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Abstract

Hours of video are uploaded to streaming platforms every minute, with rec-

ommender systems suggesting popular and relevant videos that can help users

save time in the searching process. Recommender systems regularly require

video summarization as an expert system to automatically identify suitable

video entities and events. Since there is no well-established methodology to

evaluate the relevance of summarized videos, some studies have made use of

user annotations to gather evidence about the effectiveness of summarization

methods. Aimed at modelling the user’s perceptions, which ultimately form the

basis for testing video summarization systems, this paper seeks to propose: (i) A

guideline to collect unrestricted user annotations, (ii) a novel metric called com-

pression level of user annotation (CLUSA) to gauge the performance of video

summarization methods, and (iii) a study on the quality of annotated video

summaries collected from different assessment scales. These contributions lead

to benchmarking video summarization methods with no constraints, even if user

annotations are collected from different assessment scales for each method. Our

experiments showed that CLUSA is less susceptible to unbalanced compression

data sets in comparison to other metrics, hence achieving higher reliability esti-

mates. CLUSA also allows to compare results from different video summarizing
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approaches.
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1. Introduction

Streaming services can often suggest videos by popularity and supposedly

related to user preferences, with the goal of saving the users’ time in the search-

ing process. It is known, for instance, that Youtube users spend one billion

hours watching videos daily (Youtube, 2018). With a growing number of videos5

being made available on a daily basis, recommender systems are an important

method to help users choose suitable videos.

Recommender systems usually rely on summarization techniques in order

to extract useful information in videos. By analysing video content and their

patterns of interaction, video summarization can be considered as a type of10

expert system able to retrieve relevant information from an input video by

means of a relevance score estimation (Gygli et al., 2015; Demir & Bozma,

2015; Wang et al., 2011), as illustrated in Fig. 1.

Video summarization techniques create automatic video summaries by meet-

ing three requirements: The presence of relevant video entities and events, elim-15

ination of redundant information, and generation of as much useful information

as possible (Truong & Venkatesh, 2007). Truong & Venkatesh (2007) describe

some video summarization applications such as browsing and retrieval, which

is responsible for assisting users on searching and browsing tasks (Awad et al.,

2017b; Arman et al., 1994; Zhang et al., 1997; Haojin Yang & Meinel, 2014),20

computational reduction and content analysis, used on semantic abstrac-

tion of information to reduce the computational complexity (Plummer et al.,

2017), story navigation and video editing, which help users on navigating

through a video (Nguyen et al., 2012), and highlighting, targeted on detection

of important events in videos (Yao et al., 2016; Gygli et al., 2014; Xiong et al.,25

2003). On each of these applications, video summarization techniques try to

mimic the ways humans comprehend the most important parts of a video.
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Input video

Output video

Relevance score estimation 

Video segments

Automatic video summary

Video summarization method

Figure 1: Generic video summarization pipeline. Video segments are generated from the input

video. A specific metric scores the relevance of each segment, choosing the video summary, as

the output.

According to Roberson (2013), relevance is the perception of what something

is interesting and worth knowing, and depends on various individual and cultural

aspects. As video summarization is commonly targeted at users, its usefulness is30

affected by the users’ perception of what is either relevant or not in a video. For

instance, on sport matches, player substitution information is useful for some

users, while useless for others. Thus, the goals that a summarizer is expected

to reach change according to the actual convenience (Awad et al., 2017a).

He et al. (1999) suggest that users instinctively follow four separate, but35

complementary criteria to judge relevant information in videos: Conciseness,

coverage, context and coherence. While conciseness is related to the length of

video summaries, coverage has to do with the abstraction level of information,

and context and coherence are inherently related to the flow of information

and how a story is told. Although users commonly apply all criteria when40

judging information, some of them prevail on specific applications of video sum-

marization. For instance, coherence is not as important to story navigation as it

is to content analysis. As a consequence, the evaluation of video summarization

techniques becomes application-dependent, resulting on several different evalu-

ation methodologies, which are usually applied in three different ways (Truong45
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& Venkatesh, 2007): Result description analyzes the behavior and advan-

tages of automatic video summarization methods, objective metrics compare

methods being evaluated with a heuristic summarization, and user studies

measure the extent to which methods are consistent with summaries annotated

by humans. Each of these evaluation perspectives has their own limitations that50

may impinge on a proper application of current techniques. As a result, stud-

ies on video summarization typically choose a methodology that is best suited

for their research purposes in the field. In this work, important contributions

to the task of measuring the performance of video summarization systems are

introduced, as discussed henceforth.55

1.1. Related work

Earlier works had no annotated data sets to measure the performance of

summarization techniques (Liu et al., 2003; Wang et al., 2011). Accordingly,

the way found to evaluate proposal methods was limited to describe the ad-

vantages and weakness of each one (Xiao-Dong Yu et al., 2004). The result de-60

scription became inadequate to evaluate video summaries (Truong & Venkatesh,

2007), whether because there were no experimental arguments to enhance the

reliability of results, or owing to very much subjective descriptions. As those

descriptions were a viewpoint of authors about their own results, evaluation

could be biased toward some methods rather than others. Because of that, each65

video summarization work sought alternative ways to evaluate novel methods

(Huang et al., 2004; Taskiran, 2006; Gygli et al., 2014; Sharghi et al., 2017). For

some video summarization applications (Truong & Venkatesh, 2007), a solution

found to overcome the limitation of result description was to measure the qual-

ity of storyboard video summaries directly. In practice, evaluation methodolo-70

gies compare the estimation of automatic techniques with an objective function

(Tiecheng Liu & Kender, 2002), which ultimately matches a known summariza-

tion heuristic. Presuming that an heuristic describes optimal video summaries

adequately, the evaluation of summarization techniques is limited to the heuris-

tic used at that moment. In general, these heuristics are determined by the75
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occurrence of appealing objects or events for a target application (Wu et al.,

