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The Classification of Minor Gait Alterations Using
Wearable Sensors and Deep Learning

Alexander Turner and Stephen Hayes

Abstract—Objective: This paper describes how non-invasive
wearable sensors can be used in combination with deep learn-
ing to classify artificially induced gait alterations without the
requirement for a medical professional or gait analyst to be
present. This approach is motivated by the goal of diagnosing
gait abnormalities on a symptom by symptom basis, irrespective
of other neuromuscular movement disorders patients may be
affected by. This could lead to improvements in treatment and
offer a greater insight into movement disorders. Methods: In-
shoe pressure was measured for 12 able-bodied participants,
each subject to 8 artificially induced gait alterations, achieved by
modifying the underside of the shoe. The data were recorded at
100 Hz over 2520 data channels and was analysed using the deep
learning architecture, long term short term memory networks.
Additionally, the rationale for the decision-making process of
these networks was investigated. Conclusion: Long term short
term memory networks are applicable to the classification of gait
function. The classifications can be made using only 2 seconds
of sparse data (82.0% accuracy over 96,000 instances of test
data) from participants who were not part of the training set.
Significance: This work provides potential for gait function to be
accurately classified using non-invasive techniques, and at more
regular intervals, outside of a clinical setting without the need
for healthcare professionals to be present.

Index Terms—Gait abnormalities, gait diagnostics, gait alter-
ations, deep learning, LSTM, high performance computing

I. INTRODUCTION

HUMAN gait is the process of locomotion achieved
through coordinated limb movement and the controlled

displacement of the individuals centre of mass. Gait is a
complex dynamic process consisting of multiple interacting
elements over varying time scales. Abnormalities in gait are a
phenotype prevalent to multiple disorders with causes ranging
from neurological disease, brain damage, physical disabilities
or combinations thereof. The loss of gait function and its effect
on mobility can be of significant detriment to a person’s quality
of life. The diagnosis and treatment of such disorders is essen-
tial to preserve or improve an individual’s mobility. Abnormal
gait function is often diagnosed by specialist clinicians using a
combination of previous diagnoses, gait function observation,
genetic data, MRI, CT and overall health.

The numerous and varying symptoms associated with dif-
ferent abnormalities make clinical diagnosis difficult. This
can be further exacerbated as movement quality can change
and symptoms may not be present at any given time. Three
prominent systems used in the analysis and diagnosis of gait
disorders are the Gross Motor Function Classification System
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Fig. 1. The F-scan (Tekscan, Boston, USA). A Wireless telemetry system
enabling freedom of movement, that uses soft, flexible sensors worn inside
the shoe, connected to a data acquisition unit worn around the waist via data
cables running up the legs. Examples of the data produced from this system
can be seen in Figures 3 and 6.

(GMFCS) ([43], [34], [44]), the Edinburgh Visual Gait Score
([42], [32], [33]) and the Gait Profile Score ([2], [38]). Each
of these diagnostic criteria have both overlapping aspects in
which they correlate well, and distinct aspects where they
don’t ([44], [5]). Technology used to provide data for each
method includes force plates, which provide ground reaction
forces and centre-of gravity data, pressure sensing mats or in-
soles, which provide underfoot pressure profiles and somewhat
invasive 3D motion capture. This typically uses the tracking of
reflective or active markers adhered to the individual’s body
to build a model of the person’s gait. However the data is
required to be interpreted by trained professionals in a medical
or laboratory setting and only a snap-shot of the individuals
movement can be analysed.

Specific movement disorders each have their own diagnostic
criteria, which to varying degrees cover abnormalities in gait
and movement. Sufferers of multiple sclerosis are commonly
diagnosed and treated according to the Expanded Disability
Status Scale (EDSS) developed in 1983 which is currently
still used ([19], [25], [27], [1], [37], [25]). Suffers of cerebral
palsy are often diagnosed and treated using the GMFCS
([43], [34], [44]) and individuals with Parkinson’s disease are
typically treated based on clinical evaluation. There has been
a recent move towards the MDS Clinical Diagnostic Criteria
for Parkinson’s disease (MDSPD) ([40], [39], [20]). Each of
these frameworks has a different weighting and perspective
on gait function and specific abnormal gait patters have their
own descriptive criteria. Some of the most common of these

This is the accepted version of an article published in IEEE Transactions on Biomedical Engineering, which can be viewed at https://doi.org/10.1109/
TBME.2019.2900863



2

are hemiplegic gait, diplegic gait, neuropathic gait, myopathic
gait, ataxic gait and Parkinsonian gait. ([35], [50], [31]).

