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Abstract: Various methods of physical, chemical and combined physicochemical pre-treatments for 

lignocellulosic biomass waste valorisation to value-added feedstock/ solid fuels for downstream 

processes in chemical industries have been reviewed. The relevant literature was scrutinized for 

lignocellulosic waste applicability in advanced thermochemical treatments for either energy or 

liquid fuels. By altering the overall naturally occurring bio-polymeric matrix of lignocellulosic 

biomass waste, individual components such as cellulose, hemicellulose and lignin can be accessed 

for numerous downstream processes such as pyrolysis, gasification and catalytic upgrading to 

value-added products such as low carbon energy. Assessing the appropriate lignocellulosic pre-

treatment technology is critical to suit the downstream process of both small- and large-scale 

operations. The cost to operate the process (temperature, pressure or energy constraints), the 

physical and chemical structure of the feedstock after pre-treatment (decomposition/degradation, 

removal of inorganic components or organic solubilization) or the ability to scale up the pre-treating 

process must be considered so that the true value in the use of bio-renewable waste can be revealed. 

Keywords biomass waste; pyrolysis; gasification; physical; physicochemical; chemical; pre-

treatment; bio-energy; upgrade 

 

1. Introduction 

More than ever, there is a drive to accommodate sustainability in the energy generation and 

chemical production sectors. The scope of this work encompasses utilising or upgrading bio-

renewable waste to feedstock materials for the wider energy generation sector. The projected 

endpoint is to replace or gradually phase out the use of conventional fossil fuel and first-generation 

biomass-based alternatives with second-generation biomass feedstocks such as lignocellulosic waste 

which do not compete with food and feed industry [1–3]. However, the true consumption of such 

feedstock has appeared to remain constant. In 2009, from the total 10% of the global primary energy 

consumption of all kinds of bioenergy, ~80% of this value was generated from all kinds of biomass 

waste [4,5]. In 2013, the value attributed to energy generated from biomass waste was reduced to 9% 

as there has been a drive to advance other technologies [6]. Examples of biomass waste materials are 

wood, agricultural and/or food fraction of the municipal solid waste, the so called lignocellulosic 

waste which still remain unexploited [1,2,7,8], i.e., tree branches [9] and other agricultural crops 

residues [10,11]. On the other hand, first-generation feedstocks (seeds) have been widely investigated 

and used for liquid biofuel production. Lignocellulosic waste is an example of a very common 

carbon-rich material that has the potential to generate low carbon energy via thermochemical routes 

either/or be converted into high added value chemicals via downstream thermochemical processing 
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such as pyrolysis and gasification [12]. The literature has a rich array of evidence that this type of 

waste stream can be used for various methods of digestion to form liquid fuels such as ethanol [13]. 

This is a favourable type of biomass waste due to its relatively high abundance and overall 

sustainable nature [7]. Aspects such as the inherent moisture and oxygen content, as well as a 

relatively low calorific value and high volatile content means that various modifications to add value 

to waste, otherwise known as pre-treatments, are required to better utilise lignocellulosic biomass 

waste [1]. However, the composition and structure of the feedstock materials are often complex and 

contain many polymeric chains. These materials, therefore, require pre-treatment before they can be 

used as a ‘drop in’ fuel/chemical platform molecules or for bioenergy production via thermochemical 

transformation or advanced thermal processing routes [8,14–16]. The term ‘drop in’ fuel denotes a 

molecule that is synthetically made and has the potential to be used in place of existing fuel-based 

hydrocarbons [17]. A ‘drop in’ waste-based material can also be used as a chemical intermediate 

which could be upgraded into an entirely new feedstock [18]. However, such value-added molecules 

such as furfural, levulinic acid, glycerol and 5-hydroxymethylfurfural, as well as various other 

oxygenates and hydrocarbons are highly sought after molecules that can be separated from bio-oil 

residues that are generated by pyrolysis (fast and slow) and in residues generated after gasification 

[19–23]. The homogenous liquid generated by flash degradation of cellulose, hemicellulose and lignin 

generates a rich liquor of molecules that can be separated and upgraded further to generate carbon 

fibres, resins, polymers and commodity chemicals [24] or this waste-derived oil can be used under 

gasification conditions and be converted to a mixture of gases (syngas) containing primarily H2 and 

CO, which have a calorific value and can be used for energy production [21,25]. Enhancing these two 

thermochemical processes further requires the use of a solid heterogeneous catalyst. This is where a 

metal-containing or metal-free material can increase product selectivity or alter the thermally driven 

reaction of waste materials [21,26]. Optimising the pre-treatment process for a specific waste material 

will enhance its usability and practicality for downstream operations. The efficiency of a bio-refinery 

is often hampered by the crystallinity of cellulose and its troublesome surrounding matrix 

