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Abstract 

Significant improvements in radiotherapy are likely to come from biological rather than technical optimization, for example 
increasing tumour radiosensitivity via combination with targeted therapies. Such paradigms must first be evaluated in 
preclinical models for efficacy, and recent advances in small animal radiotherapy research platforms allow advanced irradiation 
protocols, similar to those used clinically, to be carried out in orthotopic models. Dose assessment in such systems is complex 
however, and a lack of established tools and methodologies for traceable and accurate dosimetry is currently limiting the 
capabilities of such platforms and slowing the clinical uptake of new approaches. Here we report the creation of an anatomically 
correct phantom, fabricated from materials with tissue-equivalent electron density, into which dosimetry detectors can be 
incorporated for measurement as part of quality control (QC). The phantom also allows training in preclinical radiotherapy 
planning and cross-institution validation of dose delivery protocols for small animal radiotherapy platforms without the need 
to sacrifice animals, with high reproducibility. 
Mouse CT data was acquired and segmented into soft tissue, bone and lung. The skeleton was fabricated using 3D printing, 
whilst lung was created using computer numerical control (CNC) milling. Skeleton and lung were then set into a surface-
rendered mould and soft tissue material added to create a whole-body phantom. Materials for fabrication were characterized 
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for atomic composition and attenuation for X-ray energies typically found in small animal irradiators. Finally cores were CNC 
milled to allow intracranial incorporation of bespoke detectors (alanine pellets) for dosimetry measurement. 

Keywords: phantom, radiotherapy, 3D printing 

 

1. Introduction 

 
In the past 20 years, the delivery of radiotherapy has been revolutionized by technical developments, allowing the delivery 

of intensity modulated and image guided radiotherapy doses with high precision (Citrin, 2017). It is likely that further 
improvements in radiotherapy response will be driven by the biological optimization via the inclusion of functional imaging 
(Nahum and Uzan, 2012) and/or the combination of radiation dose with targeted therapies, guided by biomarker evaluation 
(Chen and Kuo, 2017; Kirsch et al., 2018). Central to the development of such strategies is an improved understanding of 
radiobiology, derived from testing in preclinical models of cancer. Recently, preclinical irradiation systems such as the Small 
Animal Radiotherapy Research Platform (SARRP; Xstrahl, USA) have been developed that allow delivery to in vivo cancer 
models using clinically relevant techniques (Wong et al., 2008; Verhaegen, Granton and Tryggestad, 2011; Lindsay et al., 
2014; Tillner et al., 2014); whilst the complexity and clinical relevance of preclinical tumour models has also increased (Herter-
Sprie et al., 2014; Willey et al., 2015; Kersten et al., 2017). Although preclinical radiotherapy treatment planning systems 
mirror their clinical counterparts (Verhaegen et al., 2014), standardized protocols for the assessment of delivered dose are 
currently lacking (Desrosiers et al., 2013; Kazi et al., 2014). In clinical environments, Codes of Practice and international 
recommendations clearly define protocols with which the dose delivered must be assessed and traceable to national primary 
standards in order to achieve the <5% recommended by the International Commission on Radiation Units and Measurement  
(ICRU, 1976), however this is not the case for pre-clinical radiation biology leaving the users to wide interpretation and 
development of non-traceable tools and protocols based on local expertise. 

Estimation of dose delivered can be performed via computer simulation, or via direct measurement. Complex computational 
mouse phantoms have been created based on anatomical data derived from several sources (Stabin et al., 2006; Larsson et al., 
2011) to predict dose absorbed in radiosensitive structures such as the lung. Such approaches require detailed and accurate 
modelling of both individual radiation sources and the specific radiation setup and, furthermore, cannot be used for quality 
control. Physical measurements of dose absorbed are therefore required, necessitating the development of accurate phantoms. 
Direct incorporation of dosimetry into animals has been utilized (Kuess et al., 2014) but this does not allow the measurement 
of dose in orthotopic environments without animal sacrifice. Moreover, realistic and reproducible phantoms are required for 
inter-comparison results between institutions and radiation modalities, essential for assessing the radiobiological reproducibility 
that underpins translation to the clinic. 

