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Abstract

Forecasting higher than expected numbers of health events provides potentially valuable insights in its own right, and
may contribute to health services management and syndromic surveillance. This study investigates the use of
quantile regression to predict higher than expected respiratory deaths.

Data taken from 70,830 deaths occurring in New York were used. Temporal, weather and air quality measures
were fitted using quantile regression at the 90th-percentile with half the data (in-sample). Four QR models were fitted:
an unconditional model predicting the 90th-percentile of deaths (Model 1), a seasonal / temporal (Model 2), a
seasonal, temporal plus lags of weather and air quality (Model 3), and a seasonal, temporal model with 7-day moving
averages of weather and air quality. Models were cross-validated with the out of sample data. Performance was
measured as proportionate reduction in weighted sum of absolute deviations by a conditional, over unconditional
models; i.e., the coefficient of determination (R1).

The coefficient of determination showed an improvement over the unconditional model between 0.16 and 0.19.
The greatest improvement in predictive and forecasting accuracy of daily mortality was associated with the inclusion
of seasonal and temporal predictors (Model 2). No gains were made in the predictive models with the addition of
weather and air quality predictors (Models 3 and 4). However, forecasting models that included weather and air
quality predictors performed slightly better than the seasonal and temporal model alone (i.e., Model 3 > Model 4 >
Model 2)

This study provided a new approach to predict higher than expected numbers of respiratory related-deaths. The
approach, while promising, has limitations and should be treated at this stage as a proof of concept.
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Introduction

There is an increasing body of literature looking at the causal
relationship between weather, air quality factors, and health
outcomes [1-4]. Forecasting health outcomes has attracted
less attention, but it too has a developing base in the scientific
literature [5-9]. Traditionally, both the causal modelling and the
forecast research have focused on the central tendencies of
the distribution of data; i.e., the expected and conditional
expected value. For instance, a typical generalised linear
model of daily COPD events will model the expected number of
COPD cases each day conditioned on a series of weather, air
quality, and perhaps individual factors [10,11].

Although the expected outcomes can be important, the
central portion of the conditional distribution is only one part of
the story, and other parts of the conditional distribution can give
quite different insights – particularly when the distributions are
skewed. Studies of birth weight for example have shown quite
different relationships between the explanatory variables and
birth weight when modelling the conditional mean than they
have when modelling low birth weight, such as birth weights in
the lowest decile [12]. There is no requirement for the factors
explaining low birth weight to be the same factors that explain
average birth weight or for the explanation to be of the same
form as for the central part of the conditional distribution.

Similarly, in modelling daily respiratory events (morbidity or
mortality) and their relationship to air quality or weather, there
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is no strong requirement for the relationships that model
average events to be the same as the relationships that model
days with unusually high or unusually low numbers of events.
By extension, forecasting the numbers of respiratory events on
the outer arms of a conditional distribution need not rely on the
same predictors that would be useful in forecasting the
expected number of respiratory events.

To our knowledge, and not withstanding its potential value,
there has only been one study looking at the forecasting of the
number of respiratory events on the outer arm of a conditional
distribution (such as the 90th percentile)[13]. There is the simple
scientific interest in our capacity to make such forecasts, and
what insights it might provide into the data; but there is also
potential value for forecasting likely resource needs, as well as
in areas such as syndromic surveillance, where the number of
events exceeding a threshold is used to trigger a health
systems response. Quantile regression remains a relatively
unusual modelling technique in health research, which can be
used to model conditional responses at any quantile of interest;
and – although it has been used (rarely) for forecasting [14,15]
– to our knowledge has never been used to forecast mortality.

Methods

We investigated the use of quantile regression to forecast
the 90th percentile of daily, respiratory related deaths for New
York City, in the period 1 January 1987 to 31 December 2000.
The choice of the 90th percentile was somewhat arbitrary but in
keeping with the idea of understanding the general capacity
that a health system might need to maintain to meet typical
demand. The data were drawn from the National Morbidity,
Mortality, and Air Pollution Study (NMMAPS)[16], which are
publicly available data through the Health and Air Pollution
Surveillance System website (http://www.ihapss.jhsph.edu),
and, in our case, accessed using the NMMAPS package in the
R statistical environment [17]. The daily count of respiratory
deaths was the outcome measure of interest. The data
included 70,830 respiratory deaths over 5,114 days of
surveillance.