2015; Peng Chang et al., 2002; Xiong et al., 2003) meant to be similar to the

goals of specific tasks. For instance, on a highlighting task (Yao et al., 2016;

Chong-Wah Ngo et al., 2003; Zhao & Xing, 2014; Sun et al., 2014; Peng Chang

et al., 2002), video summarization techniques can focus on specific events, such80

as players scoring a goal or making a move to summarize sport matches. On

browsing applications (Ziyou Xiong et al., 2006), continuous representations of

frame dissimilarities can be used to determine how to cluster frames and choose

representative ones. As there are several possible applications to use this evalu-

ation approach, objective metrics have become an effective way to assess video85

summarization performance. On general cases, unfortunately there is no guar-

antee that any heuristic used to summarize a video matches human judgments

properly (Truong & Venkatesh, 2007), which are ultimately affected by several

factors such as the video content domain.

Working on the assumption that video summarization is targeted at users,90

who are actually able to determine what is relevant or not in a video summary,

a third way to evaluate video summarization methods is by investigating the

user’s perceptions (Sundaram & Chang, 2001; Agnihotri et al., 2004). The first

studies under this approach were performed by asking users to judge the results

of each video summarization method (Liu et al., 2003; Taskiran, 2006; Chu95

et al., 2015). Recent works have opted to collect annotated video summaries

from users, comparing those against automatic video summaries. As such, the

evaluation is carried out from the users’ judgments, which are currently the most

pragmatic way to evaluate video summarization methods (Truong & Venkatesh,

2007). Hence, a growing number of summarization studies (Yong Jae Lee et al.,100

2012; Liu et al., 2015; Gygli et al., 2014; Song et al., 2015; Chu et al., 2015;

Kim et al., 2014) have collected user annotations with the intent to improve

the evaluation of video summarization methods, approach to which this study

is particularly concerned.

There are some ways to collect user’s annotations on relevant videos, be-105

ing browsing logs, text annotation and relevance scores the most common ap-
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proaches. Browsing logs are mostly used for specific video summarization appli-

cations such as story navigation (Wang et al., 2011); they provide less informa-

tion about the relevance of video elements but are not suitable for highlighting

applications. A faster and cheaper way to collect video summaries is through110

annotating textual video summaries. In this case, users annotate what infor-

mation is relevant using natural language, or keyword tags. The compilation

of these tags compose a textual vocabulary previously built for the annotation

process (Sharghi et al., 2017). As a consequence, the performance of automatic

methods is limited to the detection of the elements in textual vocabulary. The115

last common way to collect user annotations is the relevance scores, which focus

on a dense annotation of the whole video. The main limitation of this approach,

however, is the difficulty in collecting all of the user’s annotations about each

video frame.

In this study, the main goal is the annotation of relevance scores for video120

skim techniques, which ultimately deal with video segments (sequential frames

grouped by contextual similarity). In video skimming, users are expected to

watch and judge the relevance of a few video segments, instead of each frame in

a video, reducing the amount of data to be annotated. Despite being a seem-

ingly simple task, building up a large data set from video frame annotations is125

very costly and time-consuming. As a result, current video summarization data

sets are usually limited to a small number of videos. For instance, Song et al.

(2015) collected 20 user annotations for 50 videos, whereas Gygli et al. (2014)

only collected 15 user annotations. Table 1 summarizes the main characteristics

of the current the most recent studies in this field; from left to right, the columns130

represent: (i) The amount of search queries used to define the video domain, (ii)

the amount of samples on each knowledge domain, (iii) the amount of partici-

pants in the user studies, (iv) what instruments were used to comprehend the

user’s subjectivity, (v) the annotation constraints used to control the annotation

process, and (vi) what evaluation metric was used to match automatic methods135

to the collected user annotations. Table 1 highlights the three most commonly

used benchmark data sets in the field of video summarization: SumMe (Gygli

6
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Table 1: Characteristics of benchmarking data sets on the video summarization literature.

Work
(i)

#Queries

(ii)

#Videos

(iii)

#Users

(iv)

Annotation

instrument

(v)

Annotation

constraints

(vi)

Evaluation

metric

(Gygli et al., 2014) 25 25 16 dichotomous scale 5% ≤ L ≤ 15% Fβ

(Song et al., 2015) 10 50 20
5-degree

polytomous scale

1% ≤ p(5) ≤ 5%

5% ≤ p(4) ≤ 10%

10% ≤ p(3) ≤ 20%

20% ≤ p(2) ≤ 40%

Fβ

(Chu et al., 2015) 10 51 3
3-degree

polytomous scale

pooling segments with

at least two judges
Fβ

Ours 2 4 15

dichotomous,

3-degree and 5-degree

polytomous scales

No conciseness

constraints
CLUSA

et al., 2014), TVSum50 (Song et al., 2015) and CoSum (Chu et al., 2015) data

sets, respectively. For comparison reasons, the characteristics of our data set is

included in the table.140

In spite of the fact that the benchmark data sets in Table 1 have similar goals,

each sets different ways to collect user annotations and control the annotation

process, as can be observed in column (v). SumMe, TVSum50 and CoSum data

sets were gathered by limiting the length of annotated video summaries, by

defining probability constraints for the assessment values, and by pooling user145

annotations from several users in a single one ground truth, respectively. The

assessment scales used on each data set is also different, according to column

(iv): Annotations on SumMe data set were collected via dichotomous scale,

complying with users that ultimately define which video segments should be in

the video summary. In contrast, TVSum50 and CoSum annotations use a degree150

scale, providing more freedom for users to annotate the subjective relevance of

video segments.

