
1 

 

Curcumin: a modulator of inflammatory signaling pathways in the immune 

system 

Kolsoum Rezaie Kahkhaiea,b, Ali Mirhosseinic, Ali Aliabadid, Asadollah Mohammadie, Mohammad Javad 

mosavif,g, Saeed Mohammadian Haftcheshmehh*, Thozhukat Sathyapalani, Amirhossein Sahebkarj,k,l* 

aDepartment of Medical Biochemistry, Faculty of Medicine, Zabol University of medical Sciences, 
Zabol, Iran 
bMedicinal Plants Research Center, Faculty of Medicine, Zabol University of medical Sciences, 
Zabol, Iran 
cImmunology Research Center, Inflammation and Inflammatory Diseases Division, School of 
Medicine, Mashhad University of Medical Sciences, Mashhad, Iran 
dDepartment of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical 
Sciences, Mashhad, Iran 
eCellular and Molecular Research Center, Research Institute for Health Development, Kurdistan 
University of Medical Sciences, Sanandaj, Iran. 
fDepartment of Immunology and Allergy, Faculty of Medicine, Bushehr University of Medical 
Sciences, Bushehr, Iran 
gImmunology Department, School of Medicine, Tehran University of Medical Sciences, Tehran, 
Iran 
hDepartment of Medical Immunology, Student Research Committee, Faculty of Medicine, 
Mashhad University of Medical Sciences, Mashhad, Iran 
iDepartment of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, 
University of Hull, Hull HU3 2JZ, UK 
jBiotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of 
Medical Sciences, Mashhad, Iran. 
kNeurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, 
Iran. 
lSchool of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran. 

 
 
 

#Corresponding Authors: 
 
Saeed Mohammadian Haftcheshmeh, Department of Medical Immunology, Faculty of Medicine, 
Mashhad University of Medical Sciences, Mashhad, Iran; Postal code: 91766-99199; Fax: 05138012762.   

 
Amirhossein Sahebkar, PharmD, PhD, Department of Medical Biotechnology, School of Medicine, 
Mashhad University of Medical Sciences, Mashhad, Iran, P.O. Box: 91779-48564, Iran. Tel: 
985118002288; Fax: 985118002287; E-mail: sahebkara@mums.ac.ir; amir_saheb2000@yahoo.com  

 

Running title: Curcumin, immune system and inflammation 

mailto:sahebkara@mums.ac.ir
mailto:amir_saheb2000@yahoo.com


2 

 

Abstract 

Curcumin is a natural compound derived from the spice, turmeric, that has been extensively 

reported for its efficacy in controlling or treatment of several inflammatory diseases. There is a 

growing body of literature that recognizes the anti-inflammatory effects of curcumin in the 

immune system. On the other hand, the role of inflammatory signaling pathways has been 

highlighted in the pathogenesis of several inflammatory diseases and signaling molecules 

involved in these pathways are considered as valuable targets for new treatment approaches. 

We aimed to provide a comprehensive overview of the modulatory effects of curcumin on 

inflammatory signaling pathways which leads to inhibition of inflammation in different types of 

immune cells and animal models. In this comprehensive review, we elaborate on how curcumin 

can effectively inhibit multiple signaling molecules involved in inflammation including NF-κB, 

JAKs/STATs, MAPKs, β-catenin, and Notch-1.  

Keywords: Curcumin, Inflammation, Inflammatory signaling pathway, Inflammatory diseases 

 

 

 

 

 

 

 

 



3 

 

 Abbreviations 

HSPs              Heat shock proteins 
LPS                Lipopolysaccharide 
DCs                Dendritic cells 
TNF-α            Tumor necrosis factor-α 
IL                   Interleukin           
IFN                Interferon 
NF-κB            Nuclear factor-κB 
JAK/STAT     Janus kinase/Signal transducer and activator of transcription 
MAPK           Mitogen-activated protein kinase 
IBD               Inflammatory bowel disease 
RA                  Rheumatoid arthritis 
SLE                Systemic Lupus Erythematosus 
MS                 Multiple sclerosis 
T1DM            Type 1 diabetes mellitus 
IκB                 Inhibitors of NF-κB 
IKK                IκB kinase 
BMECs         Brain microvascular endothelial cells 
HUVECs      Human umbilical vein endothelial cells 
ICAM-1       Intercellular adhesion molecule 1 
VCAM-1      Vascular cell adhesion molecule 1 
MCP-1         Monocyte chemoattractant protein-1 
PPARγ         Peroxisome proliferator-activated receptor-gamma 
iNOS          Inducible nitric oxide synthase 
COX-2       Cyclooxygenase-2 
SHP2         Src homology 2 domain-containing protein tyrosine phosphatase 
OSM         Oncostatin M 
MMP         Matrix metalloproteinase 
EAE          Experimental allergic encephalomyelitis 
RORγt       RAR-related orphan receptor gamma 
TGF-β       Transforming growth factor β 
SOCS        Suppressor of cytokine signaling 
PIAS         Protein inhibitor of activated STAT 
ERK Extracellular receptor-activated kinase 
JNK C-Jun N-terminal kinase 
PGE2        Prostaglandin E2 
MPO        Myeloperoxidase 
CMF        Colonic myofibroblasts 
ROS         Reactive oxygen species 
BBB         Blood-brain barrier 
FLS Fibroblast-like synoviocyte 
LDH         Lactate dehydrogenase 
OGD        Oxygen-glucose deprivation 
GSK3       Glycogen synthase kinase 3    

https://en.wikipedia.org/wiki/Mitogen-activated_protein_kinase
https://en.wikipedia.org/wiki/Intercellular_adhesion_molecule
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GATA3    Transcription factor GATA binding protein 3 
TAK1       Transforming growth factor (TGF)-activated kinase 1 
PMA        Phorbol 12-myristate 13-acetate 
DLN         Draining lymph node 
CRP C-reactive protein 
VEGF Vascular endothelial growth factor 
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Inflammation and inflammatory signaling pathways 