(hemicellulose and lignin) [27,28]. To overcome this, if the cellulose is the desired component, the 

pre-treatment process could involve general depolymerisation, matrix weakening, reducing cellulose 

crystallinity, component degradation (breakdown of hemicellulose or lignin) or solubilisation 

(transferring a component into the liquid phase), whereas for thermochemical processing, catalytic 

or non-catalytic, increasing the active surface area of the waste material, weakening the 

superstructure of the waste without compromising or degrading any of the components and reducing 

the thermal/thermochemical stability of the material is important. 

Various pre-treatment technologies often operate in a similar fashion and can generate the same 

outcome, facilitate a structural alteration to lignocellulose. This is where various aspects of the 

material are degraded and hemicellulose and lignin fibres can be broken down [8,29]. The structure 

of cellulose is simplified in Figure 1A. This is where a monomer fragment is presented, and an 

individual glucose molecule is highlighted in a red box (Figure 1B). Due to the extensive hydrogen 

bonding and glycosidic linkages, it would be very difficult to construct a true representation of the 

cellulosic structure; especially as the true size is dependent on the parent material. Lignin, on the 

other hand does not contain the same sugar structure as the glucose in cellulose [12]. It is, however, 

a covalently cross-linked macromolecule with a rigid structure containing alkyl aryl ether units which 

generate β-O-4 linkages [29,30]. There are various other units present in the different lignin moieties 

but to a lesser extent [29,31]. Various research groups have managed to deduce a simplified structure, 

this has been broadly modified in Figure 1C to show the variable functional groups [32,33]. It has 

been suggested that lignin is constructed from three different hydroxycinnamyl alcohols; 

paracoumaryl alcohol, coniferyl alcohol and sinapyl alcohol [30,34]. A representation of the structure 

of these molecules is shown in Figure 1D, again, for visualisation this has been simplified to 

demonstrate the interchangeable functional groups. Finally, hemicellulose, as the name would 

suggest is very similar to cellulose, this is a misconception. Cellulose is often depicted as linear chains 

of glucose units (Figure 1A,B), whereas hemicellulose contains a structure generated from a variation 

of pyranose-based polymers such as xylans, mannans and glucans [34,35]. The hemicellulose 
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backbone also contains monosaccharides and various other molecules to augment the overall 

polymer. One such sugar-based molecule, xylose, is a monomer for xylan a heteropolysaccharide 

(Figure 1E). This specific molecule is a pre-requisite platform for many furan-based compounds 

present in bio-oil [22,23,36]. Xylan also contains molecules such as arabinose, glucuronic acid and 

acetic acid as well as various other molecules. Glucomannan on the other hand is a culmination of 

sugar molecules such as mannose and glucose. The composition of hemicellulose is also dependant 

on the biomass material; an example of this is that xylans are normally found in non-woody biomass, 

whereas glucomannans are generally found in softwoods [35]. 

 

Figure 1. A general representation of molecules present in lignocellulosic biomass waste such as (D) 

cellulose section, (A) glucose monomer, (B) lignin monomer representation [33], (C) a simplified 

structure of an alcohol that constructs lignin [34,35] and (E) xylose, a monomer found in xylan, a 

component of hemicellulose (non-woody feedstock). 

This review will focus on the physical (ball, disc, hammer and jet milling, as well as extrusion), 

chemical (ozonolysis, acid, base and ionic liquid) and a combination of physicochemical (pressure-

induced explosions and interaction with media such as steam, CO2 and ammonia, as well as liquid 

hot water, microwave irradiation, ultrasound and wet oxidation) pre-treatment methods currently 

exploited to generate value-added products and energy. Additionally, various emerging pre-

treatment technologies that have not yet entered large-scale operation such as pulsed electric field, 

electron beam and gamma irradiation is included in this work. 

2. Physical Methods of Lignocellulosic Waste Pre-Treatment  

Physically pre-treating biomass wastes left behind from the liquid biofuels production sector 

(i.e., seeds cake and energy crop stalks) often includes undergoing mechanical or manual processing. 