1.2. Contributions

In addition to the limited number of annotations on current summarization

data sets, there is no consensus as to how to collect user’s perceptions in this155

field. Different studies typically deploy distinct techniques to deal with anno-

tation and evaluation, making the achievement of a consolidated benchmark

somewhat elusive. With regard to the annotation process, the methods that
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have been proposed ignore how mind state, mood, tiredness and personal biases

affect annotations, focusing their attention primarily on the user’s responses.160

Considering that summarization aims to reduce the complexity of information,

and optimal summaries should be as short as possible, the way found to control

subjectivity has been to restrict the conciseness of annotated video summaries.

In video skimming works, this is performed by setting the frequency of each rel-

evance on the assessment scale. For instance, annotations on SumMe data set165

(Gygli et al., 2014) restricted the percentage of relevant video shots to 15% of

the video length on a dichotomous assessment scale - a binary scale for annota-

tion. On the other hand, annotations on TVSum50 data set (Song et al., 2015)

were limited to a certain frequency by using prearranged ad hoc values on an

assessment scale with five degrees of relevance levels. With respect to CoSum170

data set (Chu et al., 2015), the authors collected just annotations from 3 users,

which turns this data sets unfeasible to be evaluated as it is. Regardless the as-

sessment scales, the evaluation of video summarizers is performed by matching

their generated summaries to user annotations, in general with Fβ metric (Song

et al., 2015; Gygli et al., 2014). This is done by taking into account absolute175

errors for each relevance level of user annotations. Although some errors have a

common pattern, the relevance values may change from person to person, and

as a consequence, Fβ scores tend to be low, even in consistent user annotations.

To the best of our knowledge, there are no studies in video summarization that

considers such a user behavior, particularly considering the use of a polytomous180

assessment scale in video summarization tasks.

To cope with the aforementioned limitations, our work brings three con-

tributions: (i) A guideline to collect unrestricted user annotations in order to

diversify the conciseness of video summaries (Section 2), (ii) a metric to eval-

uate automatic video summaries against user annotations (Section 3), these185

latter collected with different assessment scales – our propose metric, named

compression level from user annotation (CLUSA), is able to handle with unre-

stricted conciseness of video summarization task, in contrast with other works

(Gygli et al., 2014; Song et al., 2015), and (iii) a study on the quality of an-
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notated video summaries collected from different assessment scales, including190

suggestions regarding the diversification of the conciseness of video summaries

in order to improve the evaluation of our proposed metric (Section 4); (ii) and

(iii) use SumMe, TVSum50 and our data sets to assess the performance of

CLUSA, discarding CoSum due to the small number of users that annotated

this data set. A novel evaluation methodology for video summarization met-195

rics that considers the user subjectivity, and annotates the relevance of video

segments, is introduced in Section 5.

Even if future works opt not to follow our suggested guideline to collect user

annotations, our proposed evaluation metric (CLUSA) provides a benchmark for

automatic video summarization methods against user annotations collected with200

both dichotomous and polytomous assessment scales. A thorough discussion on

these and other topics can be found in Section 6.

2. Guideline for annotation process and subjective measurement

The quality of user annotations is inherently related to the method deployed

for data collection. Hence, any bias in this collecting process may hinder the205

reliability of annotations, and therefore the evaluation of the assessment scales.

To circumvent this problem, we describe the entire process that involves the

collection of unrestricted user annotations, identifying what issues on the anno-

tation process of video segments are likely to occur.

2.1. Determining what users annotate210

To determine what video segments are to be annotated by the users, the

target videos have to be processed by a baseline boundary video shot detector

(Gygli et al., 2014), or by a uniform sampling (Song et al., 2015). Since dif-

ferent users have to annotate the same video segments, the detection of these

boundaries is performed off-line following some heuristic, such as motion, object215

detection and/or frame similarity (Yuan et al., 2007; Pal et al., 2015; Hanjalic,

2002).
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There is no a ultimate heuristic to detect the boundaries of any video, thus

the evaluation of video summarization is limited to the shot boundaries used in

the annotation process. In other words, the user annotations are collected with220

shot boundaries different from that used in the automatic video summarization

methods. The solution adopted to match automatic video summaries to user

annotations with different video segments is to use small-length video segments,

and perform a segment-to-frame mapping.

From the user’s viewpoint, the length of video segments is associated with the225

time required to complete the annotation process. The longer the annotation

process, the fewer complete annotations are collected from the users. This

situation occurs because users tend not to complete long tests. For instance,

considering a two-second uniform sampling such as the one used in (Song et al.,

2015), users had to annotate more than one hundred video segments for videos230

with approximately five minutes. Time to collect annotations in video segments

must be reduced in order to avoid user withdrawal. The easiest solution to

this problem is to increase the length of video segments, searching for a trade-

off between brevity and reliability. If the goal is to build more reliable user

annotations, authors can shorten the video segments to produce more annotated235

video segments. Alternatively, brevity makes it easier to collect more complete

annotations at the expense of more reliable annotated video summaries.

2.2. Preparing users to annotate the video segment

Users are expected to express their opinions about the relevance of each video

segment as sincerely as possible, however hard it may be to fully guarantee them.240

Psychometrics suggests that task instructions are one of the important elements

that may affect the reliability of user annotations (Rosner & Cronbach, 1960).