Inflammation is one of the major types of immune responses. It has an important role in both 

innate and adaptive immunity and has a crucial role in the defense against many harmful stimuli, 

of both endogenous and exogenous origin [1,2]. During the inflammatory process, several 

immune cells (such as leucocytes) and plasma proteins (such as cytokines, complement proteins) 

are brought into the site of infection or damage in tissues and subsequently activated [3]. These 

blood-derived components of the immune system mediate inflammation to eliminate invading 

pathogens (such as bacteria, viruses, and fungi) and also promote tissue repair [4,5]. The immune 

system has evolved to recognize the molecular structures of both foreign and endogenous 

molecules [such as lipopolysaccharide (LPS), heat shock proteins (HSPs)] by receptors expressed 

by cells of the immune system such as macrophages, dendritic cells (DCs), endothelial cells, B 

cells, and T cells [1,6,7]. As a consequence of binding of these receptors to their ligands, 

intracellular signal transduction pathways are activated to initiate and promote inflammatory 

responses in immune cells against the above-mentioned agents [8,9,7]. During the inflammatory 

response, several inflammatory mediators such as pro-inflammatory cytokines and chemokines 

are produced by immune cells [3,10,7].  The most important pro-inflammatory cytokines in the 

immune responses are tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, IL-12, 

interferon-γ (IFN-γ) and IL-8 [3,7]. In addition, the interaction of the aforementioned cytokines 

with their receptors on the surface of immune cells also activates inflammatory signaling 

cascades in a positive feedback loop. The three main signaling pathways that mediate the 

inflammatory response in immune cells include nuclear factor-κB (NF-κB) signaling pathway, 

Janus kinase/Signal transducer and activator of transcription (JAK/STAT) signaling pathway, and 
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mitogen-activated protein kinase (MAPK) signaling pathway [11-13]. Inflammation is a protective 

biological response of the host immune system and is carefully controlled by several mechanisms 

[4,14,15]. However, failure in these mechanisms which tightly regulate inflammatory signaling 

pathways leads to unabated inflammation and generation of immune-mediated inflammatory 

diseases such as inflammatory bowel disease (IBD), rheumatoid arthritis (RA), systemic lupus 

erythematosus (SLE), atherosclerosis and multiple sclerosis (MS)][16-19]. Therefore, modulation 

of these signaling molecules in the inflammatory signaling pathways can effectively induce anti-

inflammatory effects and could potentially be a valuable approach for the management of 

inflammatory diseases.  

One of the natural compounds that have shown potential anti-inflammatory properties and 

promise in the management or control of several inflammatory diseases is curcumin. Herein, 

provide a comprehensive overview of the modulatory effects of curcumin on the inflammatory 

signaling pathways which leads to inhibition of inflammation in different types of immune cells 

and animal models. 

Curcumin and its immunomodulatory effects 

Curcumin is a natural compound derived from Curcuma longa L. (also called turmeric, a member 

of Zingiberacea family) that is being used extensively for the management of several diseases. 

Research supports the critical roles played by curcumin and its analogs such as antibacterial, 

antiviral, antifungal, antioxidant, anti-inflammatory, hepatoprotective and anti-tumor activities 

[20-30]. In addition, it is well established that curcumin is considered to be a safe natural 

compound [31,20]. In recent years, there has been an increasing interest in using curcumin as an 
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immunomodulatory agent in the immune system. The immunomodulatory effect of curcumin 

arises from its interaction with a wide range of immune cells such as macrophages, DCs, B and T 

cells [32,33]. The anti-inflammatory properties of curcumin have been demonstrated in the 

human and animal models of several inflammatory disorders such as RA, SLE, MS, type 1 diabetes 

mellitus (T1DM), atherosclerosis, metabolic syndrome, periodontal disease, colitis, and 

Alzheimer’s disease [34,33,35,36]. Interestingly, recent evidence suggests that curcumin can 

reduce the pro-inflammatory cytokines such as IFN-γ, TNF-α, IL-1 and IL-8 via interaction with 

several signaling and transcription molecules such as NF-κB, JAKs/STASs, MAPKs and β-catenin 

[34,37-41]. In this narrative review, we demonstrate that curcumin interacts with various 

signaling molecules in the inflammatory signaling pathways, thereby acting as an anti-

inflammatory agent. 

Effect of Curcumin on the NF-κB signaling pathway 

NF-κB was first identified in the B cells as a nuclear protein that binds specifically to kappa 

enhancer motif sequences in the NF-kB target genes [42]. This master transcription factor plays 

an essential role in the inducible expression of many genes associated with the inflammatory 

responses in the immune system including antimicrobial peptides, chemokines and cytokines 

[43,44]. NF-κB proteins are located in the cytoplasm of the cells and repressed by their inhibitory 

proteins that are known as the inhibitors of NF-κB (IκBs) [42]. In response to various stimuli, the 

IκB becomes phosphorylated by an active IκB kinase (IKK), which results in the dissociation of IκB 

from NF-κB [44]. Subsequently, NF-κB is released, translocated to the nucleus and bind their DNA 

binding sites to regulate the transcription of a large number of genes [43,44].  
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There is increasing evidence that the mode of action of curcumin involves modulating the NF-κB 

pathway, which may be considered as one of the key targets of curcumin (Figure 1) [45-50]. The 

NF-κB network could be modulated at two stages: the inhibition of the NF-κB activation process, 

and by direct inhibition of NF-κB.  In this regard, Brennan et al. reported that curcumin could 

inhibit NF-κB activation by inhibiting the degradation of IκB-α and reacting with the NF-kB itself 

in TNF-activated Jurkat T lymphoma cells [51]. Curcumin may also interfere with the binding 

activity of NF-κB to the κB site in the IL-12p40 promoter, which significantly inhibits IL-12 

production in LPS-activated macrophages [52,53]. In addition, curcumin treatment inhibited the 

NF-kB activation induced by oxygen-glucose deprivation in injured brain microvascular 

endothelial cells (BMECs) [54]. Kim et al. reported that curcumin negatively regulates the 

production of pro-inflammatory cytokines (IL-1, IL-6, and TNF-α) from maturing DCs [55]. In 

addition, the curcumin-treated DCs manifested an impaired induction of TH1 responses and a 

normal cell-mediated immune response [55]. This indicates that the inhibitory effect of curcumin 

on DCs maturation, at least in part, could be derived from its actions on the NF-κB activation as 

a potential target [55].  

