 0 −A0

1 · · · 0 −A1

...
. . .

...
...

0 · · · 1 −An−1

, B =


0 · · · 0 −B0

1 · · · 0 −B1

...
. . .

...
...

0 · · · 1 −Bn−1


of f(x) and g(x) is the hypergeometric group corresponding to f(x) and g(x). It is

the monodromy group of a hypergeometric ordinary differential equation (see [4,

pp. 331–332], [5, p. 334], [38, p. 592]).

Suppose that f(x), g(x) ∈ Z[x] are reciprocal (f(x) = xnf(1/x) and g(x) =
xng(1/x)) with no common roots in C. Further suppose that they constitute a

primitive pair (there do not exist f1(x), g1(x) ∈ Z[x] and k ≥ 2 such that f(x) =
f1(xk) and g(x) = g1(xk)). ThenH ≤ Sp(Ω,Z) for some non-degenerate integral

symplectic form Ω on Zn [38, p. 592].
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18 A. DETINKO, D. L. FLANNERY, AND A. HULPKE

There are 14 pairs (f(x), g(x)) with g(x) ∈ Z[x] coprime to f(x) = (x − 1)4

such that the roots of g(x) are roots of unity [38, pp. 595, 615]. The group H =
〈A,B〉 in these cases is a monodromy group associated with Calabi-Yau threefolds.

Seven such H are arithmetic, and the rest are thin [5, 37, 38]. In [9, p. 175], H is

shown to be GL(4,Q)-conjugate to G(d, k) := 〈U, T 〉 ≤ Sp(4,Z) where

U =


1 1 0 0
0 1 0 0
d d 1 0
0 −k −1 1

, T =


1 0 0 0
0 1 0 1
0 0 1 0
0 0 0 1

.
Note that conjugation preserves arithmeticity [21, p. 87]. For d2 | d1, let Ĝ(d1, d2)
be the subgroup of Sp(4,Z) consisting of all h satisfying

h ≡


1 ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 1 0
0 ∗ ∗ ∗

 mod d1 and h ≡


1 ∗ ∗ ∗
0 1 ∗ ∗
0 0 1 0
0 0 ∗ 1

 mod d2.

If d1 = d and d2 = gcd(d, k) then Ĝ(d1, d2) is an arithmetic subgroup of Sp(4,Z)
containing G(d, k). By [9, Appendix],

(4) |Sp(4,Z) : Ĝ(d1, d2)| = d4
1 ·
∏
p|d1(1− p−4) · d2

2 ·
∏
p|d2(1− p−2).

The overgroup Ĝ(d1, d2) could be used to investigate properties of G(d, k), such

as bounds on |Sp(4,Z) : G(d, k)|; cf. [18, p. 6]. Our implementation enables us to

complete such tasks quickly, including those not completed in [18, p. 6]. Also, for

the first time we can determine the minimal arithmetic overgroup of G(d, k).

We compute Π(G(d, k)) via PrimesForDense with input transvection T , then

the level and index of G(d, k) via LevelMaxPCS. See Table 3.

The arithmetic G(d, k) appear in rows 1–7. For G(d, k) in any other row, we

report the level and index of its minimal arithmetic overgroup. The first column

defines (α1, α2, α3, α4) for A, as α3 = 1 − α2 and α4 = 1 − α1. ‘Time’ is time

to compute the level M , ‘Index G’ is index of the minimal arithmetic overgroup in

Sp(4,Z), and ‘Index Ĝ’ is |Sp(4,Z) : Ĝ(d1, d2)| from (4).

Remark 4.4. Table 3 shows that Ĝ(d1, d2) need not be the minimal arithmetic

overgroup ofG(d, k). For instance, ifG(d, k) is arithmetic then it could differ from

Ĝ(d1, d2). Also note that arithmeticity of groups of small index could in principle

be determined by a coset enumeration once generators have been expressed as

words in generators of Sp.
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(α1, α2) (d, k) M Index G Time Index Ĝ

( 1
10 ,

3
10) (1, 3) 2 6 5.8 1

(1
6 ,

1
6) (1, 2) 2 10 5.4 1

(1
6 ,

1
4) (2, 3) 23 263·5 7.1 3 · 5

(1
6 ,

1
3) (3, 4) 2232 293552 12.6 245

(1
4 ,

1
4) (4, 4) 26 220325 10.1 26325

(1
4 ,

1
3) (6, 5) 2332 2103652 15.6 243·52

(1
3 ,

1
3) (9, 6) 2·35 2831452 19.2 27345

(1
5 ,

2
5) (5, 5) 2·53 28335813 11.9 273213

(1
8 ,

3
8) (2, 4) 24 211325 7.3 325

( 1
12 ,

5
12) (1, 4) 22 255 5.8 1

(1
2 ,

1
2) (16, 8) 210 240325 20.1 216325

(1
3 ,

1
2) (12, 7) 2532 2173652 25 283·52

(1
4 ,

1
2) (8, 6) 27 224325 12.3 28325

(1
6 ,

1
2) (4, 5) 25 2133·5 9.9 243 · 5

TABLE 3.