When users do not comprehend what they are supposed to do, user annotations

provide reduced information regarding the evaluation of video summaries or

any other psychological characteristic. In face of that, our study introduced245

clear and unequivocal instructions to the respondents in order to control for

potential biases stemming from random responses. Hence, the goal of video
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Input video

Video segments
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Watch a video segment

Annotate the relevance

of a video segment 

On-line

Figure 2: Annotation process flow to collect user annotations.

summarization was clearly explained at the very beginning of the session, and

so how users should proceed in each step of the annotation process. As some

respondents might feel tempted to skip the instructions, we set up a system to250

prevent this behavior from happening. This constraint was therefore done by

our annotation tool1.

By watching entire videos, users are able to abstract and make sense of their

context. However, there is no guarantee that user annotations are driven solely

by the context of each video as previous knowledge and opinions about the255

content of the video can ultimately influence the user’s perception. In order to

tackle this problem, users were compelled to watch the entire video, and then

judge the relevance of each segment. Since the sequence that video segments

are presented to users also affects the data annotation (Song et al., 2015), and

users tend to annotate higher relevance scores to the video segments that appear260

earlier, we presented the video segments randomly. Then users annotated the

video segments continuously until having the entire video completed, according

to the flow illustrated in Fig. 2. Also the video segments were muted in order

to allow the users to focus their attention only on the visual stimuli.

1Paper is currently under review. The tool will be made publicly available once accepted.
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3. Evaluating automatic video summarization methods265

Once user annotations are collected, they are used to assess the performance

of automatic video summaries using an evaluation metric. Since the very first

goal of video summarization tasks is to determine which video segments are

relevant to users, state-of-the-art works treat the evaluation of automatic video

summaries as a classification problem, either binary or not. For non-binary270

classification (i.e., multi-label), an evaluation metric matches the expected rel-

evance label of video segments to the users’ annotated label. Here we identified

three issues on the current approaches to evaluate video summarization tasks:

Degree of error, which measures how far the estimated relevance is from the

expected one for each video segment (see Fig. 3(a)), correlation of rele-275

vance scores, since different relevance estimations could produce exact video

summaries (see Fig. 3(b)), and relevance weighing, determining which rele-

vance levels suit individual video summarization the best (see Fig. 3(c)). For

multi-label classification, the evaluation metrics consider the relevance scores as

labels, but users do not perceive the relevance as such. As a consequence, the280

user annotations keep changing, harming the label matching and the evaluation

of automatic video summaries. For evaluation metrics based on classification,

any label different from the expected is treated as an error, therefore ignoring the

degree of abstraction’s relevance, which is useful to rank video summarization

methods.285

Let us take the examples shown in Fig. 3. Current metrics considers that

both video summaries are equal, even if the first video summary exhibits more

relevance than the second one (see Fig. 3(a)), as can be seen in the pink areas

in sub-figures. An easier way to deal with the degree of error is considering

video summarization tasks as regression problems instead of classification, like290

the reconstruction error metric, so the evaluation metrics measure dissimilarity

distances from the user annotations. However, those video summaries that seem

to be dissimilar produce exact binary automatic video summaries by retrieving

the most relevant video segments, as depicted in Fig. 3(b). This occurs because
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(c) Relevance weighting: Equal evaluations hitting different relevance levels.

Figure 3: Evaluation issues identified in current video summarization metrics.

there is a direct monotonic relationship between both relevance scores. Besides,295

regression metrics are not able to weigh degrees of relevance, since video sum-

marization tasks prioritize higher relevant video segments than lower ones, as
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illustrated in Fig. 3(c). All things considered, here a novel metric is proposed

to overcome these limitations of the previous ones.

3.1. CLUSA: Compression Level from USer Annotation300

Let be m = (mj) ∈ RK a vector containing K relevance scores of the video

segments provided by an automatic video summarization method. In order to

properly assess the performance of video summaries, a set D = (di,j) ∈ RU×K

of annotations by U users is required that ultimately represents the relevance

for each video segment. m denotes the scores of a binary classifier, following

the assumption that video summary techniques select a set of video segments by

relevance. Additionally, user annotations contained in D can be in polytomous

scales, with a preprocess step being required. In this case, the annotations D

are binarized into Oi summaries, considering the unique relevance levels in each

row, ui, as

ui = {di,j : ∀j, 1 ≤ i ≤ U, 1 ≤ j ≤ K} . (1)

So, each value in ui is used on thresholding the Oi matrices, as illustrated

in the top-down example in Fig. 4, starting on the annotation and applying

thresholds of 0.2 and 0.6, respectively. It is noteworthy that the highest values

in ui are not used since it leads all values in Oi to zero. Oi is given by

Oi = ([Di,j ≥ ui,k] : 1 ≤ k ≤ |ui|)− 1 ∈ R|ui|−1×K . (2)

Each user annotation is mapped onto Oi summary matrices, which are con-

catenated into a single matrix, X = (xi,j) ∈ R(
∑

(|ui|−1)×K . All this prepro-

cessing step builds a set of binary annotations (as can be seen in each row of

Fig. 5(a)), X, from the user annotations, and D (illustrated in each row of

Fig. 5(b)). By proceeding in this way, we are able not only to normalize the305

relevance scores, but also to address the degree of error and correlation issues

on the score matching.

As each row-vector, xi ∈ X, denotes a binary form obtained from user

annotation, now we are able to compute a matching score vector, zi, given by

zi = (θ(m,xi) : 1 ≤ i ≤
∑
|ui|) , (3)
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Figure 4: Thresholding an user annotation into several relevance levels.
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video.