Further studies suggest that curcumin inhibits NF-κB signaling pathway by promoting the 

expression of IκB-α in activated human macrophages by influenza virus infection [56]. In addition, 

curcumin derivative BDMC33-treated macrophages showed an interrupted degradation of IκB, 

resulting in attenuation of NF-κB nuclear translocation [57]. As a consequence of this event, the 

production of several pro-inflammatory mediators including NO, TNF-α, and IL-1β was 

suppressed by curcumin [57]. Kumar and colleagues studied the effects of curcumin on the 

adhesion of monocytes to human umbilical vein endothelial cells (HUVECs) [58]. They 
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demonstrated that the anti-inflammatory activity of curcumin may be due, in part, to the 

inhibition of leukocyte recruitment [58]. Curcumin blocked the TNF-induced adhesion of 

monocytes to HUVECs by inhibiting the expression of adhesion molecules and TNF-mediated 

activation of NF-κB [58]. Cho et al. reported that curcumin has an inhibitory effect on the 

expression of IL-1β and IL-6 expression induced in TNF-α-treated HaCaT cells [59]. They suggested 

that curcumin exerts it’s anti-inflammatory and growth inhibitory effects by negative regulation 

of the NF-κB pathway [59]. Bisdemethoxycurcumin, the active component of turmeric, 

suppresses the production of inflammatory cytokines including TNF-α, IL-8, and IL-6 by inhibiting 

the NF-κB activation and IκB degradation in pharmacologically‑induced inflammation in the 

human mast cells [60].  

Pan et al. reported that a new synthetic curcumin analog (C66) decreased high glucose-induced 

over-expressions of intercellular adhesion molecule 1 (ICAM-1) or CD54 (an important ligand for 

β2 integrins), vascular cell adhesion molecule 1 (VCAM-1) and monocyte chemoattractant 

protein-1 (MCP-1). It also reduced renal macrophage infiltration and injury by suppressing NF-κB 

activation in diabetic mice [61]. 

Curcumin decreases the NF-κB activation in TCR-stimulated non-obese diabetic lymphocytes 

[62]. Moreover, Soetikno et al. observed that the administration of curcumin protects against the 

development of diabetic nephropathy [37]. Diabetic nephropathy is a major complication of 

diabetes and can be considered as an inflammatory disease [63]. Monocytes/macrophages as the 

main source of pro-inflammatory mediators including TNF-α, IL-1β, MCP-1 and are the key 

inflammatory cells involved in the pathogenesis of the diabetic nephropathy [64,65]. 

Macrophages infiltrating into the glomerulus are implicated in the development of glomerular 



10 

 

injury [64]. It has been indicated that curcumin could reduce macrophage infiltration by 

suppressing the activation of the NF-κB pathway in diabetic rat models [37]. In accord with this 

finding, Ghosh et al. demonstrated that curcumin treatment improves renal function in the 

animal models with chronic renal failure by antagonizing the effect of TNF-α in peroxisome 

proliferator-activated receptor-gamma (PPARγ) [66]. It also blocked transactivation of NF-κB [66].  

Effect of Curcumin on JAK/STAT signaling pathway 

The JAK/STAT signaling pathway is one of the most important pathways that regulate 

inflammation in immune cells by transducing the signal of types 1 and 2 cytokines receptors in 

response to various pro-inflammatory cytokines [67,13]. This pathway includes the four known 

Janus kinases (JAK1-3 and TYK2), which are associated with the aforementioned receptors, and 

seven STATs (STAT1-4, 5a, 5b, and 6) [67,13]. 

In innate immunity, these intracellular molecules mediate signaling cascades induced by type I 

and type II interferon (i.e., IFN-α/β and IFN-γ).  They can effectively induce the activation, 

maturation, and function of DCs and macrophages [68].  In acquired immunity, JAK/STAT 

signaling regulates the activation and differentiation of different subtype of T cells including TH1 

(JAK2, TYK2, STAT1, and STAT4), TH2 (JAK1, JAK3, and STAT6), and TH17 (STAT3) from naïve CD4+ 

T cells [13,67,69]. Despite the physiologic roles played by JAK/STAT signaling, this pathway is also 

involved in the pathogenesis of several inflammatory diseases such as RA, IBD, MS, T1DM, SLE, 

and periodontitis, hence could be considered as a valuable target for the regulation of 

inflammation [70-74]. 



11 

 

The inhibitory action of curcumin on JAK/STAT signaling pathway has been confirmed in a study 

conducted by Kim et al., where it was shown that curcumin suppresses phosphorylation of JAK1, 

JAK2 and their downstream molecules such as STAT1 and STAT3 in IFN-γ, gangliosides or LPS–

activated microglial cells. As a result, the expression of several pro-inflammatory mediators 

including inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), MCP-1 and ICAM-

1 were impaired in activated microglial cells [75]. In this regard, the activation of Src homology 2 

domain-containing protein tyrosine phosphatases (SHP)-2, a key negative regulator of JAK 

activity, is one of the several molecular mechanisms by which curcumin mediates suppression of 

JAK activation [75]. Oncostatin M (OSM) is an important member of IL-6 cytokine superfamily 

that is involved in the pathogenesis of several inflammatory diseases, such as RA, by inducing 

several matrix metalloproteinases (MMPs). In line with previous findings, it has been reported 

that curcumin treatment suppressed the OSM-induced phosphorylation and DNA binding activity 

of STAT1 (but not JAK1, JAK2, and JAK3) in bovine and human primary articular chondrocyte [76]. 