The dataset also included a range of daily weather and air
quality measures which were used as predictors in the
modelling. The predictors included daily mean air temperature,
dew point, ozone (O3), sulphur dioxide (SO2), nitrogen dioxide
(NO2), and carbon monoxide (CO). Measures of particulate
matter were not included because of the levels of missing data
within the dataset. In addition to the measures of weather and
air-quality, cosinor values representing a yearly and a half
yearly cycle[18,19], and dummy variables representing the
days of the week were also used as predictors.

The data were sub-divided into two equal sized sets, from 1
January 1987 to 31 December 1993 for model development
(in-sample), and from 1 January 1994 to 31 December 2000 for
cross-validation (out-sample). We used the terms “prediction”
to refer to the in-sample model development and then
“forecasting” to refer to out-sample cross-validation. The size of
the in-sample data was subsequently reduced to 2405 days
(94.0% of total days) because of the use of lagged data, and a
small amount of pre-existing missing data. The out-sample

data (2548 days) were almost complete with a loss of only 8
days of data.

The details of quantile regression have been described
elsewhere[20,21], as has its application to health
problems[22,23]. The use of quantile regression with count
data is unusual and its application to health forecasting
remains novel [24,25].

A common challenge in modelling outcomes related to
environmental exposures is the lagged effect between weather
and air quality exposures and the health outcome of interest
[26]. To identify an appropriate lag to represent the exposure to
each of the weather and air quality measures, a series of
quantile regression count models, using the in-sample data,
were constructed testing the fit for each lag in turn, from a 1-
day lag through to a 7-day lag; and was similar to approaches
used elsewhere [9]. The fit of each lag, for each weather and
air quality measure, was assessed using a function based on
the asymmetric Laplace distribution commonly used in quantile
regression. Best fit was determined by the lag that had the
lowest value for:

1− p . ∑
yi<q

yi−q + p. ∑
yi>q

yi−q (1)

where the absolute deviations below quantile q are weighted
by 1- p if the actual values lies below q, and p if the actual
value lies above q. The lags that were identified for inclusion
were: CO, NO2, O3, dew point (1-day), temperature and SO2 (3-
days). A 7-day moving average value for each of the weather
and air quality factors was also included in one model as a
point of contrast.

Four separate models were subsequently developed, three
of which used quantile regression with either the selected lags
or 7-day moving averages as predictors with the in-sample
data. Model 1 was the intercept only model, an unconditional
model predicting the value of the 90th percentile of daily
respiratory deaths to be constant across the data. Model 2 was
a conditional model in which the value of 90th percentile of daily
respiratory deaths varied, conditioned on seasonal (cosinor
values) and temporal (day of the week) predictors. Model 3
was a conditional model in which the value of 90th percentile of
daily respiratory deaths varied conditioned on seasonal/
temporal predictors and the selected lags of weather and air
quality predictors. Model 4 was the same as Model 3 except
that the 7-day moving averages of weather and air quality
predictors were used instead of selected lags.

The parameter estimates and standard errors from the
quantile regression are not reported here, because they are
essentially not required in the process for developing the
forecasting model. Previous experience suggests that when
they are provided, attention is inappropriately placed on that,
rather than the predictive and forecasting capacity of the
models.

The measure of fit used to establish the predictive validity
(in-sample fit) and the forecasting accuracy (out-sample fit) of
the quantile regression models was the coefficient of
determination (R1)[20]. R1 measures the proportionate
reduction in the weighted sum of the absolute deviations
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(WSADs) achieved by a conditional model over the
unconditional model; where the weighted sum of the absolute
deviations is given by equation 1. In this context, R1 is
analogous to the mean absolute scaled error suggested by
Hyndman and Koehler [27]. R1 was estimated for Models 2, 3,
and 4, using the weighted sum of absolute deviations from
Model 1 as the denominator. A supplementary approach which
has been suggested for the application of count data in
Quantile regression is for the data to be “jittered” prior to
modelling [24]. In our preliminary work we did not observe any
significant differences in model performance between the
models of jittered data (of up to ±0.1 random numbers) and the
time indicator, and those we reported.