Figure 5: Illustration of (a) the result map of the preprocessing step from (b) the discretized

map of a user annotation.

where θ is a vanilla function, which matches m with xi values. Instead of using

Fβ , we decided to use the area under curve from a receiver operating characteris-

tic (ROC) curve to measure the degree of error. The use of ROC curve allows310

to evaluate the relevance scores, m, given by a video summarization method

on each binary video summary, xi. Indeed, the ROC curve allows to identify

the thresholding values that maximize the matching with the binary video sum-

maries. If there is an exact monotonic association between the annotated and

the estimated relevance, all areas under ROC curve reach the maximum area,315

zi = 1, addressing the issue of the correlation of relevance scores. This

process is depicted in Fig. 6: the ROC is used to map the threshi values from
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Figure 6: To match user annotation and estimated relevance scores, CLUSA metric computes

area under ROC curves from the binary video summaries associated to a compression rate.

user annotations (on the left), to threshj values from automatic methods (on

the right).

Relevance weighting is not possible to be directly carried out over X data,320

since this matrix is result of the binarization of the user relevance values. Hence,

we proposed to calculate the ratio between the amount of video summary and

the entire video. This relation is here called compression rate, wi = P (xi = 0),

which represents the probability of the video segments not to be included in the

video summary by the user annotations. Although compression and relevance325

are different concepts, in practice they are related: The most relevant video

segments are consistent with the highest compressed summaries. Moreover, the

compression weighting is expected to be a strong candidate for the evaluation

of a video summary. In other words, the compression weighting overcomes the

relevance weighting issue.330

The sets D can concentrate user annotations in specific compression intervals

due to annotation constraints of each video summarization work. This strategy

limits the ranking of the video summarization methods on different data sets.

In order to circumvent this, the score vector, zi, is grouped into clusters, ci,

according to the compression rate of each annotated video summary, wi, and is

defined as

ci = µ(zk : ‖wk − pi‖2 ≤ ‖wk − pj‖2,∀j, 1 ≤ i ≤ j ≤ B,

1 ≤ k ≤
∑
|ui|) ,

(4)

where B represents the number of compression intervals, while pi is a median
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point in each interval, given by pi = (2i − 1)(2B)−1, 1 ≤ i ≤ B. The clusters,

ci, are suitable to assess the quality of the scope of each video summarization

work. That is to say that we are now able to compare techniques considering

the most relevant video segments. ci assists in the interpretation of the results

of a video summarization method, but it does not allow for a direct single score

to evaluate the summarization performance. To obtain this single score, the

compression score vector is weighed, c, comprised of ci values, by the median

points, p, comprised of pi. At the end, CLUSA metric is defined as

CLUSA(D,m) = pT c . (5)

Since CLUSA metric does not require that D and m be on the same assessment

scales, our proposed metric is expected to set a benchmark for different video

summarization methods and data sets.

4. Evaluating the quality of assessment scales on video summarization

tasks335

To evaluate the performance of automatic video summarization methods,

first the quality of the collected annotations is needed to be ensured. In psycho-

metrics, two parameters are usually pursued as indicators of the quality of an-

notations: (i) Test validity refers to whether or not the test or any of its items

measures the characteristic intended to be measured (in particular, whether340

different video segments are consistent with the video relevance provided by

the users) and (ii) test reliability, which seeks to investigate the precision or

internal consistency of test scores (specifically, how much users agree on video

relevance). Test validity is used to compare different annotation guidelines,

while test reliability computes user consistency on a specific guideline. The lat-345

ter is the most suitable indicator to analyze the quality of assessment scales on

video summarization tasks.

For test reliability, there are two main approaches to investigate the agree-

ment of user annotations: (i) stability over time, where the aim is to evaluate
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annotations collected with a time interval between them, being test-rest with350

the same users considered the most suitable parameter for video summariza-

tion, and (ii) internal consistency that evaluates the quality of annotations

under cross-sectional perspective, collecting user annotations only once. The

main problem with the former is the difficulty to find users engaged to repeat

the annotation process. In practice, the main limitation resides in contacting355

users to guarantee repeatibility. In view of that, internal consistency ends up to

be the main approach to measure the user agreement on the relevance of video

segments using different assessment scales.

There are several ways to measure internal consistency, being Kuder-Richardson

and Cronbach’s alpha (Rosner & Cronbach, 1960) the most widely used coeffi-360

cients. Whereas Kuder-Richardson is used for dichotomous scales, Cronbach’s

alpha is deployed for polytomous assessment scales. As Cronbach’s alpha equa-

tion is derived from Kuder-Richardson’s, as well as the interpretation of both

coefficients is in the same directly comparable scale, then the name Cronbach’s

alpha was used in this study to refer to both types of internal consistency,365

whether applied to dichotomous or polytomous scales. Therefore, Cronbach’s

alpha, α, measures the reliability of K video segments according to

α =
K

K − 1

(
1−

∑K
j=1 σ

2
Dj

σ2
D

)
, (6)

where the variance of the j-th video segment, σ2
Dj

, is divided by the annotation

variance, σ2
D.

The reference values to evaluate the Cronbach’s alpha is shown in Table 2.370

Since SumMe (Gygli et al., 2014) and TVSum50 (Song et al., 2015) provide a

disjoint collection of videos, we are not able to compare directly the reported

Cronbach’s alpha on the annotation of these two data sets. This comparison

could only be accomplished under a standardized scenario, involving the ad-

ministration of the same video segments annotated by the same individuals.375

As we are interested in identifying which assessment scale is more suitable to

video summarization tasks, we collected user annotations for a common data set,
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Table 2: Reference values to evaluate Cronbach’s alpha estimations.