By its inhibitory action on STAT1, curcumin suppresses the OSM-induced production of MMP1, 

MMP3, and MMP13 in chondrocytes [76]. Another in vitro study assessing the mechanisms 

underlying curcumin-regulated JAK/STAT signaling  showed that curcumin potently inhibits the 

expression of LPS-induced IL-6, TNF-α, and COX-2 in macrophage cell line RAW264.7 via its 

modulatory effect on suppressor of cytokine signaling (SOCS)1 and SOCS3 [77]. SOCS proteins 

negatively regulate the overactivation of the JAK/STAT signaling in responses to inflammatory 

cytokines through interaction with both JAKs and STATs [78,79]. This evidence provides a novel 

molecular mechanism by which curcumin regulates the JAK-STAT-mediated inflammatory 

responses in macrophages. Another in vitro study suggested that curcumin reduced the 
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expression of several inflammatory mediators including ICAM-1, MCP-1, and IL-8 at both mRNA 

and protein levels by suppressing the STAT3-phosphorylation in TNF-α-stimulated HUVECs [80]. 

 

In experimental allergic encephalomyelitis (EAE), characterized by the predominance of auto-

reactive TH1 and TH17 cells responses, curcumin blocks the IL-12-induced phosphorylation of 

JAK2, TYK2 and their downstream molecules, i.e. STAT3 and SATA4 in T cells [81]. Curcumin also 

inhibits the production of IL-12 by macrophages and DCs [81-83]. With regard to the essential 

role of IL-12 in the differentiation of TH1 cells [84], curcumin can strongly suppress the 

proliferation and differentiation of auto-reactive TH1 cells in several autoimmune diseases such 

as MS via inhibition of IL-12 production and its signaling cascade. Similar to effects on TH1 cells, 

curcumin also effectively suppresses proliferation and differentiation of auto-reactive TH17 cells, 

another important subtype of T CD4+ cells involved in the pathogenesis of EAE [85]. This is 

mediated by both suppressing IL-6, IL-21, and IL-17 production, and by inhibiting STAT3-

phosphorylation and RAR-related orphan receptor gamma (RORγt) activation in response to the 

aforementioned cytokines [85]. It is interesting to note that IL-6 and IL-21 are required for the 

differentiation of TH17 cells from naïve CD4+ T cells by activating STAT3 signaling and its 

downstream transcription factor of RORγt [86,87]. Curcumin treatment attenuated CNS 

inflammation, demyelination and severity of clinical paralysis in animal models of EAE owing to 

its modulatory effects on JAK/STAT signaling [81,85]. This evidence is further supported by other 

studies which showed curcumin could exert its beneficial anti-inflammatory effects in an animal 

model of colitis and intestinal inflammation by inhibiting the phosphorylation of JAK2, STAT3 and 

STAT6 [88,40,89]. This is followed by downregulated protein expression of TNF-α, IL-1β, IFN-γ, IL-
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23, IL-12p70 and up-regulated expression of anti-inflammatory cytokines including IL-4, IL-10, IL-

13 and transforming growth factor β (TGF-β) [88,40,89]. In addition, curcumin also inhibits the 

activation of CD4+CD7- T cells by downregulation of the STAT-3 signaling pathway [90,91]. 

CD4+CD7- T cells are a distinct subset of CD4+ T cells which produce TH2-like cytokine profiles 

including IL-4 and IL-10. They are involved in the pathogenesis of several inflammatory skin 

diseases [92]. 

 DCs are key cells crucial for the initiation of pro-inflammatory responses in autoimmune and 

inflammatory diseases such as colitis and are one of the main targets of curcumin [93,94]. It has 

been documented that curcumin suppress activation and maturation of DCs in colitis mice by 

targeting JAK/STAT signaling and also by up-regulation of three important negative regulators of 

this pathway including SOCS 1 and 3 and protein inhibitor of activated STAT3 (PIAS3) [40,89].   

Taken together, this growing evidence provides a better understanding of the mechanism of anti-

inflammatory action for curcumin via modulating of JAK/STAT inflammatory signaling. 

Effect of Curcumin on MAPKs signaling pathway 

MAPKs are a group of serine-threonine protein kinases that contribute to gene induction, 

proliferation, cellular differentiation, and inflammatory responses [95]. There are three main 

groups of MAPKs which include extracellular receptor-activated kinase (ERK), P38 and C-Jun N-

terminal kinase (JNK) [96]. MAPKs play major roles in the production of pro-inflammatory 

cytokines and can be considered as valuable targets for the treatment of inflammatory diseases 

[95,97]. 
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In order to study the effect of curcumin on inflammation related to MAPKs signaling pathway, 

Morgana et al. investigated its effects on LPS-stimulated raw 264.7 murine macrophages and 

found that curcumin remarkably reduced prostaglandin E2 (PGE2) level and the expression of 

TNF-α and IL-6 by inhibiting phosphorylation and activation of p38 MAPK [77]. In addition, 

another in vitro study indicated that pretreatment of murine microglia cell line N9 with curcumin 

and demethoxycurcumin (DMC) could reduce LPS-induced phosphorylation of p38, JNK and 

ERK1/2 MAPKs pathways, resulting in inhibition of the production of ROS by microglial cells [98]. 