Film-based verification of dose-planning on the SARRP has recently been reported (Wang et al., 2018), as has a portal 
imaging approach (Anvari, Poirier and Sawant, 2018), however neither of these methods are traceable to a national dosimetry 
standard. Incorporation of radiochromic films into a slice phantom for the evaluation of scattered photons has also been 
attempted (Welch et al., 2015, 2017), however this represents a sum of 2D geometries rather than a 3D geometry. 

3D printing has been utilized to obtain anatomical accuracy (Kim et al., 2014), however the lack of validation of tissue 
equivalency for the materials used (specifically the skull for intracranial models and the lung for genetically engineered models) 
suggest that the results obtained have a potential bias. Although 3D printing has been widely used in the development of tissue-
equivalent phantoms for clinical use (Ehler et al., 2014; Kairn, Crowe and Markwell, 2015; Mitsouras et al., 2015; Russ et al., 
2015), there are few reports and validation studies in the preclinical literature (Bache et al., 2015; Zhang et al., 2018).  

In this study, we created an anatomically correct mouse phantom fabricated from tissue equivalent materials that was capable 
of incorporating calibrated dosimeters to allow traceable dose verification. An additional aim was to enable user training in 
dose planning on advanced radiotherapy platforms without the need for animal sacrifice. 
2. Materials and Methods 

2.1 Selection of tissue equivalent materials 

The fabrication scheme (Figure 1) involved the segmentation of a computed tomography (CT) scan into three main 
compartments (skeleton, lung and all other tissues) based on density. This was followed by 3D printing of the skeleton, 
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computer numerical controlled (CNC) milling of the lung insert and casting of the body by injection into a one-piece surface 
topology mould. Material for fabrication was selected on the basis of tissue equivalent electron density/photon attenuation 
characteristics and ease of fabrication (Table 1). SB5, LN10 and WT1 were selected as ICRU reference material for bone, lung 
and soft tissue respectively (White et al., 1989) to which the materials used for the development of the phantom (LN330 and 
LN450 polyurethane foam, Accura Bluestone) were compared. Accura Bluestone was obtained from 3D systems (USA). 
Geodeo Crystal Clear epoxy resin was obtained from Pebeo (France). All other tissue equivalent materials were produced at 
Leeds Test Objects (UK) using standard methods and recipes. 

 
 

 
Figure 1: Fabrication scheme 
 
Table 1: Tissue equivalent materials used in this study 
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*values from (White et al., 1989). 
**values from manufacturer 

2.2 Characterisation of tissue equivalent materials 

2.2.1 Elemental Analysis 

Where not reported, elemental composition was determined via Carbon, Hydrogen and Nitrogen combustion analysis (CHNN 
analysed), Induced Coupled Plasma Spectroscopy (ICP) and Scanning electron microscopy/Energy dispersive X-ray 
(SEM/EDX) analysis. Briefly, carbon, hydrogen and nitrogen percentages were determined on a minimum 1.5 mg of sample 
using a Carlo Erba 1108 elemental analyser. The EA1108 is based on dynamic flash combustion and GC separation. The 
instrument consists of the reactor, a GC column (porapak 50-8 mesh ) and a thermal conductivity detector. The reactor is 
separated into 2 parts, the combustion reactor and the reduction reactor. The combustion reactor is made of translucent silica 
tube and is filled to a depth of 40 mm of quartz wool, 60 mm depth of universal fluorine reagent is added to the reactor tube, 
a further 10 mm of quartz wool added to the tube, on top of this 120 mm depth of chromium oxide is added and a further 10 
mm of quartz wool is added.  The combustion reactor sits in a furnace and when samples are to be analysed it is at 1020 0 C.  
The reduction tube is also a translucent silica tube, it is packed to a depth of 40 mm of quartz wool, 50 mm depth of copper 
oxide is added, 10 mm of quartz wool, followed by 280 mm depth of copper grains, followed by 10 mm quartz wool, 50 mm 
depth of copper oxide and another 10 mm quartz wool. The reduction reactor sits in a furnace and the temperature which is at 
650 0 C. The GC column sits in an oven at 65 0 C. Results are calculated based on the known value of a standard, with all 
standards used traceable back to National Institute of Standards and Technology (NIST) primary standards and the analyser is 
checked with NIST primary standards on a regular basis to assure day-to-day accuracy of results. For ICP, a sample was 
weighed into a Teflon digestion vessel and 1ml Hydrochloric acid and 3ml nitric acid added.  Reagents were from Romil 
(UK), and were SpA trace elemental grade.  The vessel was sealed and probes installed to measure the temperature and 
pressure in the XP1500 type vessel for the microwave digestion system (CEM MARS, Milton Keynes, UK).  The digestion 
was heated to 200°C in 15 minutes, retained at 200°C for 20 minutes then left to cool.  The digest was then washed into a 
tared sample vial to a final weight 23.5420g with water (Elga Purelab Flex, 18Megohm.cm conductivity). Analysis was 
carried out on a Perkin Elmer Optima 5300DV emission ICP instrument following a standard procedure for the analysis of 69 
elements against a 10ppm multi-bottle calibration set.  The analysis was calibrated against an external Certified Reference 
digest of estuarine sediment, from Greyhound (UK).  Measurements were made in duplicate and several blank 2% nitric acid 
measurements allowed the estimation of real limits of detection for each element to be made. The measured ppm 
concentrations in the digest were calculated back to the original solid powder by multiplying the measured values by the ratio 
of digest weight to sample weight, then converted to %w/w. For SEM/EDX, samples were attached to standard 25mm 
diameter aluminium stubs. As the samples were not coated with either carbon or gold and therefore electrically non-
conductive, the SEM was operated in Variable Pressure Mode. The relatively high SEM sample chamber pressure in this 