Cronbach’s alpha Internal consistency

0.9 ≤ α Excellent

0.8 ≤ α < 0.9 Good

0.7 ≤ α < 0.8 Acceptable

0.6 ≤ α < 0.7 Questionable

0.5 ≤ α < 0.6 Poor

α < 0.5 Unacceptable

following our guideline described in Section 2, considering three types of assess-

ment scales: Dichotomous, three-point Likert and five-point Likert. Cronbach’s

alpha was then used as the measure of average quality of each assessment scale.380

5. Experimental evaluation

Two experiments were carried out in this study: The first measures the

quality of our collected user annotations with different assessment scales, and

the second evaluates CLUSA performance regarding its internal consistency in

comparison to other metrics. The former experiment was devised to investigate385

the most adequate assessment scale to collect annotations on video summariza-

tion tasks, while the latter aimed at evaluating how CLUSA performs in face

of different scales, as well as how compression in video summaries affects the

performance of automatic video summarization methods.

5.1. Collecting user annotations390

The evaluation of the quality of user annotations is usually done for each

annotated video (Gygli et al., 2014; Song et al., 2015). This is because users are

not necessarily the same on different videos, and the Cronbach’s alpha has to be

calculated for each annotated video. Here we propose to collect user annotations

on a standardized scenario where the same users annotated the same videos us-395

ing different assessment scales. With that, we are able to relate the quality of
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(a) (b)

Figure 7: Samples of used videos from UCF101 data set: (a) Surfing and (b) basketball.

user annotation comparatively, measured by the average Cronbach’s alpha of

each assessment scales. Since the annotation collected on a standardized sce-

nario is an arduous workforce for the users, the amount of annotated videos was

reduced to avoid the users’ withdraw during a long annotation processes (refer400

to a discussion in Section 2). From UCF101 collection (Soomro et al., 2012),

although initially ten action videos were offered to the users to be annotated,

just four of them was guaranteed to have annotations of all users on all videos

using all assessment scales. Two types of actions were queried in UCF101 data

set: Surfing and basketball, and some samples are illustrated in Fig. 7. We405

used videos whose duration was around three minutes with well-defined video

shot boundaries, splitting the video into segments using a vanilla boundary shot

detection, based on motion and frame similarity before the annotation process.

In order to automatize this process and make it more reliable, we developed an

annotation tool, complying with all the requirements described in our proposed410

guideline (see Section 2). In this stage, the analysis on the relation of the differ-

ent assessment scales is not affected by the number of videos, being important

just to guarantee that the same users annotated the same videos using different

assessment scales.

5.2. Assessing the quality of data sets collected with different assessment scales415

Users annotated the relevance of a specific arrangement of video segments,

which were previously determined in the annotation task. However, automatic
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Figure 8: Mapping the annotated relevance at video segments to frame level (level mapping).

video summarization methods are not limited to the segments annotated by the

users, but any resulting arrangement of a boundary shot detector. As a result,

the relevance of video segments were mapped to the frame level to allow for420

the evaluation of automatic methods. As illustrated in Fig. 8, this segment-

to-frame mapping is performed by repeating the annotated relevance of video

segments in the video frames. The automatic video summarization methods are

then evaluated regardless of their boundary shot detector.

Since data sets for video summarization typically do not provide the bound-425

aries of the video segments to bring the level mapping back to the segment level,

the quality of the user annotations was calculated at the frame level.

Psychometric estimators are computed at the level where users annotated

the data, in our case, at the segment level. Therefore the Cronbach’s alpha is

computed on segment level to verify the difference in Cronbach’s alpha values430

at both levels. Table 3 shows the Cronbach’s alphas for our collected user

annotations.

On our standardized scenario, with the same annotated videos and users,

we are interested in the impact of assessment scales on video summarization

tasks. Our user annotations were grouped by the assessment scale used on the435

annotation process: Dichotomous (dich) and polytomous (Likert-3 and Likert-

5). Based on this, we were able to compare the Cronbach’s alphas from different

assessment scales directly. In Table 3, Cronbach’s alpha values for our user an-

notations are observed to increase proportionally to the degree of the assessment
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Table 3: Cronbach’s alpha for different assessment scales: dichotomous (dich) and polytomous

(Likert-3 and Likert-5).

Data set
Assessment

scale

Annotations per

video (mean)
Cronbach’s alpha (mean)

Frame-level Segment-level

Ours dich. 16 0.712 0.718

Likert-3 16 0.809 0.799

Likert-5 16 0.842 0.833

scale, suggesting that polytomous scales are more suitable to collect user anno-440

tations for video summarization tasks. Five-point Likert turned out to be the

most adequate assessment scale for video summarization tasks, considering the

increase in the internal consistency. This finding does not rule out the potential

use of higher degree assessment scales, though the increasing in user response

time and overlapping responses between similar adjacent categories (e.g., some-445

what disagree versus slightly disagree) can be regarded as a deterrent to the use

of higher degree scales.

5.3. Using CLUSA to obtain the internal consistency for video segments

In addition to the use of Cronbach’s alpha to calculate the internal con-

sistency of user annotations, Fβ metric is also exploited to assess the internal450

consistency of user annotation in all state-of-the-art works. It is done by calcu-

lating the distances between pairs of users, as shown in Fig. 9(a). In a different

way, CLUSA was originally conceived in a leave-one-out strategy, matching one

user annotation to a collection of user annotations (see Fig. 9(b)). This leads to

computing more compression scores, ci, and compression rates, wi, than those455

provided in a pair-wise strategy.