Consistent with previous studies, Kim et al., demonstrated that pretreatment of immature DCs 

cells with curcumin suppressed the LPS-induced maturation function of DCs by inhibiting 

phosphorylation of all three main MAPKs (JNK, p38, and ERK)[55]. Moreover, curcumin effectively 

inhibited COX-2 expressions (both in mRNA and protein levels) in UVB-irradiated HaCaT cells by 

an inhibitory action on activation of p38 MAPK and JNK [99]. 

RA is a chronic inflammatory disease characterized by the infiltration of several immune cells 

such as macrophage, DCs, T and B lymphocytes in the inflamed joints to produce pro-

inflammatory cytokines including IL-1β, IL-6, TNF-α, IFN-γ, IL-17, and IL-12 [100]. In response to 

these pro-inflammatory cytokines, resident synovial fibroblast cells also produce large amounts 

of IL-6, IL-8, COX-2, and MMPs which results in the progressive joint destruction, deformity, and 

disability [101,102]. Treatment of human synovial fibroblast cell line  MH7A and fibroblast-like 

synoviocytes (FLS) of RA patients with curcumin decreased PMA or IL-1β-induced 

phosphorylation of ERK1/2, but not p38, which led to reduced expression of IL-6 [103]. 

Dry eye disorder is a common inflammatory eye disease where hyperosmosis followed by the 

inflammation of the ocular surface is involved [104]. In addition, high expression of pro-
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inflammatory cytokines such as IL-1β and IL-6 has been observed in patients with dry eye disorder 

[105,106]. In a study by Min Chen et al., pretreatment of hyperosmotic-stimulated human 

corneal epithelial cells with curcumin prevented an increase in the IL-1β, IL-6 and TNF-α 

production. Interestingly, p38 inhibitor (SB 203580), but not JNK inhibitor (600125), has been  

able to completely inhibit the IL-1β production, suggesting that the potential anti-inflammatory 

effects of curcumin are mediated by its suppressive effect on p38 pathway. Importantly, p38 

inhibitor also reduced the activation of NF-κB, which proves that activation of the NF-κB occurs 

after the activation of p38 [107]. These findings provide evidence that curcumin is able to 

suppress NF-κB signaling cascade both through its direct interaction with NF-κB and by inhibition 

of its upstream activator (i.e. p38 MAPK).  

After brain ischemia, brain microvascular endothelial cells (BMECs), the principal cells in the 

blood-brain barrier (BBB), can cause inflammation by producing several inflammatory cytokines 

such as IL-1β [108]. Hence preventing inflammatory processes in BMECs can potentially reduce 

brain damage. In a study by Zhan et al., curcumin was able to significantly reduce the lactate 

dehydrogenase (LDH) release and IL-1β production in oxygen-glucose deprivation (OGD)-

stimulated BMECs via inhibition of p38 and JNK phosphorylation. In line with the Min Chen et al 

study, P38 inhibitor (SB203580) suppresses activation of NF-κB, suggesting that curcumin can 

potentially inhibit these two pathways simultaneously [54].  

In an animal model of colitis, curcumin treatment effectively reduced both myeloperoxidase 

(MPO) activity and production of TNF-α, COX-2 and iNOS by suppressing p38 phosphorylation. 

Moreover, the production of anti-inflammatory cytokine IL-10 was up-regulated [109]. These 

findings are in accord with a recent study suggesting that treatment of colonic mucosal biopsies 
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and colonic myofibroblasts (CMF) of IBD patients with curcumin resulted in reduced p38 

phosphorylation which was followed by a decrease in the IL-1β and MMP-3 production [110]. 

 

Asthma is a long-term chronic inflammatory disease characterized by the production of pro-

inflammatory cytokines such as TNF-α, and IL-1β in the airways [111,112]. MAPKs are one of the 

important factors in the production of these pro-inflammatory proteins, hence inhibiting this 

pathway can be a valuable treatment option for this disease [113]. In this regard, in a study by 

Singh et al., in an animal model of chronic asthma intranasal curcumin was able to inhibit all of 

the three main pathways of MAPKs (p38, JNK, and ERK) [114]. As a result, the levels of nitrite, 

COX-2 and reactive oxygen species (ROS) were significantly reduced [114]. 

Other Targets of Curcumin 

Curcumin has also shown immunomodulatory effects on different signaling molecules in the 

immune cells. Yang et al. demonstrated that treatment with curcumin down-regulated the 

expression of glycogen synthase kinase 3 (GSK-3), a negative regulator of Wnt/β-catenin signaling 

pathway and up-regulated the expression of β-catenin, a chief downstream transcription factor 

of the canonical Wnt signaling pathway, in LPS-stimulated BMDC [41]. As a result, Wnt/β-catenin 

signaling was activated in curcumin-treated BMDC that led to the inhibition of DCs activation and 

maturation [41]. In addition, in a mouse model of allergic asthma, administration of curcumin for 

9 days attenuated asthma symptoms and inflammatory responses in the airway by activating the 

Wnt/β-catenin signaling pathway, especially in DCs [41].  
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While investigating further molecular targets of curcumin and its anti-inflammatory effects, 

Cheong et al. found that treatment of mouse model of acute asthma with curcumin (200 mg/kg) 

decreased both mRNA and protein levels of Notch 1 receptor and it's downstream 

transcription factor GATA binding protein 3 (GATA3), a master regulator of TH2 cells 

differentiation, in lung tissues [115]. Notch 1-GATA3 signaling pathway plays a crucial role in the 

pathogenesis of allergic asthma by promoting the differentiation of TH2 cells [116-119]. 

Therefore, curcumin attenuated the allergic airway inflammation by inhibiting the Notch 1-

GATA3 signaling pathway and subsequent suppression of TH2 cells differentiation [115,120]. 