This is where the crystallinity of the cellulosic structure can be decreased [37]. This subsequently 

leads to a variation in the particle size of the waste to be upgraded as feedstock material, as well as 

increasing the available surface area [2,3]. The resulting fine powder can be sectioned off by sieving 

techniques to isolate a specific size, technologies of this type are quite energy intensive. Often, the 

pre-treatment of biomass waste contributes to >20% of the overall production operation cost [38]. This 

means that an appropriate process much be applied to reap the full benefit of the waste material to 

be upgraded by this method [39]. Methods of physical pre-treatment covered in this review are 

drying and mechanical size reduction techniques such as milling and extrusion. There are numerous 
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variations of the base methods described and these will be covered in more detail below. Some of the 

methods mentioned in the subsequent sections are depicted in Figures 2 and 3. 

2.1. Drying 

Although not often referred to as a method of pre-treatment in the overall literature, drying or 

dehydrating a feedstock material is a pre-requisite process that can have stark effects on the value of 

the waste material, especially for thermochemical downstream usability. Typically, the inherent 

moisture content of lignocellulosic biomass waste is high. Therefore, drying techniques are a 

minimum necessary requirement for feedstock preparation prior to other pre-treatment technologies. 

Methods of drying lignocellulosic biomass range from air drying (ambient atmosphere), direct oven 

drying, convection oven drying (fan assisted) and freeze drying (vacuum sublimation) [40–42]. It has 

previously been indicated that drying post chemical pre-treatment in ammonium hydroxide will 

cause the cellulose component to recrystallize [43]. It has also been found that amorphous cellulose 

can slightly re-crystallise or regenerate after treatment in water, followed by air drying [41]. Whereas 

oven drying has been found to decrease pore size for some feedstock materials, drying techniques 

are often used to lower the overall moisture content of the waste material to below 20 wt% [44]. From 

the list of physical pre-treatment methods mentioned, due to varying levels of moisture, before/post 

pre-treatment, this process can often be found to be the most energy demanding; in some cases, this 

has been found to increase the overall cost of the upgrading process by 3% [44,45]. Whereas for 

materials that have been dried prior to pre-treatment, it has been found that there is an overall 

reduction in expenditure by ~2% [45]. Lignocellulosic waste materials are often hygroscopic by 

nature, the general moisture content has been found to range between 15 and 60 wt% [8]. The removal 

of water content is imperative for improving combustion efficiency and overall calorific value [46]. 

This means that the temperature required will be reduced dependant on the level of moisture, where 

oven drying can occur between 45 and 105 °C [42]. The level of drying is also dependant on whether 

the feedstock is woody or herbaceous, this leads to a variable inherent moisture content. Examples of 

non-woody or herbaceous biomass are agricultural wastes such as; straw, grasses and crop stubble 

[14,47]. These residues have been found to contain >10 wt% more moisture than wood-based 

materials. In cases such as wood pellets and wheat straw, the moisture content is almost doubled, 

and the values are 4.9 wt% and 8.5 wt%, respectively [14,46]. This means that a greater level of drying 

is required before these feedstocks can be employed in thermochemical processing for either energy 

or fuels and carbonaceous materials production. However, if the moisture content exceeds 60 wt%, 

the required input energy for dehydration exceeds the output energy of the material by over 10 wt% 

[46]. 

2.2. Particle Size Reduction Techniques 

Determining the optimum feedstock particle size can be a difficult process due to the fibrous 

properties of the lignocellulosic biomass waste [44]. A large particle size can contribute to a reduced 

conversion efficiency due to reduced heat and mass transfer rates when generating heat energy in a 

boiler, therefore, reducing the particle size of the residues will increase the efficiency of releasing as 

much as possible of the calorific content as useful energy [47,48]. In addition, the specific surface area 

and porosity of the feedstocks have an impact on bio-ethanol production during the enzymatic 

hydrolysis of biomass wastes [49]. There are a number of different physical/mechanical techniques 

that can be applied to reduce the crystallinity of cellulose, which results in increasing the available 

surface area for thermal contact and thus increased heat and mass transfer rates, as well as porosity 

of the feedstock material and particulate size [7,27,48–51]. The first of these methods to be explored 

is generally the primary method used for large-scale lignocellulosic biomass waste valorisation, i.e., 

milling [3]. 

2.2.1. Ball Milling (Wet and Dry) 



Sustainability 2019, 11, 3604 5 of 27 

This is a high intensity method of milling where the centripetal forces of the metallic balls exert 

a shearing force on the material that reduces the net crystallinity [27,50]. This method of processing 

is fit for purpose for both batch and continuous scales for exploiting further energy production 

(modifying first-generation feedstocks after liquid biofuel production) or for initial pre-treatments of 

second-generation waste materials. The size of the vessel (grinding jar) can be varied, as well as the 

number of metallic spheres used [50]. This is often distinguished by the different nomenclature used 

such as ball mill or a planetary ball mill (Figure 2A) [52]. However, due to the high energy 

requirements for this process, it is often seen as an expensive method of pre-treatment and not 

sustainable for long term use (long processing times) [53]. In other cases, ball milling is seen as an 

environmentally friendly (low energy consumption) method of pre-treatment that has proven to be 

versatile in a number of conditions [54]. Such conditions involve the comparative use of solvent and 

solvent free (dry) conditions to disrupt hydrogen bonded networks within the cellulose 

superstructure [54].  