Commercial material 
name 

Equivalent tissue Manufacturing method Density Commercial 
Source 

WT1* (White et al., 1989) Soft tissue Moulding or milling 1.00 g/cm3 Leeds Test Objects 

Geodeo Crystal Clear 
epoxy Resin 

Soft tissue Moulding or milling 1.00 g/cm3 Pebeo (France) 

LN10*  Lung Moulding or milling 0.35 g/cm3 Leeds Test Objects 

SB5* Cortical Bone Moulding or milling 1.87 g/cm3 Leeds Test Objects 

LN330**  Lung (inhale) Moulding or milling 0.24 g/cm3 Leeds Test Objects 

LN450** Lung (exhale) Moulding or milling 0.48 g/cm3 Leeds Test Objects 

Accura® Bluestone** Cortical Bone 3D printing or milling 1.78 g/cm3 3D systems (USA) 
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mode of operation ensures the samples do not retain an electrical charge from the electron beam. The chamber pressure was 
40Pa - normal high vacuum operation is performed at a pressure of better than 0.0001Pa. The samples were imaged using the 
Backscattered Electron Detector at an electron beam accelerating voltage of 20KV and probe current of 500pA. A 
representative area (approximately 1mm x 0.75mm) was selected from each sample and an elemental spectrum produced. 
Also, six smaller randomly selected areas on each sample were scanned and quantitative analyses produced, complete with 
statistics. This technique produced much more useful elemental analyses than the graphical spectra alone.  

Electron density was calculated with the use of the following equation, 

𝜌𝜌𝑒𝑒 = 𝜌𝜌𝑚𝑚 ∙ 𝑁𝑁𝐴𝐴 ∙ �
𝑍𝑍
𝐴𝐴
� 

Where, 

𝑍𝑍
𝐴𝐴

= �𝑎𝑎𝑖𝑖 �
𝑍𝑍𝑖𝑖
𝐴𝐴𝑖𝑖
�

𝑖𝑖

 

ρm is the density of the material, NA represents the Avogadro’s number, ai is the fraction by weight of the ith element of 
atomic number Z and atomic weight A. 

2.2.2 Measurement of attenuation characteristics 

Attenuation of a 100 x 100 x 5mm3 slab of each material (SB5, Accura Bluestone, LN10, PU330 & WT1) was measured at 
the National Physical Laboratory (NPL) (UK) using a calibrated ionization chamber (TW30012 Farmer type, traceable to the 
UK primary standard 300kV free air chamber at the NPL). Reference X-ray beams with a Half Value Layer (HVL) between 
0.5-4mm Cu were used as these characteristics were identified as common for radiobiological studies in a national capability 
mapping exercise carried out as part of the wider project (http://www.npl.co.uk/science-technology/radiation-dosimetry/pre-
clinical-dosimetry-service/). The irradiation setup consisted of a 1cm buildup/20cm backscatter blocks of WT1 between which 
material for testing was inserted (Figure 2). The source to source distance (SSD) has been set to 75 cm which resulted in the 
field size at the front face of the phantom of 7 cm.  
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Figure 2: Experimental setup for attenuation measurements 
 
Relative attenuation of each uncharacterised material to its ICRU-defined counterpart was calculated according to: 

% difference = (1-[Dose](tested material)/[Dose] (ICRU reference material) x 100% 
Beam qualities are reported in Table 2. 
 