Recently, another in vivo study has shown that curcumin can also inhibit the phosphorylation of 

transforming growth factor (TGF)-activated kinase 1 (TAK1) in inflamed spinal cord cells which 

suppress production of pro-inflammatory cytokines,  including TNF-α, IL-1β, and IL-6 in a mouse 

model of acute spinal injury [121]. TAK1 is one of the MAPKKK family members and a major 

upstream modulator for the activation of NF-κB and P38 in microglial cells [122]. Therefore, 

curcumin can effectively suppress activation of these important pro-inflammatory transcription 

factors not only through direct interaction on NF-κB, P38 but also through their upstream 

molecules, especially TAK1,.  

Anti-inflammatory effects of curcumin in clinical trials 

Over the past decade, a large number of clinical studies has investigated the anti-inflammatory 

effects of curcumin in several diseases. In a randomized clinical trial conducted by Alizadeh et al., 

administration of 80 mg curcumin nanomicelle daily for 10 weeks significantly reduced plasma 

levels of inflammatory mediators including TNF-α and C-reactive protein (CRP) in infertile men 
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[123]. Another randomized clinical trial evaluating the anti-inflammatory effects of curcumin 

supplementation found that oral administration of 500 mg turmeric (containing 22.1 mg the 

active ingredient curcumin) for 2 months significantly reduced the serum levels of IL-8, but not 

TNF-α, in patients with type 2 diabetic nephropathy [124]. The anti-inflammatory effects of 

curcumin were further supported by a randomized clinical trial conducted by Panahi et al., which 

found that curcumin treatment (1 g/day) effectively reduced serum levels of TNF-α, IL-6, and 

MCP-1 in patients with metabolic syndrome [125]. In addition, a decrease in the plasma levels of 

IL-4 and IL-6 were observed after treatment of patients with knee osteoarthritis with pure 

curcuminoids (1500 mg/day) for 6 weeks [126]. Another clinical study found that oral 

administration of curcuminoids (comprising curcumin, demethoxycurcumin, and 

bisdemethoxycurcumin) at a daily dose of 1 g for 4 weeks significantly reduced serum 

concentration of IL-1β, IL-4 and vascular endothelial growth factor (VEGF), but not TNF-α, IL-6, 

IL-8, IFN-γ, and MCP-1 in obese individuals [127]. Moreover, by reducing TNF-α, IL-8, IL-6, MCP-

1, and hs-CRP, curcumin effectively mediated its anti-inflammatory effects in sulfur mustard-

intoxicated patients with chronic pulmonary or cutaneous complications. This disease is 

characterized by the overproduction of several pro-inflammatory cytokines [128,129]. In line 

with the findings of previous studies, anti-inflammatory effects of curcumin were also reported 

in a clinical study where it has been shown that administration of curcumin (180 mg/day) for 8 

weeks resulted in a reduction of serum levels of pro-inflammatory mediators including TNF-α, IL-

8, IL-6, MCP-1, and hs-CRP in patients with solid tumors. As a consequence, systemic 

inflammation in these patients was suppressed by curcumin supplementation [130]. All of the 

studies reviewed here have demonstrated the anti-inflammatory effects of curcumin in several 
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diseases by its modulatory effects on inflammatory signaling pathway as the main targets of 

curcumin. Table 2 summaries anti-inflammatory effects of curcumin in recently completed 

clinical trials. 

Concluding remarks 

There is growing evidence that curcumin through interaction with a diverse set of cellular and 

molecular targets, has an anti-inflammatory role and therefore can be considered as a valuable 

natural compound for managing various inflammatory diseases. Curcumin can inhibit the 

inflammatory process in different types of immune cells and animal models (Table 1, Figure 1). 

Curcumin has been found to suppress several inflammatory cascades in immune cells which 

result in 1) inhibition of activation, maturation and cytokines production of two important cells 

of innate immunity i.e. macrophages and DCs, and (2) inhibition of activation, proliferation, 

maturation and cytokines production of T cell subsets such as TH1, TH2 and TH17. Interestingly, 

curcumin as a pleiotropic molecule can simultaneously target multiple signaling molecules such 

as NF-κB, JAKs/STATs, MAPKs and Wnt/β catenin, suggesting its potential as a signaling molecule-

targeted therapeutic agent for inflammatory and immune-related diseases.   
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Table 1. A brief overview of molecular targets of curcumin and its anti-inflammatory effects; (-) and 
(+) signs show negative and positive effects of curcumin on its target molecules respectively. 

Type of 
study 

Cells/animal 
models 

Biologic effects Targets  Ref. 

- In vitro 

TNF-α or IL-1β-
stimulated Jurkat 
and thymoma 
cells 

- Inhibit NF-κB activation by interfering with IκBα 
degradation 
- Reacting with p50 in the NF-κB complex 

NF-κB (-) 
IκB (+) 

[51] 

- In vitro 
LPS- stimulated 
splenic 
macrophages 

- Inhibit  interleukin-12 production 

NF-κB (-) 
NF-κB binding 
to the κB site (-) 

[52] 

- In vitro 
OGD- treated 
BMECs 

- Reduce LDH release 
- Decrease IL-1β production 

NF-κB p65 (-) 
p-IκB (-) 
p38 (-) 
JNK (-) 

[54] 

- In vitro 
LPS-stimulated 
BMDCs 

- Inhibit expression of co-stimulatory molecules 
including CD80, CD86, and MHC class II 
- Induce the immature state of DCs with high endocytic 
capacity 
- Inhibit the capacity of DC to induce TH1 responses 
- Inhibit production of IL-12, IL-1β, IL-6, and TNF-α 

NF-κB p65 (-) 
p38 (-) 
ERK (-) 
JNK (-) 

[55] 

- In vitro 
IFN-γ/LPS-
stimulated 
macrophage 

- Inhibit secretion of NO, TNF-α, and IL-1β 
NF-κB (-) 
JNK (-) 
ERK (-) 

[57] 

- In vitro 
TNF-α-stimulated 
HUVECs 

- Inhibit cell surface expression of ICAM-1, VCAM-1, 
and ELAM-1 
-Blocked their adhesion to monocytes 