 

Figure 2. A modified diagram (from reference 45) depicting various mechanical pre-treatment 

techniques: (A) Ball milling (grey spheres indicate metallic balls), (B) Disc milling and (C) Hammer 

milling (with blunt hammers) [55]. ( : lignocellulosic biomass waste particles). 

 

Figure 3. A general schematic for an opposed jet milling (particle-particle collision) process and 

subsequent particle sizing. ( : lignocellulosic biomass waste particles). 

This form of milling begins to bridge the gap between physical and physicochemical pre-

treatment processes, where various research groups have begun to investigate the coupling of acid 

treatment and ball milling for the breakdown of lignin in the substrate [56–58]. Using a relatively low 

acid concentration at room temperature in tandem with ball milling causes the porous material to 
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undergo swelling and subsequent destructive action occurs. This process route has been considered 

less harsh than conventional acid hydrolysis which uses a greater acid concentration (discussed in 

greater detail further into the review) [56–58]. Additionally, the operation of swelling and milling 

temperature is carried out at room temperature, thus requiring less energy to treat the lignocellulosic 

material than a conventional milling practice [55,58]. 

2.2.2. Disc Milling (Wet and Dry) 

Figure 2B shows the schematic design for a disc mill (also known as a double disc attrition mill 

[59]). This is where two serrated plates (the surface of the disc can be designed to suit the purpose) 

are positioned within close proximity to one and other. The waste feedstock is passed through the 

system and the rotating discs will apply a shear force at high speed to the particles under a high 

pressure [48,60]. Some designs use a pair of rotating discs or a configuration of a static accompanied 

by a rotating unit.[55] As Figure 2B shows, this is a continuous process and can be added to 

throughout its operation. This being said, out of all physical pre-treatment methods, disc milling 

requires a vast amount of energy with a specific energy consumption of 200–400 kWh/t, to produce 

a particle size of approximately 2 mm [59,61]. The design of the disc itself specifies the operation of 

the mill and the overall mechanical refining process. This has been discussed in greater detail by 

Corbett and co-workers. They analysed the three combined operations of the disc mill: fibre cutting, 

external fibrillation and internal delamination [62,63]. The disc design/surface profile, the consistency 

of the feedstock properties (mainly moisture content) and positioning of the discs can have a stark 

impact on the process output [63,64]. Similarly with ball milling, the disc milling process has been 

explored in both dry and wet milling conditions where the feedstock is pre-softened or swollen 

[60,61,63–65]. It has been shown that combining the pre-treatment protocol by hydrating the waste 

material with steam, mild acidification or with ozone-infused water (method of chemical pre-

treatment discussed later) [63,64] prior to disc milling could be an option for minimising the energy 

demand (mentioned previously) and yielding a higher glucose return for fermentation reactions [65]. 

For thermochemical downstream processes, the method of wet disc milling has also been found to be 

more energy efficient for moist poplar chips. However, there can be a large variation in particle size 

for this method of size reduction as found in other downstream processes [66]. 

2.2.3. Hammer Milling 

Unlike other physical pre-treatment methods mentioned thus far, the hammer mill (Figure 2C) 

is extremely variable and seen as a coarse method of milling [61,66]. Not only can the number, shape, 

rotation speed and hammer design (blunt/sharp) be altered but the sizing grid at the base of the unit 

can be tailored to a specific particle size [39,48,67–69]. The design of this system includes a series of 

hammers attached to a rotor. As the rotor spins, the hammers will collide with the feedstock that is 

fed continuously. On each pass the particle size should decrease and eventually fall through the 

sizing grid. Dependant on the physical properties of the biomass waste, either a blunt or sharpened 

hammer configuration can be used [39]. However, one of the draw backs to hammer milling is the 

size distribution of pulverised waste material, this can often mean that a second method of physical 

milling is required [61]. For this milling procedure, waste particle size variation is a concern; so to 

prevent blockages, the sizing screens are angled (circular, as in Figure 2C or trapezoid) to prevent 

sediment build-up [69]. This means that as the impaction process takes place, small particles pass 

through the grid but those of slightly larger size can also do the same. Additionally, hammer milling 

is seen as the second most energy intensive method of physical refining after disc milling [59,61,66]. 