Table 2: Medium-energy X-ray qualities used for therapy level calibrations at NPL. 
 

HVL [mm Cu] 
Nominal generating tube 

potential [kV] 

Additional filtration 

[mm Sn] [mm Cu] [mm Al] 

0.5 135 - 0.27 1.2 

1 180 - 0.54 1.0 

2 220 - 1.40 0.9 

4 280 1.5 0.26 1.0 

2.3 Fabrication of mouse phantom 

2.3.1 CT scanning 

Animal studies were performed in accordance with the United Kingdom’s Guidance on the Operation of Animals (Scientific 
Procedures) Act 1986 and within guidelines set out by the United Kingdom National Cancer Research Institute Committee on 
the Welfare of Animals in Cancer Research (Workman et al., 2010). A female mouse (NOD.Cg-PrkdcSCIDIl2rgtm1wjlSzj; age 21-
27days; weight 28g) was purchased from Charles River Laboratories (Charles River, UK) and anaesthetized using a 5% 
isoflurane/oxygen mixture. It was then placed into an animal imaging cell (Minerve, France); temperature and respiratory rate 
were monitored throughout imaging using a dedicated monitor (SA Instruments, USA). CT scans were acquired using the 
Sedecal SuperArgus PET/CT scanner (40kV, 140µA, 360 projections, 8 shots, 200µM pixel size). Phantom acquisitions were 
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made using the same settings. Animal and phantom images were also obtained on the small animal radiotherapy research 
platform (SARRP) (Xstrahl, UK) using 60 kVp, 0.8 mA, 1 mm Al filter. 

2.3.2 Image segmentation and display 

Images were segmented using Fiji (Schindelin et al., 2012) and the segmented data used as an input for the BoneJ plugin. 
Thresholds were set to delineate the entire skeleton and whole body whilst lungs were segmented semi-automatically using itk-
SNAP (Yushkevich and Gerig, 2017) by placing seeds within the lung region and executing the evolution algorithm 
(competition force set at 1, smoothing set to 0.2). Stereolithography (STL) files were then exported using a greyscale window. 
Meshmixer (Autodesk®Inc., USA) was used to produce the final skeleton volume, after further smoothing and thresholding to 
create a continuous form. In figure 3A, we rendered the different components, using Blender, an open source 3D modeling 
software. 

2.3.3 Density analysis 

A reference CT phantom containing reference material representing Brain, Adipose Tissue, Breast, Solid Water, Liver, Inner 
Bone, Bone and Cortical Bone (µCT calibration phantom, SmART Scientific Solutions B.V., Netherlands) was scanned using 
the same settings as for the mouse (described above). Regions of interest (ROIs) were drawn around the centre of each insert 
and a calibration curve was generated. Scan units were converted to density using the calibration curve (Saw et al., 2005). 

2.3.4 Phantom fabrication methodology 

3D printing of mouse skeleton using Accura Bluestone was carried out with a stereolithography (SLA) ProX 800 Printer 
(3D systems Inc., USA). The maximum print resolution was 4000 DPI2 with a minimum voxel size of 0.4mm3, these parameters 
were applied when processing STL files. Lung insert tool paths were generated using Autodesk®Fusion 360 (Autodesk®, 
USA) and exported to a Datron M7 high-speed CNC machine (Datron Dynamics Inc., USA) for processing of LN330 or LN10 
blocks (without coolant). 

 
A solid phantom was created using the surface rendering of the CT scan and from this a silicone mould was created. Skeleton 

and lung volumes were assembled at the correct anatomical locations and water-equivalent material (transparent Epoxy resin 
or WT1) was introduced. Illustrative skeleton, lung inserts and final phantoms are shown in figure 3. To facilitate insertion and 
removal of alanine pellets, a 5.2 mm cylindrical void was milled into the skull after fabrication using a custom jig; a removable 
skull ‘cap’ for insertion over the pellet was fabricated using a combination of milling and 3D printing (Figure 4). 