Movement disorders are often diagnosed and evaluated
according to the diagnostic grading criteria associated with
the primary diagnosis of the individual ([44], [5]). This work
aims to provide a proof of concept demonstrating that gait al-
terations and abnormalities can be diagnosed on a symptom by
symptom basis, non-invasively, without being in the presence
of a clinician or the requirement to be in a healthcare setting.
To achieve this we used a combination of two technolo-
gies. The first is the Fscan (Tekscan, Boston, USA) in-shoe
pressure sensing system (Figure 1) The second technology
was deep learning and more specifically, long term short
term memory networks (LSTMs). Deep learning techniques
have demonstrated excellent results in pattern matching in
image classification, signal processing and feature extraction.
LSTMs are a deep learning architecture inspired by recurrent
neural networks which have proved to be particularly adept at
sequence to sequence learning and pattern recognition. LSTMs
are capable of learning representations of information over
both short and long periods of time, which are well suited
to the classification of complex dynamic data sets spanning
differing time scales. By using the raw unprocessed data, the
LSTM will generate its own understanding of gait function
without pre-processing or data reduction.

A. Related Work

There has been a recent interest in wearable sensors to
promote diagnostics and treatment in healthcare settings with
a focus on understanding gait. However, limited work has
incorporated machine learning to facilitate the interpretation
of the data collected. A recent systematic review focused on
gait analysis across multiple conditions ranging from ankle
fractures to Parkinson’s disease and cerebral palsy using
different wearable sensors [7]. They identified accelerometers
and/or gyroscopic measures as the most common wearable
technology. Machine learning was rarely used. When machine
learning was used, its purpose was to discern a characteristic
about gait such as speed rather than diagnostics. Patton et.
al., [36] used the F-scan and its software to process the raw
data and identify four key characteristics. These four criteria
were then used to make a diagnosis pertaining to the risk
of ulceration of diabetic patients. Zequera and Solomonidis
[54] used a similar method , however the analysis of the data
was much more sparse, only focusing on the median pressure
over ten arbitrarily created areas of the foot. Strohrmann et.
al., [48] used a custom built sensing insole to analyse the
movements of children with cerebral palsy, machine learning
was implemented in the form of support vector machines to
classify centre of pressure (COP) trajectories according to the
Edinburgh Visual Gait Score.

Deep neural networks are becoming more relevant in heath
informatics [41]. Inertial measurement units have been used
to quantify and classify gait temporal-spatial parameters [29].
Deep learning has been successfully used in the detection
of freezing gait in people with Parkinson’s disease [6], and
deep neural networks have been used to differentiate between

individuals based on gait pattern using both video footage [23]
and data from body mounted sensors [10].

Smartphone technology combined with deep learning has
been used to provide a pre-clinical Parkinson’s disease diag-
nosis [51]. More importantly, it has been demonstrated that the
use of deep learning generated the highest level of accuracy
when compared to a range of classification algorithms. These
findings were echoed in Staamate et. al., [46] where it was
reported that the use of deep learning generated the highest
level of accuracy when compared to a range of classifica-
tion algorithms. With an ever-aging population who require
increasing medical assistance, this work demonstrates the
significant potential for diagnostics and elements of treatment
to move from clinical settings to the home, reducing costs and
the burden on both practitioners and patients.

This work differs from previous research in the following
ways. Firstly, its focus was to detect minor gait abnormalities,
not specific to a particular condition and are not tied to a
specific gait rating system as previously discussed. Secondly,
the use of LSTMs using raw, high volume, high throughput
channel data to identify differences in gait with no pre-
processing, allowing the LSTMs to generate their own rep-
resentations of the data. This data was acquired using non-
invasive insole sensors which can be worn for long periods
of time. These sensors do not need to be accurately placed
and can provide data at the user’s convenience as long as
ambulating on a flat surface. This work proposes a method
of gait analysis which is accurate, robust and can be used
to analyse gait function ’on the fly’, at a user’s convenience,
outside a gait assessment center and without the need for data
processing.