To evaluate CLUSA’s performance, we compared our metric with Cronbach’s

alpha and Fβ . CLUSA was also calculated in a pair-wise fashion. Table 4

summarizes the results. It is worth noting that Fβ metric presents the opposite

behavior (decreasing as the degree of assessment scales increases) with respect to460

Cronbach’s alpha in our standardized scenario (row ”Ours”); Fβ indicates that
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Figure 9: Approaches used to compute internal consistency using CLUSA: (a) Pair-wise and

(b) leave-one-out.

dichotomous scale should be more consistent than polytomous. Conversely,

the behavior of CLUSA became similar to Cronbach’s alpha, suggesting that

our proposed metric are closer to the psychometric studies when dealing with

subjectivity on video summarization tasks.465

Table 4 also summarizes the results of SumMe and TVSum50 according

to the characteristics of each data set, rather than different assessment scales.

SumMe data set is formed by three types of videos: Egocentric, moving and

static, which were determined by the camera and scene motions, whereas TV-

Sum50 collected user annotations for the following video contents: Changing470

Vehicle Tire (VT), getting Vehicle Unstuck (VU), Grooming an Animal (GA),

Making Sandwich (MS), ParKour (PK), PaRade (PR), Flash Mob gathering

(FM), BeeKeeping (BK), attempting Bike Tricks (BT), and Dog Show (DS).

CLUSA was also calculated on SumMe and TVSum50 annotations in order

to investigate its behaviour in other scenarios. SumMe and TVSum50 annota-475

tions have been collected using different guidelines, video contents and users,

and hence, we are not able to compare the Cronbach’s alphas directly. In the

leave-one-out strategy, CLUSA in both SumMe and our dichotomous user anno-

tations approaches to 0.2, while in both TVSum50 and our Likert-5 user anno-

tations, CLUSA is around 0.5, even considering the difference in the guidelines480

and video contents of the three data sets. This allows us to state that leave-

one-out CLUSA is affected by the assessment scales rather than guidelines and

video contents.
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Table 4: Internal consistency using Fβ and CLUSA in their respective assessment scales:

Dichotomous (dich) and polytomous (Likert-3 and Likert-5)

Data set
Assessment

scale
Internal consistency

Pair-wise Leave-One-Out

Cronbach’s α Fβ CLUSA CLUSA

Ours dich. 0.712 0.647 0.033 0.271

Likert-3 0.809 0.516 0.066 0.432

Likert-5 0.842 0.333 0.151 0.635

SumMe dich. (ego) 0.766 0.292 0.103 0.212

dich. (moving) 0.748 0.308 0.104 0.176

dich. (static) 0.850 0.359 0.110 0.228

TVSum50 Likert-5 (BK) 0.791 0.377 0.338 0.505

Likert-5 (BT) 0.871 0.385 0.357 0.550

Likert-5 (DS) 0.760 0.350 0.319 0.494

Likert-5 (FM) 0.789 0.367 0.323 0.486

Likert-5 (GA) 0.866 0.394 0.362 0.533

Likert-5 (MS) 0.826 0.380 0.338 0.529

Likert-5 (PK) 0.741 0.359 0.308 0.494

Likert-5 (PR) 0.813 0.378 0.332 0.533

Likert-5 (VT) 0.875 0.410 0.359 0.540

Likert-5 (VU) 0.783 0.367 0.332 0.495

Note that CoSum data set (Chu et al., 2015), which is often used as bench-

mark data set, was annotated by just 3 users. This number of user annotations485

directly affects the Cronbach’s alpha and CLUSA analysis, hence making Co-

Sum data set unsuitable for experimental analysis.

6. Discussion and concluding remarks

6.1. Quality of user annotations

Psychometrics studies suggest reference values for Cronbach’s alphas that490

can be used to evaluate the quality of user annotations. Table 2 shows these

references, with 0.7 as being the minimal ”acceptable” score. All user annota-

tions collected on our data set are above 0.7, assuring the minimum quality to
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properly evaluate the assessment scales and CLUSA. According to the ranges

in Table 3, our user annotations collected with dichotomous scale have lower495

quality in comparison to the ones collected with polytomous, both reaching

0.718 and 0.833, respectively. Since our collecting process is performed on a

standardized scenario, with the same videos and users, the increase of quality

in polytomous suggested that this assessment scale is more suitable to collect

user annotations for video summarization tasks.500

User annotations in SumMe (Gygli et al., 2014) and TVSum50 (Song et al.,

2015) data sets were collected with different guidelines, videos, users and assess-

ment scales, and hence, we cannot guarantee the impact of changing assessment

scales in their experiments. Although the behaviors of the internal consistency

on the annotations of SumMe and TVSum50 data sets are not directly compa-505

rable, Cronbach’s alphas on the two data set annotations behaved similarly to

the results of our standardized scenario. The dichotomous scale in SumMe pro-

duced user annotations with lower values in comparison with user annotations

collected with polytomous in TVSum50 data set, as can be seen in Table 4.

All user annotations in the three data sets (SumMe, TVSum50 and ours)510

were collected using a specific arrangement of video segments. Notwithstand-

ing, automatic video summarization methods can use different boundary shot

detection approaches, which result in different video segments than those an-

notated by users. To uniform the evaluation of different video summarization

methods, user annotations are usually mapped from segment to frame level.515

The difference between the Cronbach’s alpha values at both segment and frame

levels is named Cronbach’s alpha inflation, which impinges on the qualitative

analysis, resulting on erroneous classifications of the annotation quality. In Ta-

ble 3, row ”Ours”, the quality of the user annotations collected with three-point

Likert scale was reduced from ”good” to ”acceptable”, in frame and segment520

levels, respectively. This phenomenon occurs because the Cronbach’s alphas

were close to the quality classification boundary of 0.8. Note that Cronbach’s

alpha inflation alters the real quality of user annotations, but does not hamper

the quantitative comparison of Cronbach’s alphas at one level. Cronbach’s al-
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phas under dichotomous scales are lower than polytomous for both frame and525

segment levels in Table 3, then it is true to say we are able to quantitatively

analyze the results even with the inflation issue.