Results

The time-series graph of the daily, respiratory deaths shows
the familiar annual cycle with the peak deaths occurring in the
winter months and the valleys occurring in the summer (Figure
1). The dashed vertical line in the middle of the figure shows
the separation between the in-sample used to develop the
quantile regression models and the out-sample, used to cross-
validate the forecast models. The dotted horizontal line shows
the in-sample, unconditional, 90th percentile number of daily
deaths (20.2 per day). It is clear that a conditional distribution
at the 90th percentile which included seasonal/temporal
predictors would be quite different from the straight line of the
unconditional quantile.

The top half of Table 1 shows the predictive capacity of the
three conditional models (Models 2, 3, and 4) relative to the

unconditional model (Model 1). The coefficient of determination
(R1) showed improvements between .165 (i.e., a 16.5%
improvement in the fit) and .191 over the unconditional model.
The seasonal model (Model 2) slightly outperformed both the
selected lags model and the 7-day moving average model.

The models developed using the in-sample data were cross-
validated using the out-sample data. The lower half of Table 1
shows the forecasting capacity of the three conditional models
(Models 2, 3, and 4) relative to the unconditional model (Model
1). As anticipated, the forecasting performance of Model 2

Table 1. A comparison of the predictive and forecasting
capacity of the models.

 Parameter Model 1 Model 2 Model 3 Model 4
Prediction      
In sample WSAD 2328.2 1882.5 1943.3 1927.5
 R1 0 .191 .165 .172

Forecasting      
Out sample WSAD 2529.5 2121.3 2039.7 2055.3
 R1 0 .161 .194 .187

Perdition was based on the In Sample (days=2445) and forecasting was based on
cross-validation of the Out Sample (days=2548): Model 1, intercept only; Model 2,
temporal/seasonal model, Model 3, temporal/seasonal model with selected lags of
weather and air quality; and Model 4 temporal/seasonal model with a 7-day moving
average of weather and air quality. The weighted sum of the absolute deviation
(WSAD) and the coefficient of determination (R1) are used to compare the models.
doi: 10.1371/journal.pone.0078215.t001

Figure 1.  Time series of respiratory related deaths 1987—2000.  The vertical dashed line indicates the separation between the
in-sample and out-of sample data.
doi: 10.1371/journal.pone.0078215.g001
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(seasonal/temporal predictors) was slightly worse than the
predictive performance (R1=.161); i.e., cross-validation against
the out-sample was slightly weaker than predictions based on
the model development data (in-sample). Model 3 (seasonal/
temporal predictors and selected lags for weather and air
quality) performed slightly better in forecasting than it had in
prediction (R1=.194). The performance of the 7-day moving
average model (Model 4) also improved slightly (R1=.187).

As an illustration, Figure 2 shows the predictions (in-sample)
and forecasts (out-sample) based on Model 3 (seasonal,
temporal and selected lags as predictors) against the
unconditional Model 1. Each point (small dot, larger dot, and
solid triangle) represents the number of respiratory deaths
recorded for a particular day. The conditional quantile
regression model for the 90th percentile (shown in grey) lies, as
expected, well above the central portion of the data – where a
model of the conditional mean or median would lie – and
shows clear seasonal variation. The dotted horizontal line
shows the unconditional 90th percentile (Model 1). A few
matters are worthy of note. All the points that lie above the
dashed horizontal line would be regarded, under the
unconditional model, as reflecting more unusual numbers of
respiratory deaths. The points shown as black triangles reflect
those days with numbers of deaths identified as more unusual
under the unconditional model, but more typical under the more
complex, conditional model. Conversely, all the points that lie
below the dashed line would be regarded as more typical under
the unconditional. The points shown as larger dots reflect those
days with numbers of deaths identified as more typical under
the unconditional model, but more unusual under the more

complex, conditional model. Visually, the predictive and
forecast performance of the model appears to be reasonably
consistent (Figure 2).