We compared the results of the LSTMs with another deep
learning architecture, convolutional neural networks (CNNs)
which are adept at object recognition and feature extraction
([28], [21]). This was primarily as an objective comparison
between the two technologies, however it also provides ev-
idence as to whether there were artifacts or features within
the data which could be exploited by CNNs to produce high
classification results at the expense of clinical relevance. There
are three objectives for this work:

• To provide a proof of principle that non-invasive wearable
technologies in combination with deep learning can be
used to reliably detect gait alterations without the need
for the patient to be in a clinical setting.

• To understand if increasing the amount of data available
to the deep learning architectures from single frame data
to multiple data frames (Figure 2) improves classification
accuracy.

• Analyse the networks to provide a rationale for their
decision making process, and to evidence the clinical
relevance of the classifiers and data in this work.

II. METHODS

Twelve able-bodied participants (21-34 years, 69-90 kg,
6-11 UK shoe size) were asked to complete eight walking
trials around a figure of 8 walk-way (40 m in length) for
the duration of 60 seconds per trial. Upon arrival to the
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Fig. 2. A representation of 1 second of data sampled at 100 Hz and how this data was used to create an instance of training data. Five frames of data used
with a span of 20 frames, thus sparsely capturing 1 second of data. In this image, five successive instances of data are shown. This is the pattern in which
the networks from Figure 9 and 10 use.

laboratory participants provided written informed consent prior
to any testing. Participant mass was recorded to be used in the
calibration process of the F-Scan system (Tekscan, Boston,
USA) All participants wore standardised trainers, provided by
the authors for all trials (size specific) to ensure consistency.
Pressure sensing insoles were placed inside the shoes and were
connected to the waist worn data acquisition unit via cables
running to the sensor connectors affixed to the participants
legs just superior to the ankles. A simple calibration process
was carried out consisting of the participant standing on one
foot for a pre-defined time whilst the system sampled the
pressure under the foot and normalised it to the participants
body weight to ensure appropriate scaling. This insured that
the LSTMs were less able to learn traits of specific participants
and thus limited the potential for over fitting. The F-Scan is a
wireless telemetry device and was set to capture data at 100
Hz over 1260 channels per insole resulting in 252,000 data
samples per second across both feet (Figure 3). The data was
transmitted in real time, wirelessly to a laptop computer.

The eight perturbation conditions (PCs) that participants
were asked to complete were designed to try and alter the
gait characteristics by changing the movement and location of
the COP under the foot. To achieve this the base of the shoe
was fitted with a series of soft rubberised pads. The reasons
for this were twofold. Firstly, the pad material allowed for a
shift in the COP without introducing a significant hard artefact
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Fig. 3. A representation of the data from two individual footprints from
the same participant using the F-scan. Each footprint contains 2520 (42*60)
individual pressure points, data was sampled at 100 Hz.

which could be easily detected within the shoe resulting in
a non-clinically relevant classification. Secondly the ease in
which the pads could be applied to the shoe in a fixed location
enabled a quick change between conditions without causing
any discomfort to the participants. Each pad had dimensions
of 3.5 cm 2 and a depth of 1.5 cm. Under a mass of 20 kg,
an individual pad’s depth reduced by 0.4 cm. The sole of the
shoe was divided into three sections and a pad was affixed
to a section or not via an adhesive, the patterns of which are
presented in Figure 4.
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Fig. 4. Under shoe rubberised pad configurations for perturbation conditions
1-8. Each pad was a 3.5 cm2, with a depth of 1.5cm.

A. Deep Learning

Long term short term memory networks (LSTMs) are
specifically designed to extract features from time-series data
and are particularly well suited to the data in this work.
The LSTMs were compared to convolutional neural networks
(CNNs). CNNs are particularly adept at hierarchical feature
extraction in images which typically represent static data (that
is all the information is held within a single image).