 

A  
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B  
Figure 3: Maximum intensity projections from CT scan of original animal and resulting segmentation illustrating bone, lung 

and soft tissue components separately and fused (Left to right respectively; A). Printed skeleton, milled lung inserts (LN330, 
LN450 and LN10), assembled skeleton/lung construct before whole body casting to create final phantom (B). Transparent 
Epoxy resin phantom allows internal structure to be seen for demonstration. 

 

A  

B   
Figure 4: Design of cavity and core insert for intracranial incorporation of alanine pellet into skull with skull ‘cap’, visualised 

in Meshmixer (A) and cored phantom with insert (B). 

3. Results 

3.1 Elemental composition analysis 

Table 3: Elemental analysis 
Tissue 

substitute 
Elemental composition (percentage by mass) Electron density  

H C N O Others (electrons/g) x1023 



IOP Publishing Physics in Medicine and Biology 
Journal XX (XXXX) XXXXXX  https://doi.org/XXXX/XXXX 

 xxxx-xxxx/xx/xxxxxx 9 © 2019 
IOP Publishing Ltd 

 

Accura 
Bluestone 3.1 22.8 <0.1 45.2 25.3 Si, 0.4 Cl, 0.49 Al, 2.16 F, 0.23 Sb 7.07 

SB5 2.6 30.6 1.0 38.9 0.1 Cl, 26.8 Ca 5.68 
LN330 6.21 59.0 4.65 28.1 0.3 Ca, 0.5 Mg, 0.3 Si, 0.6 Cl 0.73 

LN10/75 8.4 60.4 1.7 17.3 11.4 Mg, 0.7 Si, 0.1 Cl 0.81 
WT1 8.1 67.2 2.4 19.9 0.1 Cl, 2.3 Ca 3.25 

 
Elemental analysis of Accura Bluestone and LN330 indicated similar composition to the ICRU reference materials SB5 and 

LN10/75 respectively (obtained from (White et al., 1989)). 

3.2 Attenuation characteristics 

A B  

Figure 5: Difference in attenuation between (A) Accura Bluestone and SB5 and (B) LN330 and LN10 as a function of beam 
quality (mm Cu HVL). 

 

Attenuation properties of Accura Bluestone and LN330 were broadly comparable to SB5 and LN10 (Figure 5). For Accura 
Bluestone/SB5, data indicate a 10% difference in attenuation for very soft beams (0.5 mm Cu HVL); this difference decreases 
rapidly to ~5% for 1 mm Cu HVL and to less than 1% for 4 mm Cu HVL. For PU330/LN10, the difference in attenuation was 
less than 1% at all HVL thicknesses (Figure 5).  

3.3 Assessment of phantom radiotherapy dose planning 

The ability to support treatment planning was initially assessed on the small animal radiotherapy research platform using 
phantoms incorporating lung material fabricated from LN10 and LN330. Although treatment planning could be carried out to 
the phantom brain for both phantoms, the heterogeneous structure and inclusion of air voids in LN10 precluded dose planning 
to the lung where this material had been used. Dose planning to the LN330 lung was successful (Figure 6).  
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Figure 6: Transaxial, sagittal and coronal single slices through phantom lung and associated maximum intensity projection 

from SARRP CT scan. 

3.4 Evaluation of phantom anatomical accuracy and attenuation on CT 

Segmentation volumes were compared on CT scans of the original mouse and the mouse phantom (Table 3); CT derived 
density was also compared (Table 4). The fabricated phantom was similar with respect to segmented tissue volumes and density 
to the original segmented files. 
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Figure 7: Transaxial, Coronal and Sagittal sections from CT of final cored phantom, centred on inserted alanine pellet. 
 

Table 4: Segmented volumes derived from original mouse and derived phantoms 

 Volume (mm3) 

 Bone Tissue Lung 

Mouse 2107.1 21389.6 457.0 

Phantom 3D model (in silico, via MeshMixer) 2597.2 17943.0 454.9 

Phantom (WT1) 3203.0 18132.2 409.8 

 
Table 5: Comparison of average mouse and phantom segment densities as measured by CT (relative to water electron 
density, ρw

e). 