6.2. Annotation consistency as compression scores

The growing of Cronbach’s alpha in comparison to the assessment scale is

the pillar of our analysis (see Table 4). Gygli et al. (2014) introduced the con-530

cept of human consistency by computing Fβ . Considering our user annotations

collected with different assessment scales (see Table 4), Fβ behaved differently

to the Cronbach’s alpha: While Cronbach’s alphas suggested that the quality

of user annotations increased, Fβ suggested the opposite. On the other hand,

CLUSA coped with annotation consistency in a similar fashion to the Cron-535

bach’s alpha for both pair-wise and leave-one-out approaches.

CLUSA was conceived based on a leave-one-out strategy, because it uses

all user annotations to compute the compression scores. As a consequence,

CLUSA’s performance with a pair-wise approach is lower than the leave-one-

out one, as shown in Table 4. The worst CLUSA score was achieved with pair-540

wise strategy in the dichotomous scales. Because of the unrestricted scenario,

the probability that a pair of users annotates the same compression rates are

lower than considering the compression rates provided by all users at the same

time. Yet for the dichotomous scale, the compression rates were sparse and

focused on low compression, as illustrated in Figs. 10(a) and 10(d), where the545

compression scores (box plots) are concentrated on the left side of the plots (low

compression scores). Since video summarization tasks pursue high compression

scores, CLUSA penalizes all user annotations collected with dichotomous in

comparison to the other assessment scales, as can be observed in all plots of Fig.

10, where the plots in Fig. 10(b) and 10(e) show the three-point Likert scale550

results. As illustrated in Figs. 10(c) and 10(f), the box plots occupy the entire

x-axis, meaning that our proposed guideline with five-point Likert scale tends

to collect user annotations on all available compression rates. Following that,

we can state that leave-one-out CLUSA is able to evaluate all the conciseness
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Figure 10: Relating zi scores to wi compression rates on collected annotations: (a) and (d)

Dichotomous scale, (b) and (e) Polytomous Likert-3 scale, and (c) and (f) Polytomous Likert-5

scale, with leave-one-out approach.

of a video summary, even in an unrestricted scenario.555

Considering the compression scores of one video annotation in SumMe and

TVSum50 data sets, illustrated in Figs. 11(a) and 11(b), respectively, we can

observe that the annotation process of SumMe and TVSum50 focused on high

compression rates (blox plots more on the right of the x-axis). Even that TV-

Sum50 occupies all the right side of x-axis, CLUSA does not penalize annota-560

tions in this data set. On the other hand, SumMe occupies only a small portion

of the right side in x-axis, and hence the compression weight in Eq. 5 penalizes

the SumMe results. These two situations are explained for the accumulated of

the high compression weights that always corresponds to 75% of the CLUSA

score. Because of that, CLUSA considers the high compression rates to be565

crucial to score the performance of an automatic video summarization method.
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Figure 11: Relating zi scores to wi compression rates on user annotations collected on: (a)

SumMe and (b) TVSum50 data sets.

6.3. CLUSA limitations

A possible weakness of CLUSA resides in the cluster scores, ci, that should

follow a normal distribution. In Figures 10 and 11, the scales of the box plots

represent the variance of user annotations. Users diverge more about some video570

contents (see Figure 10(c)) than others (see Figs. 10(f) and 11(a)). Supposing

that users annotate the video segments by biasing the relevance (a certain group

saying that the segments are very relevant, and another group saying that it is

very irrelevant), the cluster score would be no longer representative to evaluate

the hypothetical user annotations. In that case, we suggest that future works575

explore non-normal distribution approaches or mixture of normal distributions.

6.4. Future work

Our study, as well as the previous studies introduced herein, assumed that

all video segments are annotated from a single relevance perception, measuring

the relevance of all objects in the scene together into a single relevance score.580

However, the relevance could be attached to a collection of visual elements in

the video segment. So, in an alternative scenario, users should also describe

these representative elements (e.g., objects, places). For instance, regarding a

video depicting images of surfing, beaches and surfers could be split between (i)

landscape and (ii) bonds among surfers, so that some users could place more585

emphasis on environment (i), whereas others would consider relationships (ii)
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as the most important characteristic of the video. This is already performed

by video captioning tasks, and can be incorporated to our guideline on the

video segment level to improve the interpretation of the results, improving also

relevance laid by users, such as performed in Sharghi et al. (2017). In that case,590

CLUSA can be improved to perform also text matching, similar to matching

metrics in natural language field.

The relation between the Cronbach’s alpha and CLUSA was explored with

the goal of analyzing the behavior of this novel metric, though there are sev-

eral data sets not suitable for the computation of the Cronbach’s alpha due to595

an insufficient number of collected user annotations (e.g., (Chu et al., 2015)).

A future work could be aimed at analyzing CLUSA’s efficiency under such a

restricted sampling scenario.

By showing the importance of establishing a research agenda able to sur-

mount the limitations of previous studies conducted on video summarization,600

this work presented the findings focused on the development of a novel metric

less sensitive to user annotations with unbalanced compression. Further in-

vestigations ensuing from this study should follow on the compilation of video

summarization data sets and methods into benchmark testing, facilitating the

evaluation of novel automatic methods in a model comparison perspective.605
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