We use two deep learning architectures for two reasons.
Firstly, as an objective comparison to determine which is more
suitable for the type of data available in this work. Secondly,
we wanted to avoid the perturbations producing a specific
pressure profile which could be detected by the insole sensing
system. This would result in a classifier being produced with
little clinical relevance. With CNNs being particularly adept
at feature extraction in images, if this was present, CNNs
would have a high likelihood of detecting it and exploiting this
to achieve high classification results. This provided evidence
for evaluation of the integrity of the data as well as the
comparative performance of the different architectures.
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Fig. 5. Representation of the LSTM cell (adapted from Greff et al., [12]).
The LSTM cell takes an input and stores it for an amount of time. The input
gate controls how new values flow into the cell, the forget gate controls how
a value remains in a cell and the output gate controls to what extent a value
in the cell is used to compute the output activation of the LSTM unit. Each of
these gaits has an activation function associated with it. The weight of each
cell is then optimised during the training process.

1) Long Term Short Term Memory Networks: LSTMs are a
deep learning architecture based upon a RNNs and were first
proposed in [11]. LSTM networks differ from RNNs as they
contain LSTM units. LSTM units typically comprise of a cell,
an input gate, an output gate and a forget gate (Figure 5).
They were specifically developed to improve the classification
and modelling of complex time series data. One of the main
features of LSTMs and their ability to work with complex
time series data is that they are not affected by problems more
typically attributed to RNNs, such as gradient vanishing. As
such they have been able to push the state of the art in a range
of problems such as natural language modelling ([55], [52],
[18]) and time series forecasting ([17], [24]). These problems
all contain complex dynamics, many exist over a range of time
scales and all contain high volume, high throughput multi-
channel data.

LSTMs have been specifically applied to a range of time-
series devised, diagnostic classification tasks ([15], [47], [22]).
They are well suited for multi-label classification ([53], [22])
which will be used in this work. We focus on an LSTM
network which contains a bi-directional layer allowing for
the input sequence to be given to the network both in its
original format and in a reversed format. This has generally
resulted in improvements when classifying time series data
over unidirectional LSTMs ([11], [9]). The architecture of the
network used in this work can be seen in Table 1.

2) Convolutional neural networks: CNNs are a deep learn-
ing architecture which were specifically built for object recog-
nition and can learn a hierarchy of features. CNNs work by
detecting low level features in images, building them up into
higher level representations by taking inspiration from the
visual structures and processes within the human brain in
particular receptive fields. CNNs are currently the superior
technology in object recognition and are widely used in the
medical domain where they have demonstrated strong results
([28], [21]).

TABLE I
THE ARCHITECTURE OF THE LSTM USED IN THIS WORK. THE BI-LSTM
LAYER CHANGES BETWEEN EXPERIMENTS, AND CAN CONTAIN BETWEEN
40 AND 400 NODES WITH 40 NODE INTERVALS. ALL OTHER LAYERS WILL

REMAIN THE SAME DURING EXPERIMENTATION.

Number Type Description
1 Sequence input Input length 42
2 Dropout layer 50% probability of dropout
3 Bi-LSTM layer Variable number of units (40-400)
4 Fully connected layer Fully connected layer
5 Softmax layer Softmax layer
6 Classification output layer Classification output layer

B. Experimental Design

Due to the nature of this study there was a strong potential
for over fitting, where a machine learning architecture learns
a data set too specifically and the rules it creates cannot be
generalised to a new scenario. Overfitting could occur if the
neural networks learnt the gait of a specific individual, as
a result sensor drift over time could loosely correlate with
a particular PC. Another possibility would be for the neural
networks to focus on the pressure readings from a very small
section of the insole or a sensor artifact. These sections could
differ between participants, allowing the neural networks to
produce rules which could not be generalised. To combat
this, we used a test data set to evaluate the performance of
the neural networks containing data from participants who
were not involved in training. The training set contained 60
seconds of walking data for each PC from ten of the twelve
participants, and the test set contained 60 seconds of data for
each PC from the remaining two participants.