Discussion

The notion of modelling and forecasting the expected
number of daily deaths is well described in the literature
[2,28-30]. Forecasting any health outcome on the outer arms of
a conditional distribution, however, is unusual [15], and
appears not to have been done in the analysis of daily time
series data related to mortality. This is unfortunate, because
there are things to be learned from forecasts made at, for
instance, the 90th percentile that could not be learned from
forecasting the expected number of daily deaths.

For example, forecasts of the expected number of deaths will
underestimate the kinds of resources that need to be available
much of the time, particularly in an environment with the kind of
variability shown in the daily respiratory deaths data. There is
cyclical variation in the data, but even within the data at any
one part of the annual cycle, there is substantial daily variation.
Forecasts of likely numbers of deaths (i.e., occurring more than
90% of the time), can also feed into a mechanism for
identifying when there is a concerning deviation in the number
of deaths. Sustained numbers of days with deaths above the
forecast can inform a health system about the occurrence of a
likely environmental exposure or emerging disease.

Furthermore, because the forecasts are conditional,
relatively low absolute numbers of deaths occurring in the
summer, can still trigger a response when those numbers

Figure 2.  The quantile regression (90th percentile) model of respiratory related deaths.  The small dots indicate daily deaths.
The dotted horizontal line shows the unconditional 90th percentile.
doi: 10.1371/journal.pone.0078215.g002

Forecasting Extreme Respiratory Deaths in NYC

PLOS ONE | www.plosone.org 4 October 2013 | Volume 8 | Issue 10 | e78215



(although low) fall consistently above the conditional 90th

percentile. They also forecast when resources and capacity
may be reduced.

The analysis presented here showed some forecasting
benefit associated with the inclusion of selected lags of daily
weather or air quality data (i.e., a difference in R1 between .
161 and .194 – a 3% improvement over the unconditional
model). A trade-off arises, however, between developing more
complex conditional models over models including only
temporal and seasonal predictors.

There are important limitations with the approach taken here,
and these can be used to highlight future pathways for
analysis. The first limitation is with the use of the 90th

percentile. One can potentially analyse the data at any
conditional quantile, and for different purposes (such as
surveillance or resource allocation) analyses at different
quantiles – or multiple quantiles – may be more useful. The
utility is driven by the application, and as we were seeking a
proof of concept, the 90th percentile seemed to be appropriate
level. Using cosinor values of yearly and half yearly cycles may
not capture important seasonal information that could be built
into the forecasts, and is certainly worthy of future
investigation. There is a balance to be made in forecasting
between the gain in accuracy and the cost of implementation.
Sinusoidal functions capturing seasonal and temporal variation
are trivial to develop and implement, and provide around a
15-20% improvement in accuracy over using an annual figure
for the 90th percentile. More complicated conditional models
appear to add a 2-3% improvement. The utility of the gain for
the effort is uncertain. The final limitation we consider here is a
theoretical one. There is often concern expressed with
forecasting models that do not take a more traditional causal

modelling approach [31]. We would take two distinct lines of
argument in response. The first line of response is that the
purpose of forecasting is not about determining cause and
effect, and therefore forecasting models should be judged
according to their forecasting accuracy, not for their
inadequacy at providing causal explanations. The second line
of response is that if a causal model out-performs non-causal
model in forecast accuracy, then the causal model should
absolutely replace the non-causal model. The causal model
was not developed here, but there is some reason to believe
that it may not perform as well as a “dust bowl” empirical
approach [31] that has no interest in explaining the
relationships between factors involved but rather for forecasting
the outcome.

Conclusion

This study reports for the first time, a statistical approach for
forecasting respiratory related deaths at the 90th percentile
using quantile regressions. The results suggest there is
potential value in this, even when the model is no more
sophisticated than a seasonal/temporal model. The study
should, however, be treated as a proof of concept, rather than
definitive.
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