This means that the costs required to operate large-scale hammer mills could prove to be very 

expensive. Also unlike the other methods mentioned, due to material compaction, the feedstock is 

extensively dried for this process. Therefore, wet hammer milling is not an option [66]. 

2.2.4. Jet Milling 
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While coarse milling (hammer mill) and semi fine milling (ball milling) have been mentioned. 

There is a method of ‘ultra’-fine milling that uses compressed gases to force single impactions 

(impaction on the side of the milling chamber) or particle-particle collisions (double collisions). This 

is known as jet milling [66,70]. The gases usually used for this process are compressed air, nitrogen 

(inert gas) or steam (a method of swelling the biomass waste before impaction) [66]. Nominal 

pressures for this practice are usually approximately 5 bar, as the gases are introduced, a cyclonic 

effect is generated [71]. Figure 3 depicts a schematic for an opposed jet mill. This is where there are 

numerous gas injection apertures which force the biomass waste particles to collide with one and 

other in the centre of the vessel. This type of jet mill has been seen as the most effective for fine powder 

production [72]. However, there are other jet milling designs such as the spiral and oval chambers—

these are also considered to be attrition type mills [66,70,72]. These designs can accommodate a single 

gas outlet that will force particles to impact against the vessel itself. Once the waste particles are of 

relevant size, they can pass through a rotating sizing grid, allowing the particulates to pass on to the 

next step of the process. [70] The operational speed of the rotary sieve is between 3000 and 20,000 

rpm which can allow particles of ~20 µm through [70,71]. This method of milling must first receive a 

pre-ground feedstock so that it can be effective, this is often received from either a ball or hammer 

mill [71]. The relative energy consumption for this technique is variable between designs, although 

producing a finer powder, the opposite jet mill has been found to use more energy than its spiral 

equivalent [70]. 

2.3. Reactive Extrusion Refinement 

Once the optimum particle size has been obtained, a typical follow on process is extrusion 

refinement [61]. This is where a continuous feed of material is driven through either a single or dual 

screw threads that run the length of a stationary chamber (Archimedean screw), this can have several 

sections which provide a range of heating environments [61,73–76]. During this time, the material 

can pass through different reactive chemical and thermochemical environments [73]. Additionally, if 

there are a number of screws present, the threads can either rotate in the same direction (drive the 

feed in one direction) or counter to one and other (further enhanced grinding effect) [74]. The screw 

driven extrusion process is highly customizable as a physical pre-treatment process. However, this 

technique could also be considered as a physicochemical process due to its additional functionalities. 

Not only is the system optimizable due to screw thread drive speed (typically 25–200 rpm), thread 

dimension, variable barrel temperature (typically 25–200 °C) but it also has the capacity to add acid, 

alkali and water treatments for swelling, similar to that mentioned for ball and disc milling 

[8,73,75,76]. By varying the design of the thread itself, the feedstock can be mixed, transported or 

reversed (held temporarily) [61,73]. Operating a variable direction thread means that the biomass 

waste substrate can undergo densification. This is where the biomass particles are compacted, 

increasing their bulk density [66] so that they can be more effective as a solid biofuel, i.e., valorised 

as an alternative fuel source for residential heating [77]. Extrusion is one of a few methods of 

densifying waste material—others are briquetting or pelletizing. As the feedstock progresses along 

the screw, it enters a number of chambers that can have variable temperatures. Here, the material can 

either be dried, absorb moisture (water containing section) or undergo thermal expansion. This is 

usually followed by a pressure inducing section of thread; this allows the particles to undergo various 

intensities of shear, stress or even densification [66,73]. As the compacted material exits the high 

pressure segments it is able to expand, causing further stress/strain action [14]. This method of pre-

treatment has also been proved to be beneficial for the down-stream process of anaerobic digestion, 

specifically producing methane [78]. Also, extrusion of biomass waste can bridge the physical and 

biological pre-treatment methods. Although biological pre-treatments are not a topic covered in this 

review, extrusion refinement can also utilise bio-catalytic enzymatic hydrolysis by adding a series of 

enzymes during the drive process [79,80]. A combination of the two methods, extrusion and 

enzymatic hydrolysis, have yielded strong results for ‘bio-extrusion’ operation due to the physical 

pre-treatment technique generating an increased surface area, greater pore size/volume and a 

reduction to cellulose crystallinity [73,79]. Naturally, due to the variable heating zones and working 



Sustainability 2019, 11, 3604 8 of 27 

parts, this method of pre-treatment requires a high capital investment and has a large energy 

consumption [55]. 