Deep neural networks have different levels of complexity
where more complex networks are generally more capable
of complex decision making, however they are more costly
to train in terms of time. There are two general parameters
which are a measure of any given neural networks architectural
complexity. The first is the number of layers in the network.
In this work, we will focus on a single layered network
(layers in this sense only refer to the LSTM / biLSTM
layers). The second measure of complexity is the number
of nodes in a layer. To explore this concept further, and to
ascertain the type of architecture which best suits the data
collected, we conducted multiple runs of each experiment,
with varying levels of nodes in the LSTM layer (Table 1).
The numbers of nodes varied between 40 and 400, at 40 node
intervals, meaning that 10 different runs were conducted for
each experiment.

The CNN contained two convolutional layers with a [20,50]
node layer in the first and a [5,10] layer in the second. There
were two ReLU layers, one between the convolutional layers
and the other between the second convolutional layer and
the softmax layer. The softmax layer connects directly to the
classification layer. All of the networks contained a single
dropout layer in-between the input layer and the first layer.
The purpose of this was to randomly remove input data during
training to ensure that classification could not be dependent on
a single data channel, and to encourage data representations
which could be well generalised and not overfit. A mini batch
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Fig. 6. A graphical representation of one instance of training data spanning 1 second with intervals of 200 milliseconds used in the second experiment.This
provides a sparse representation of gait over 1 second, and does not include sequentially successive data which would be more homogeneous. This both
captures a wide range of data, without introducing similar data (data which in very close in sequence is likely to more similar). This is the data which will
be used to understand if the LSTM architectures can classify gait alterations using dynamic data. An individual instance of data can be seen in Figure 3.

size of 64 samples was used alongside L2Regularization of
0.001 and a learning rate of 0.01 for both architectures.

In total, 3 different experiments were conducted :

• The first experiment used data comprised of single time
frames (Figure 3) for training and evaluating the net-
works. The primary benefit of this was that training
of the network was relatively fast. It was likely that
this approach would not provide enough information to
accurately classify the PCs as it did not capture dynamic
data.

• The second experiment used data consisting of five time
frames spliced together (Figures 2 and 6) for both training
and evaluating the networks. The data had 200 millisec-
ond gaps between each frame, thus sparsely capturing one
second worth of data. This data captured the dynamic
nature of gait by looking at the data over multiple
successive frames.

• The third experiment used the same networks developed
in the five frame experiment however, the networks are
evaluated with ten frames of data with 200 millisecond
gaps between each frame, sparsely capturing two seconds
of data.

III. RESULTS AND ANALYSIS

A. Single Frame Data

The number of nodes in the network had minimal effect on
how it learnt to classify data. The highest level of accuracy was
achieved with the network containing 400 nodes (40.9%). This
was only marginally greater than when the network consisted
of 200 nodes (40.7%) (Figure 7). The confusion matrix (Figure
8) presents data for the LSTM with the highest accuracy
rating (40.9%) representing how the network classified data
and more specifically how the accuracy related to specific
PCs. Condition 7 is the most accurately classified PC (6373
correct classifications) this equates to 6.6% of the total data.
PC 2 has the lowest classification accuracy (2488 correct
classifications), amounting to only 2.6% of the total data.
The optimum classification rate is 12.5% as there are eight
different perturbation conditions. Only gait condition 7 was
correctly classified over 50% of the time using this LSTM, all
other conditions were classified incorrectly more often than
correctly.
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Fig. 7. The results of how well the LSTM can classify the gait alterations
when trained using a single frame of data (Figure 3) over a range of LSTM
topologies ranging from 40 - 400 nodes. This data shows what percentage of
the test set was classified accurately. The best result for the unseen data is
40.9% and is achieved with an LSTM containing 400 nodes. This score is
highlighted, and the confusion matrix for this particular network can be seen
in Figure 8. When using a single instance of data the variation of nodes in the
LSTM networks makes very little consistent difference to their performance.
The results at each epoch are plotted for each number of nodes

B. Five Frame Data

The results presented in Figure 9 show the accuracy of
data classification which substantially improved relative to the
experiment using single frame data. The highest classification
accuracy using five frames of data was 76.9% and was
achieved by the LSTM containing 240 nodes. This represents
an increase in classification accuracy of 36% relative to the
highest level of accuracy achieved in the single frame data.