NF-κB (-) [58] 

- In vitro 
TNF-α-treated 
HaCaT cells 

- Inhibit expression of IL-1β, IL-6, and TNF-α 

NF-κB (-) 
p38 (-) 
ERK (-) 
JNK (-) 

[59] 

- In vitro 

PMA and calcium 
ionophore 
A23187-treated 
human mast cells 

- Suppresses production of TNF-α, IL-8, and IL-6 

NF-κB (-) 
IκB (+) 
p38 (-) 
JNK (-) 

[60] 

- In vivo 
Renal epithelial 
NRK-52E cells 

- Inhibit high glucose-induced over-expressions of 
ICAM-1, VCAM-1, and MCP-1 
- Reduce renal macrophage infiltration 

NF-κB (-) 
JNK (-) 

[61] 

- Ex vivo 
 
 
 
 
 
 
- In vitro 
 
 

Splenocytes in an 

animal model of  
diabetes 

- Inhibit pancreatic leucocyte infiltration 
- Impair proliferation and IFN-γ production 

NF-κB p65 (-) [62] 

M-stimulated 
BDC2·5-
splenocytes 

- Decrease proliferation of CD4+
 T lymphocytes 
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LPS and IFN-γ-
stimulated DCs 

- Inhibit expression of co-stimulatory molecules 
including CD80, CD86, CD40, and MHC class II 
- Reduce production of IL-12p70, IL-6, and TNF-α 
- Inhibit NO release 

- In 
vivo 
 

An animal model 
of  diabetes 

- Decrease TNF-α, IL-1β, ICAM-1, MCP-1 protein 
expression 
- Reduces macrophage infiltration 

NF-κB (-) 
IκBα (+) 

[37] 

- In 
vivo 

Animal models 
with chronic 
renal failure 

-Antagonize effect of TNF-α in PPARγ NF-κB (-) [66] 

- In 
vitro 
 
 
 
 
- In 
vivo 

DLN cells - Decrease proliferation 
- Reduce mRNA expression of IL-17, TGF-β, IL-6, IL-21, 
and RORγt 

STAT3 (-) [85] 

Jurkat T cells 

Spinal cord cells 
of an animal 
model of  EAE 

- Reduce mRNA expression of IL-17, TGF-β, IL-6, IL-21, 
and RORγt 

- In 
vitro 

 

Spleen cells in 
animal model of  
EAE 

- Decrease proliferation and IL-12-induced responses 
- Decrease IL-12 and IFN-γ production 

JAK2 (-) 
TYK2 (-) 
STAT3 (-) 
STAT4 (-) 

[81] 
Peritoneal 
macrophage cells 
of an animal 
model of  EAE 

- Decrease IL-12 production 

Mouse microglial 
cell line 

- Decrease IL-12 production 

- In 
vitro 

TNF-α-stimulated 
HUVECs 

- Reduce the expression of ICAM1, MCP1,  and IL-8 

NF-κB (-) 
p38 (-) 
JNK (-) 
STAT3 (-) 

[80] 

- In 
vitro 

Gangliosides, 
IFN-γ or LPS-
stimulated Rat 
microglia cells 

- Suppress induction of COX-2 and iNOS 

JAK1 (-) 
JAK2 (-) 
STAT1 (-) 
STAT3 (-) 
SHP-2 (+) 

[75] Gangliosides, 
IFN-γ or LPS-
stimulated 
murine BV2 
microglial cells 

- In 
vitro 

LPS-stimulated 
RAW 264.7 
murine 
macrophage 

- Inhibit expression of IL-6, TNF-α, and COX-2 

NF-ҡB (-) 
SOCS1 (+) 
SOCS3 (+) 
p38 (-) 

[77] 

- In 
vitro 

OSM-stimulated 
bovine and 
human 
chondrocytes 

- Reduce expression of MMP-1, MMP-3, and MMP-13 
STAT1 (-) 
JNK (-) 

[76] 

- In 
vivo 

Colonic tissue 
cells of an animal 
model of  colitis 

- Reduce expression of TNF-α and IL-1β 
- Inhibit activity of MPO 

STAT3 (-) [88] 
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- In 
vivo 

Colonic tissue 
cells of an animal 
model of  colitis 

- Inhibit activity of MPO 
- Reduce production of TNF-α, IFN-γ 
- Increase production of IL-10, IL-13, and TGF-β 
- Inhibit expression of iNOs 

STAT1 (-) 
SOCS1 (+) 

[89] 

- In 
vivo 

Peyer’s patches 
lymphocytes of 
an animal model 
of  colitis 

- Decrease the total number of DCs 
- Reduce expression of co-stimulatory molecules on 

DCs including MHCⅡ, CD40, CD83, CD273, and CD282 

JAK2 (-) 
STAT3 (-) 
STAT6 (-) 
SOCS1 (+) 
SOCS3 (+) 
PIAS3 (+) 

[40] 

- In 
vitro 

Human corneal 
epithelial cells 

- Reduce mRNA expression of IL-6, TNF-α, and IL-1β 
NF-ҡB p65 (-) 
p38 (-) 
JNK (-) 

[107] 

- In 
vivo 

Colonic tissue 
cells of an animal 
model of colitis 

- Inhibit activity of MPO 
- Reduce production of TNF-α 
- Increase production of IL-10 
- Reduce expression of COX-2 and iNOS 

p38 (-) [109] 

- Ex 
vivo 

Mucosal biopsies 
and 
myofibroblasts of 
IBD patient 

- Decrease IL-1β and MMP-3 production 
- Increase production of  IL-10 

p38 (-) [110] 

- In 
vivo 

Animal model of 
Chronic asthma 

- Reduce levels of nitrate COX-2 and ROS. 