5. COMPARISON OF DENSITY TESTING ALGORITHMS

We now compare our implementations of the density testing algorithms sug-

gested in [34] and Subsection 3.2.

IsDenseIR1 is [34, Algorithm 1]. It accepts a finite subset S of Γn = SL(n,Z)
or Sp(n,Z), n > 2, and tests whether H = 〈S〉 is dense. This is a Monte Carlo

algorithm based on random choice of elements in H that have characteristic poly-

nomial with large Galois group. Such elements are ubiquitous, in contrast to unipo-

tent elements. IsDenseIR1 returns true if it detects non-commuting g, h ∈ H

such that h has infinite order, and the Galois group of the characteristic polynomial

of g is Sym(n) if Γn = SL(n,Z) or C2 o Sym(n/2) if Γn = Sp(n,Z). An output

message true means thatH is dense, whereas false means that suitable g, hwere

not found (in that event, H may still be dense). We use an intrinsic GAP function

to compute Galois groups. Attempts at selecting random elements by the default

method for finite groups, product replacement [8], failed due to entry explosion in

a precomputation step. So we took random words in the generators of length up to

50. These elements might be of poor quality. Indeed, sometimes the algorithm as

implemented did not establish density. For G1 below this happened about 40% of

the time. The error rate could be reduced by a better choice of random elements,

or by an iteration over more random elements, but at the cost of runtime.
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The algorithm of [34, p. 23], which we call IsDenseIR2, is deterministic. It

accepts a finitely generated subgroup H of a semisimple algebraic group G(F),

char F = 0, and tests whether H is finite and whether the adjoint representation

of H in GL(m,F) is absolutely irreducible, where m is the dimension of the Lie

algebra of G(F). By incorporating methods from [13], this algorithm can be im-

plemented over any field F of characteristic 0.

In Table 4, N is number of generators, and IR1, IR2, DFH are runtimes for our

GAP implementations of IsDenseIR1, IsDenseIR2, IsDense, respectively.

Group n N Output IR1 IR2 DFH

G1 5 4 true 0.01 11600 0.2

G2 3 3 true 0.02 0.2 0.04

G3 7 48 true 0.05 − 5

G4 3 3 true 0.01 4.2 0.2

G5 3 3 true 0.01 7.2 0.3

G6 3 3 true 0.01 8.4 0.2

G7 5 15 false 0.01 16200 0.5

G8 5 10 false 0.01 24.4 0.7

G9 11 13 false 0.01 − 1.2

TABLE 4.

The test groups Gi were selected to vary n, N , and group structure. We know a

transvection in each group (often as one of the generators).

G1, G2, G3 are arithmetic. G1 is SL(5,Z), but not on the canonical generating

set of elementary matrices. The congruence image of G2 ≤ SL(3,Z) is a {7, 79}-
Hall subgroup of SL(3,Z23232). It has level 23232 and index 224321122311. G3 ≤
SL(7,Z) is generated by E7,34572 and the block diagonal matrices diag(h1, h2, 1)
where h1 ∈ β2(G) and h2 ∈ ρ4(G) for G, βT , ρk as in Subsection 4.1. It is

arithmetic of level 385274.

G4, G5, G6 are the groups generated by the transvections

T1 =

 1 x2 + 1 x

0 1 0
0 0 1

, T2 =

 1 0 0
x 1 x+ 1
0 0 1

,
T3 =

 1 0 0
0 1 0

−x+ 1 x2 1


for x = 11, 99, 998 respectively. By [22], these groups are free and surject onto

SL(3, p) modulo p for all primes p (PrimesForDense tells us that Π(Gi) = ∅
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too); i.e., they are thin. As these Gi also surject modulo 4, they are congruent to

SL(3,Zm) modulo m for m ≥ 2.

The last three groups are not dense. G7 is generated by diag(h1, h2) ∈ SL(5,Z)
where h1, h2 are generators of β5(G), SL(2,Z) respectively, together with the up-

per triangular elementary matrices. G8 is the group of 5 × 5 upper unitriangular

matrices. G9 is generated by diag(h1, h2) ∈ SL(11,Z) where h1, h2 range over

generating sets for SL(6,Z) and SL(5,Z), respectively, together with five ran-

domly chosen upper unitriangular matrices.

More detail is available at http://www.math.colostate.edu/˜hulpke/

examples/densityex.g.

We write ‘−’ in Table 4 if IsDenseIR2 did not terminate within 12 hours. This

occurred for input of degree greater than 5 (the adjoint representation leads to cal-

culation in an (n2 − 1)2-dimensional lattice). Finally, remember that IsDense

facilitates the computation of Π(H) for dense input H , unlike IsDenseIR1 and

IsDenseIR2.
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