Figure 10 illustrates that the correct classification was
predicted by the network for every PC more frequently than
any other classification. The lowest classification accuracy was
55.9% (PC 6) and the highest was 93.4% (PC 5). In total PC
5 was only misclassified 783 times of 11800 instances. This
suggests that by using the full 60 seconds of the test data set,
the correct classification would be found for each PC. The
most mistakes in classification made by this LSTM were made
when PC 7 was misclassified as PC 5. This occurred 2906
times. Certain PCs were never misclassified as other PCs, for
example, PC 1 was never misclassified as PC 3 or 7.
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Fig. 8. The confusion matrix for the best network when using a single frame
of foot data. The exact network this matrix is drawn from is highlighted
in Figure 7 using the test data. The overall best classification accuracy for
this network is 40.9%, and a network which made random guesses would
achieve 12.5%, which indicates that some valid representations have been
made within the LSTMs. The green diagonal squares indicate guesses which
have been made correctly. The correct class is most frequently predicted by
the network for all of the conditions. That is, the most selected classification
for each perturbation by the LSTM was the correct one overall. The most
accurately guessed perturbation was number 7, which was correctly guessed
53.1% of the time.

C. Ten Frame Data

The networks used for the ten frames of data experiment
were the same as those trained in the five frames of data tests
(Figure 9). The increase in data length from five to ten frames
led to a uniform increase in classification accuracy of 4.7%
to 7.5%. The highest level of classification accuracy achieved
using two seconds of test data was 82.0% and was produced
by the same LSTM which achieved the highest accuracy level
in the five frame experiment (Figure 9).

The confusion matrix for this network (Figure 11) shows
that the correct classification rates for each PC improved,
except for PC 6 when compared to the results presented in
Figure 10. Additionally the number of categories containing
misclassification percentages of < 0.1% improved; 33/64
when using two seconds of data compared to 26/64 when using
a single second of data. Overall, by increasing the length of
the input data it can be seen that for almost all metrics, the
classification performance of the LSTM improved to what is
the maximum achieved in this study of 82.0% (Figure 11).

D. Convolutional Neural Networks

The objective performance of CNNs for single frame data
was comparatively poor compared to that of LSTM’s, achiev-
ing a best result of 24.0% (Figure 12) this was lower than any
of the results presented by the LSTM architectures, the lowest
being 34.6% (Figure 7). For the five frame data experiment,
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Fig. 9. The results of how well the LSTMs can classify the gait alterations
when trained using 1 second with 200 millisecond intervals (Figure 2 - five
instances of data stitched together). This was conducted over range of LSTM
topologies with between 40 - 400 nodes. Each of the accuracy figures are taken
at each epoch and are the accuracy of the LSTM when classifying the test
data set. The best accuracy achieved is 76.9% and is achieved with an LSTM
containing 240 nodes (highlighted by the green star), suggesting that accurate
representations have been made by the LSTMs which can classify the test data.
The confusion matrix for this particular network can be seen in Figure 10.
The changes in the number of nodes have a slightly more pronounced effect
on its performance when compared to the single frame data from Figure 7.
Additionally, the results when training the networks on one second of data
are significantly better than using a single instance (Figure 7) of data (p =
3.57 e-14).
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Fig. 10. The confusion matrix for the best network when using a 5 frames
of data over a full second. The exact network this matrix is drawn from is
highlighted in Figure 9 using the test data. The overall classification accuracy
for this network is 76.9% as seen in the bottom right hand corner, which is
significantly better than the networks which only use a single frame of data.
When looking at the green diagonal, showing the correct guesses, it can be
seen that for every perturbation, the correct one is guessed correctly over the
majority of the test data. The bottom of the x-axis shows that for the majority
of perturbations, all are correctly guessed over 50% of the time.
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Fig. 11. The confusion matrix for the best network which was trained using
5 frames of data over a full second, but evaluated here using 10 frames of
test data over 2 seconds. The overall classification accuracy for this network
is 82.0% as seen in the bottom right hand corner of the matrix, and represents
the best classification accuracy achieved in this work.
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Fig. 12. The confusion matrix for the best CNN when trained using a single
frame of data. The overall classification accuracy for this network is 24.0%
as seen in the bottom right hand corner of the matrix, and is markedly worse
than any of the results achieved by the LSTMs for this task (Figure 7).

the CNNs were unable to discriminate between any of the
PCs and were unable to achieve a performance better than
a random classifier at 12.5%. It is possible that with more
computational power and more complex networks this could
improve, however compared to an LSTM which took similar
overall resources to train, the CNN performed poorly.