3. Physicochemical Methods of Lignocellulosic Waste Pre-Treatment 

Methods of pre-treatment that operate in a hybrid approach, affecting the physical parameters 

(mentioned previously) as well as their chemical bonding (bond cleavage) and intermolecular 

interactions, are called physicochemical techniques [81]. This is where aspects such as temperature 

or pressure are used in tandem with a chemical process. These techniques are often intense and can 

break down the lignocellulosic waste by using methods such as; steam and CO2 explosion, ammonia 

fibre explosion, (a general schematic demonstrating the effect of rapid decompression on a porous 

network is shown in Figure 4, this diagram does not contain various side reactions that can occur 

when using CO2 or ammonia) liquid hot water, microwave irradiation, mechano-acoustic/sono-

chemical processing and wet oxidation [81–84]. 

3.1. Pressure-Induced Fibre Explosion 

3.1.1. Steam (H2O) Explosion 

The initial pre-treatment technique mentioned in this category and often seen as the most 

common is steam explosion, also known as auto-hydrolysis [82,83]. This is a hydrothermal process 

that exerts high pressure (0.7–48 bar) and temperature (160–260 °C) on the substrate [13,83]. After a 

period of time, the system is rapidly depressurised and re-pressurised [82]. This means that steam is 

forced into the porous network of the fibrous waste and upon decompression will rapidly expand 

causing an ‘explosion’ (Figure 4) [13,81,85]. This causes alterations to the chemical structure of the 

waste to be upgraded by disrupting intermolecular interactions such as the hydrogen bonding in the 

matrix, leading to hydrolysis of the physical bonds. It also operates a high intensity mechanical 

shearing force on the particle structure, similar to methods of milling mentioned previously. As a 

result, explosion-based treatments increase the surface area of the particles of biomass waste, as well 

as radically altering both the pore size and volume, while decreasing the overall bulk density. This is 

a very important characteristic which impacts strongly on the logistics (storage-handling and 

transportation) of the waste materials from the bioenergy/biofuels sector for transformation into solid 

biofuels (pellets), mentioned previously for downstream utilization in the residential heating sector 

[77]. This technique is time resolved meaning that the intensity of the so-called explosion can be 

controlled by changing the rate of decompression [81,85]. By using this method of pre-treatment, 

Datar and co-workers were able to generate biogas with a high hydrogen yield from hemicellulose 

without additional acid treatment [86]. This being said, there has been several reports of H2SO4, CO2 

(mentioned later) and SO2 being charged to the reactor and acting as a catalyst to improve sugar 

recovery [13,83,87]. Unlike many other pre-treatment processes mentioned thus far, steam explosion 

is seen as a relatively low energy consuming technique, especially when compared to motor driven 

mechanical shearing methods [13]. The biggest cost associated with this technology is the pressure 

equipment. 
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Figure 4. A visual representation of the porous network of lignocellulosic waste and the effect of a 

pressure-induced explosion pre-treatment. This shows the three stages: (A) unaltered material, (B) 

material containing adsorbent and, (C) the result of rapid decompression. 

3.1.2. Carbon Dioxide (CO2) Explosion 

As well as previously being mentioned as a catalyst for the explosion process, full-scale CO2 

explosions have been completed in the past [13]. In an identical manner, carbon dioxide is charged 

to the reactor at a specific pressure. Depending on the scope of the pre-treatment CO2 has been used 

at pressures between 30 bar (similar to steam-based explosions) and 275 bar (super-critical CO2) 

[51,88,89]. Temperatures are slightly milder than steam explosions, operating between 35 and 175 °C 

[88–90]. Super-critical CO2 processes are conducted without the addition of mixing during the 

residence period, whereas for relatively low CO2 pressures, Cha and co-workers utilised an impeller 

that mixes the feedstock as it is being heated under pressure [89]. The base of the reactor can be 

connected to a second evacuated container and the pressure difference between the two vessels 

operates the decompression activity. Running a reactor in this fashion allows the CO2 to be recycled 

[89]. The CO2-based explosion method of pre-treatment has been used for lignocellulosic waste 

hydrolysis processes. It has been found that the decompression explosion induced by CO2 entering 

the porous networks is beneficial for increasing the available surface area of the waste material [88]. 