NF-ҡB (-) 
p38 (-) 
ERK (-) 
JNK (-) 

[114] 

- In 
vitro 

LPS-stimulated 
murine microglia 
cell line N9 

- Inhibit production of ROS 
p38 (-) 
ERK (-) 
JNK (-) 

[98] 

- In 
vitro 

MH7A cells and 
RA-FLS 

- Reduce expression of IL-6 
NF-κB (-) 
ERK (-) 

[103] 

- In 
vitro 
 
 
 
 
 
- In 
vivo 

 
DCs 

- Inhibit maturation and function of BMDCs. 
- Reduce the ability of DCs to induce T cells responses 

GSK-3 (-) 
β-catenin (+) 

[41] 
Lung tissues of a 
mouse model of 
asthma 

- Reduce production of IL-4 and increase production 
of IFN-γ 

- In 
vivo 

Lung tissues of a 
mouse model of 
asthma 

- Inhibit differentiation of TH2 cells 

Notch 1 
receptor (-) 
Notch 2 
receptor (-) 
GATA3 (-) 

[115] 

- In 
vivo 

Spinal cord cells 
of a mouse 
model of acute 
spinal cord injury 

- Inhibit production of pro-inflammatory cytokines, 
including TNF-α, IL-1β, IL-6, and NO 

TAK (-) [121] 
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Table 2. Anti-inflammatory effects of curcumin in recently completed clinical trials. 

Population 
size (N) 

Type of 
disease 

Dose of 
turmeric, 

curcumin, or 
curcuminoids 

Duration of 
intervention 

Findings Ref. 

60 Infertility 80 mg/day 10 weeks 
Reduced 

plasma level of 
TNF-α and CRP 

[123] 

40 
Type 2 diabetic 
nephropathy 

66.3 mg/day 2 month 

Decreased 
plasma and 

urinary level of 
IL-8 

[124] 

117 
Metabolic 
syndrome 

1 g/day 8 weeks 

Reduced 
plasma level of 
TNF-α, IL-6, and 

MCP-1 

[125] 

40 
Knee 

osteoarthritis 
1500 mg/day 6 weeks 

Reduced 
plasma level of 

IL-4 and IL-6 
[126] 

50 Osteoarthritis 200 mg/day 3 month 
Reduced 

plasma level of 
CRP 

[131] 

100 Osteoarthritis 200 mg/day 8 month 

plasma level of 
IL-1β, IL-6, 
sCD40-L, 

sVCAM-1, and 
ESR 

[132] 

30 Obesitiy 1 g/day 4 weeks 

Reduced 
plasma level of 
IL-1β, IL-4, and 

VEGF 

[127] 

89 
Sulfur mustard 

intoxication 
1.5 g/day 4 weeks 

Reduced 
plasma level of 

TNF-α, IL-8, IL-6, 
MCP-1, and hs-

CRP 

[128] 

96 

Sulfur mustard-
induced 

cutaneous 
complications 

1 g/day 4 weeks 
Reduced 

plasma level of 
IL-8 and hs-CRP 

[129] 

80 Solid tumors 180 mg/day 8 weeks 

Reduced 
plasma level of 

TNF-α, IL-8, IL-6, 
MCP-1, and hs-

CRP 

[130] 

16 
Chronic kidney 

disease 
1.648 g/day 8 weeks 

Reduced 
plasma level of 

CRP 
[133] 
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16 
Chronic kidney 

disease 
1.648 g/day 8 weeks 

Attenuated the 
increase in the 
plasma level of 

PGE2, 

[134] 

67 
Type 2 diabetes 

mellitus. 
1500 mg/day 8 weeks 

Reduced 
plasma level of 
TNF-α and IL-6 

[135] 

237 
Type 2 diabetes 

mellitus. 
1500 mg/day 9 month 

Increased 
plasma level of 

adiponectin 
[136] 

71 Hemodialysis 66.3 mg/day 12 weeks 

Reduced 
plasma level of 
TNF-α, IL-6, and 

hs-CRP 

[137] 

72 Migraine 80 mg/day 2 month 
Reduced 

plasma level of 
ICAM-1 

[138] 

80 Migraine 80 mg/day 2 month 
Reduced 

plasma level of 
IL-6, and hs-CRP 

[139] 

74 Migraine 80 mg/day 2 month 
Reduced 

plasma level of 
TNF-α 

[140] 

74 Migraine 80 mg/day 2 month 
Reduced 

plasma level of 
COX-2/iNOS 

[141] 

5 Crohn’s disease 
1.08 g/day 
1.44 g/day 

1 month 
2 month 

Reduced 
plasma level of 

CRP and ESR 
[142] 

5 
Ulcerative 
proctitis 

1.1 g/day 
1.65 g/day 

1 month 
2 month 

Reduced 
plasma level of 

CRP and ESR 
[142] 

Ex vivo 
Inflammatory 
bowel disease 

 5-50 µM 0.5-24 h 

Reduced 
plasma level of 
IL-1 and MMP-3 

Increased 
plasma level of 

IL-10 

[143] 
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Figure legend 
 
Figure 1. A schematic view of curcumin's modulatory effects on NF-κB, JAK/STAT, and MAPKs pathway. Curcumin 
suppresses activation and phosphorylation of JAKs and STATs proteins. Moreover, curcumin via both direct 
interactions with NF-κB and IκB suppresses activation of NF-κB. Finally, curcumin inhibits MAPK signaling pathway 
via its interaction with three main members of this pathway including JNK, p38, and ERK. As a result of curcumin's 
modulatory functions, the pro-inflammatory process including infiltration of leukocyte into the site of inflammation, 
activation, maturation and also the production of pro-inflammatory mediators by innate immune cells strongly was 
inhibited. On the other hand, curcumin suppresses acquired immune responses by its inhibitory effects on the 
activation, differentiation and cytokines production of T cells. 