IV. DICSUSSION

This paper investigated if high throughput, high volume data
could be used to detect artificially induced perturbations of

gait using LSTM networks. The primary aim of this research
was to establish a non-invasive methodology that could enable
the classification of gait abnormalities on a symptom by
symptom basis, using unprocessed dynamic gait data. This
concept was motivated by the desire to use data collected
in real life situations rather than snapshot data identified in
limited clinic time and to alleviate the inconsistencies with
how gait abnormalities are diagnosed and treated in patients
with movement disorders. The results of this work show that
LSTMs are well suited to classifying artificially induced gait
alterations suggesting that these methods could be used to
classify real gait abnormalities.

A. Patterns of classification

By looking at the confusion matrices presented throughout
this work, it is apparent that the best LSTMs from each
experiment formed patterns pertaining to how each PC was
classified. The confusion matrices seen in the five and ten
frame data experiments (Figures 10 and 11) clearly show that
some categories produce no misclassifications. If we look at
the highest performing LSTM (Figure 11), it can be seen that
PC 7 is very rarely misclassified. PC 7 was never misclassified
as PC 1, 2, 3, 4 or 8 and rarely as PC 6 (< 0.1%). However, the
second most common misclassification this network produced
was when PC 7 was misclassified as PC 5 (1799 times)
suggesting that PCs 5 and 7 were similar. Further emphasising
this, PC 5 was never misclassified as PC 2, 3 4, 6 or 8 and
rarely as PC 1 (<0.1%). Figure 4 shows that the PCs 5 and
7 are the only two conditions that were likely to cause over
pronation based on perturbation pads being located under the
lateral border of the forefoot.

The category most often misclassified in Figure 11 was PC
6 when it was misclassified as PC 2 (1956 times). By linking
this information back to the perturbation pad locations (Figure
4), this misclassification initially appears to be surprising as
the locations of the pads suggest that movement of the COP
under the foot should react very differently. However, when
considering the natural progression of the COP in typical
walking it is evident that the location of these perturbations
pads should not make a radical difference. Initial contact at the
heel would be evident in both PCs followed by a transition of
the COP along the lateral border of the foot until reaching the
forefoot, where the COP shifts medially across the metatarsal
heads until toe off (pronation) [13]. The perturbation pads in
PC2 may delay the transition of force from mid to forefoot
but would be unlikely to alter the spatial component of force
transition. Finally it is evident that PCs 3 and 7, which should
generate different movements, supination and (over) pronation
respectively are very rarely misclassified as each other (5 times
of a possible 23,200 classifications). All of this suggests that
the PCs generating the greatest differences are, as expected,
the easiest for the network to distinguish. These manifest
in the PCs that generate medio-lateral underfoot pressure
alterations rather than anterior-posterior changes as every step
still requires a posterior to anterior transition of the COP.

This grouping of classifications by medio-lateral rather than
anterior-posterior rather than similarity of location of pads
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adds evidence that the alterations induced in this work were
indeed modifying gait rather than introducing artifacts into gait
which can be easily identified by the insole sensing system.