This occurs especially when super-critical CO2 is used as the nature of the reactant has both liquid 

and gas natures. As a liquid, the CO2 can enter the feedstock and form carbonic acid, although seen 

as a weak acid it has been found to conduct hydrolysis [13,51,84,88]. To effectively achieve the double-

edged sword of acid-induced hydrolysis and ‘explosion-based’ shear forces, the feedstock material 

should not be dried as the CO2 gains its acidic attributes when dissolved in water [51,84]. Again, the 

energy consumption of pressure-induced fibrous explosions is seen as relatively low. However, the 

initial cost and potential maintenance costs for high pressure equipment, especially when conducting 

super-critical pre-treatments is very expensive. On an environmental stand point, this is a green 

method of pre-treatment as the CO2 used is readily recycled, as can the consumed CO2 during 

downstream thermochemical processing where it can be reactively reclaimed [89]. This being said, 

operating a carbon dioxide explosion treatment has been found to be not economical when utilising 

the higher pressures mentioned [82]. 

3.1.3. Ammonia Fibre Explosion (AFE) 

Another method of fibrous explosion has been explored using heated liquid ammonia (NH3). 

This pre-treatment technique has been found to increase the surface area of the waste material, 

decrease the crystallinity of the cellulose component in the waste and break down or alter the 

structure of lignin [87]. This is a solvent dependant pre-treatment process that utilises a lower 

operational temperature (60–120 °C) than stream/CO2 explosions. Additionally, pressure 

requirements for this pre-treatment have also been found to be lower than those used for low 

temperature CO2 explosions at 17.2–20.6 bar [84]. Unlike the other pressure-based methods 
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mentioned, the effectiveness of this waste pre-treatment is dependent on residence time before rapid 

decompression. Also, this technology benefits from a level of moisture in the waste feedstock to be 

pre-treated in a similar way to CO2 explosion. This method of explosion also conducts the cleavage 

of ester linkages via ammonolysis and hydrolysis reactions, generating various other side products 

[91,92]. It has also been found that the porosity of the lignocellulosic biomass waste is increased when 

using ammonia fibre explosion. This is because there is a partial solubilisation of lignin during the 

pre-treatment [91]. This means that this method of pre-treatment is more favourable for herbaceous 

waste (straws) compared to woody biomass (hard wood) waste which often but not exclusively have 

a lower lignin content [82]. However, although the lignin content is often seen as lower, the cross 

polymer covalent linkages between lignin and cellulosic network in materials such as grass lignins 

lead to a far higher structural strength and cell wall integrity [93]. Although proven to be a very 

effective pre-treatment process, there is a large initial overhead cost for the ammonia reagent; this 

can be overcome by the fact that the chemical can be recycled [82]. This process has also been found 

to inhibit the activity of enzymes with lignin due to its solubility as mentioned previously. Therefore, 

this could be a more attractive pre-treatment protocol for thermochemical upgrading, albeit utilising 

a lower ammonia concentration to limit lignin degradation, unless as mentioned previously, 

herbaceous waste materials are used due to their generally lower lignin content than wood-based 

alternative wastes. 

3.2. Liquid Hot Water (LHW) Method  

Hydrothermal processes are attractive due to the low capital cost of the primary reagent, water. 

This also applies as a physicochemical biomass waste pre-treatment tool as the relative ease of the 

process can be adapted from at a lab scale to a pilot and industrial scale. Typically, liquid hot water 

pre-treatments are very similar to steam explosion. However, the process is conducted in the liquid 

phase at a high temperature range of 160–250 °C. Also, it operates at a far lower pressure (~5 bar); 

this means that the overtime reduces chemical and mechanical fatigue for the equipment 

[36,51,55,83,84]. Another process cost can be avoided as compared with other chemical pre-

treatments and that is the need to neutralise or wash the pre-treated biomass waste material after the 

process. This pre-treatment causes hydrolysis of hemicellulose and will also reduce the lignin content 

while only 4–22 wt% of the accessible cellulose has been seen to be removed [51,87]. Although not 

utilising an external protonation source, when operating at the upper temperature stated, the H+ 

content of the water has been found to be over 20× higher than when at room temperature [55]. This 

means that the liquid hot water pre-treatment process will act as a double-edged sword, and mild 

acid hydrolysis can also take place. This pre-treatment is completed without the requirement to 

rapidly decompress the reactor, but controlling the residence time (15–70 min) instead to better 

optimise cellulosic content [36,94]. Liquid hot water pre-treatments lead to two fractions being made, 

the first being a liquid component containing solubilised hemicellulose and the second is the solid 

pre-treated fraction that can be dried and undergo thermochemical transformation for energy and 

carbonaceous materials production [36]. 