 

 

 

 

 

3.5 Incorporation of dosimetry 

An alanine pellet (as used by the NPL dosimetry service: http://www.npl.co.uk/science-technology/radiation-
dosimetry/products-and-services/alanine-reference-dosimetry-service-for-radiotherapy) of 5 mm diameter and 2.5 mm 
thickness was incorporated into the skull cavity as described above (Figures 4 and 7). Optimum cavity size for ease of insertion 
and removal using a vacuum suction tool was established as 5.2 mm. Reproducibility of dose measurements (including alanine 
insertion/removal and phantom positioning in the radiation field) was assessed by irradiating alanine pellets in the phantom 
under identical conditions (n = 3) using a 0.5 mm Cu HVL, 7cm diameter X-ray beam (described in section 2.2.2) with nominal 
doses ranging from 10-50 Gy. The average standard deviation of the measured dose was 0.58% with a maximum spread of 
1.8%. These results are well within the uncertainty in absolute dose measurement for alanine of 2.2% at 2 sigma. 

4. Discussion 

Currently, standardized protocols and tools for dose assessment (routine in clinical practice) are lacking in preclinical 
radiotherapy. Here we report a tissue-equivalent, anatomically correct phantom that can incorporate established traceable 
dosimeters for quality control, and can be used as a training tool for dose planning on advanced small animal irradiators. The 
phantom is currently designed to host standard alanine pellets used by NPL for postal dosimetry service (i.e. 5 mm diameter, 

 Mouse Phantom (WT1, PU330) 
Bone 1.39  1.42 

Tissue 1.00 1.01 
Lung 0.68 0.28 
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2.5 mm thick) as the majority of pre-clinical investigations use >5 mm radiation beams. Small alanine pellets can be used and 
the phantom adapted if necessary. The traceability of the dosimetry methodology will be addressed in a follow up study. 

The phantom is robust and commercially obtainable from CT datasets by Leeds Test Objects (UK). The method can thus be 
readily adapted and optimised with computer aided design software to produce phantom ‘avatars’ for dose planning in either 
advanced genetically engineered mouse models of cancer or those based on slow-growing patient-derived xenografts; the STL 
files generated as part of the manufacturing process are also suitable for the creation of computational phantoms using GATE. 
GATE can also be used to simulate not only CT acquisitions but also radiotherapy treatment planning to calculate dose 
distributions, a necessary tool for further evaluation once the radiation source details are known. Although the phantom does 
not incorporate respiratory motion which introduces considerable variability in thoracic irradiation protocol, current approaches 
seek to correct for this in live animals via gating, effectively irradiating when movement is minimised (Hill and Vojnovic, 
2017). The current version of the phantom uses CNC manufacturing for the lungs as this is the best manufacturing option for 
the identified lung-equivalent materials. Current activities at NPL and Christie hospital are ongoing to identify 3D printable 
tissue equivalent materials (including lung) which could then be also employed to improve the mouse phantom reported in this 
study by 3D printing the lung volumes. 

 
As can be seen from the CT projections, the phantom anatomy closely resembles that of the source animal. Although the 

skeleton was segmented to support fabrication, and it is thus thicker than that found in vivo, it still achieves the aim of allowing 
planned doses to be compared with actual ones in a realistic setting, as well as enabling training in radiotherapy delivery to be 
carried out without animal sacrifice; it will also be possible to compare GATE simulations of original vs. phantom CT scans to 
assess the impact of these differences in future work. 

 
CT scans indicate a <2% difference in the electron density for the skeleton which compares well with the <10% in dose 

attenuation seen at the softer X-ray beam used (0.5 mm Cu HVL). Reproducibility of dose delivered to the alanine pellet is well 
within the accuracy required for radiobiological investigations whilst the feasibility of using alanine for absolute dose 
measurements is well established (Burns et al., 2011). Importantly the X-ray beam used for attenuation measurements in this 
study is similar to those commonly delivered by pre-clinical radiotherapy units. 

 

5. Conclusion 

In this study we report the fabrication of an anatomically correct, tissue-equivalent mouse phantom that can incorporate 
traceable dosimetry to support dose delivery assessment in preclinical irradiation systems and support radiotherapy planning 
training on these platforms. Future work will validate dose measurement protocols and incorporate biological dosimetry into 
the device. 
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	Additional filtration
	Nominal generating tube potential [kV]
	HVL [mm Cu]
	[mm Al]
	[mm Cu]
	[mm Sn]
	1.2
	0.27
	-
	135
	0.5
	1.0
	0.54
	-
	180
	1
	0.9
	1.40
	-
	220
	2
	1.0
	0.26
	1.5
	280
	4