B. Rationale of the decision making process

Nguyen et, al,. [30] demonstrated that although deep neural
networks objectively perform well, their underlying represen-
tations of the problem domain are often non-intuitive and can
lead to problems in understanding the rationale behind the
decision making process of the models. To provide a level
of validation of the models created in this work other than
the objective performance, we tried to understand what data
the LSTMs were using to make their decisions. To achieve
this we started with the five frame data (Figures 6 and 13)
that was classified correctly as a specific PC (Figure 4) with
99.9% confidence. We iteratively set random elements of the
five frame data to 0. If this modification did not lower the con-
fidence value of the classification, the modification remained.
If the confidence value reduced below 99.9%, the modification
was removed. This process was repeated 20,000 times to
produce a minimal representation of what the LSTM required
to confidently assign the correct PC to the data. This was
completed for 10 different, correctly classified data samples,
and 10 incorrectly classified data examples. Figure 13 is a
representative example of the results for a correctly classified
data sample. The LSTM used to generate the classifications
was the best performing LSTM found in this work (Figures
10 and 11).

The upper image in Figure 13 shows the pressure readings
for each footstep, with high pressure readings denoting foot
strike. There appear to be artifacts present for both feet,
where small instances of high pressure were recorded but
don’t appear to be part of a foot strike. When the data
removal algorithm was applied, a large amount of the data
was removed (lower image in Figure 13) and both images
have a 99.9% confidence rating according to the LSTM. The
data which remains was in all cases very sparse, with 39 non-
zero data points being present in the lower image compared
to an average of 659 in the upper image (Figure 13). These
findings were consistent throughout, and are representative
when the data is incorrectly classified, suggesting that the
underlying behavior of the LSTMs did not significantly change
depending on which data it is provided with. Although it is not
possible to demonstrate the exact rationale behind the LSTMs
decision making process, this work provided evidence to its
method. The majority of the data used in the images was not
essential for the LSTMs to provide an accurate classification.
It appears that the LSTMs look for relatively sparse points in
the data from high pressure regions, and uses their location in
reference to other points in order to make a decision. It is this
representation of the data which has been able to prescribe the
accuracy seen in this paper.

The first objective of this work was to provide a proof of
concept as to whether wearable sensors and deep learning
could be used to detect gait alterations. The highest level of
classification accuracy achieved was 82.0% over 96,000 in-
stances of test data containing participants which were not part

of the training data (Figure 11). This provided robust evidence
that rules generated by the LSTM could be generalised to new
individuals. CNNs were objectively worse than LSTMs in this
work and for the five frame data performance no better than
random chance, highlighting that the LSTMs are better suited
to this type of data.

A secondary aspect of this work focused on identifying the
optimum type of data the LSTM could use to classify the data
correctly. This issue was considered from two perspectives.
Firstly how many time frames from the source data should
be used to create a data instance for the LSTMs. Secondly
whether using five or ten frames of data for evaluation affected
the accuracy of classification. When five frames of data of
data were used (Figure 2) the classification performance rose
significantly compared to when using a single frame of data
(Figure 3). The classification accuracy improved significantly
again, when the LSTM was trained on five frame data but
was evaluated on ten frame data. This suggests that in both
instances, data of greater length is beneficial as it allows
more accurate classification, however this must be balanced
with computational training times, which increase significantly
when increasing the length of the data.

The third objective was to analyse the decision making
process and to support the clinical relevance of the data in
this work. By analysing the data provided to the networks and
removing elements which do not affect its classification, it was
found that in all instances, very little of the available data was
used by the LSTMs to provide a classification. It is likely that
specific areas and positions within high pressure locations of
the data and the distances between them were being used by
the LSTMs to determine a classifications. The comparatively
poor performance of CNNs overall suggests that there are
no artifacts in the data which CNNs can exploit to produce
non-clinically relevant classifications, and thus supports the
suitability of the data collected and the LSTMs in this work,
and provides a proof of principle for this work which can
be translated to a clinical setting. It is therefore more likely
that the pads are producing more complex disruptions in
normal gait function which produce features are not easily
discriminated.

V. CONCLUSION

The results presented in this paper show the potential of
using non-invasive devices for the diagnosis of movement
disorders without the need to visit a medical specialist. Deep
learning architectures used to interpret the data were revealed
to be accurate, capable of distinguishing between different arti-
ficially induced gait alterations and robust enough to cope with
data from participants for which it had no prior experience.
This work demonstrates the capacity for gait abnormalities
to be diagnosed on a symptom by symptom basis. These
methods could be further applied to help guide the treatment
for sufferers of movement disorders.
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