3.3. Microwave Irradiation Method of Biomass Waste Pretreatmemt 

By introducing electromagnetic radiation in the form of microwave irradiation, lignocellulosic 

biomass waste can be heated at the molecular level by dipole rotation [95–98]. By heating the moisture 

content within the substrate, a swelling effect will occur and cause depolymerisation of the lignin 

component while at the same time causing a decrease in the crystallinity of cellulose [95,98]. The 

heating process for microwave irritation is the complete opposite compared to conventional heating. 

This is where heating occurs from the outside-inwards, whereas microwaves heat from the inside-

out, as shown in Figure 5 [96]. This can generate hot spots within the polymeric structure and could 

facilitate an ‘explosion’ like effect, comparable with steam/CO2/ammonia fibre explosions. This is 

where inhomogeneous heating can occur in a waste sample, at a different rate to the rest of the 

material. It has also been assumed that the ‘microwave effect’ can destabilise the crystalline structure 

of waste materials, not relatable with thermal effects [96,97]. 
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Figure 5. A demonstration of (A) conventional heating versus (B) microwave heating of biomass in a 

solvent medium. Where   : biomass waste particles and,   : darker red indicates a warmer region. 

However, microwave irradiation as a method of heating is dependent on the dielectric 

properties of the waste to be upgraded. The pre-treatment of biomass waste in this form takes place 

similarly to the hydrothermal process mentioned previously. The biomass waste is homogenised into 

a solvent medium and heat at a specific temperature, residence time and substrate/medium ratio. 

This means that the material can be ‘selectively’ heated—the temperature of the specific solvent can 

be heated and the waste itself not allowed to superheat. There are many differences between available 

solvents used in the specific process, and that occurs due to their polarity. A polar solvent such as 

H2O, alcohols, acetone or acetonitrile, will have a greater ability to be heated as they can absorb the 

radiation. The opposite of this is non-polar solvents such as alkanes, toluene and dichloromethane, 

these possess much higher dipole moments meaning less radiation can be absorbed, thus less heating. 

Recent reports of microwave-induced pre-treatments have been conducted between 130 and 200 °C, 

over a variable residence time (3–30 min) and power input (200–800 W) [96,98–101]. This process on 

a whole can be seen thus far more energy efficient than a conventional heating method. Not only is 

the energy conversion caused by the rotating dipole emitting heat energy via conduction to cooler 

regions of the solid. The hotspots formed by almost instantaneous heating is a far more effective 

method of causing an ‘explosion’ within the biomass waste porous network. This in conjunction with 

a short residence time means that the pre-treatment can potentially be energy and time efficient. 

Similarly with other pre-treatment processes, this physicochemical process can be assisted by 

acidifying the biomass material or by using a base [98,102]. Comparably with other methods of 

biomass waste pre-treatment, the addition of a base has been found to reduce lignin content, altering 

the available surface area and generating a larger pore size within the particles [100]. 

3.4. Mechanoacoustic and Sonochemical (Ultrasound) Methods  

Ultrasound as a method of biomass waste pre-treatment is where the substrate is immersed in a 

solvent/medium and irradiated; this causes variations in pressure due to the formation of 

bubbles/cavities in the medium and, upon their collapse, this results in areas of superheating and 

high pressure as shown in Figure 6. This method of pre-treatment has been found to enhance physical 

(mechanoacoustic) and chemical (sonochemical) ultrasound processes over a broad spectrum of 

frequencies [3,103–105]. The wave is formed by a piezoelectric transducer that vibrates, dependant 

on the current supplied, the resonance will increase/decrease. The resultant wave can pass through a 

medium such as water, similarly to microwave irradiation. As the wave passes through the water, 

there are regions formed of both high and low pressure. Areas of lower pressure produce bubbles; 
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these entities are cavities formed between water molecules as they separate. The bubble will undergo 

a collapse, and this causes an energy conversion that creates an area of superheating. The overall 

process of pressure differences generates a bubble, leading to the formation of a cavity is shown in 

Figure 6. 

 

Figure 6. The process of mechano-acoustic pre-treatment, the formation of a bubble (low pressure 

regions) and eventual collapse (high pressure) forming an area of superheating (red arrow). 

This phenomenon is similar to microwave pre-treatment. However, ultrasound technologies 

have been found to create superheated zones of very high temperature (>2000 K) and pressure 

[103,104]. Unlike the rapid decompression from the explosion pre-treatment methods mentioned 

previously, the collapse of a bubble will physically alter the polymerisation of the biomass 

components by weakening bonds between lignin and the cellulosic network [106]. This is due to the 

formation of micro jets emitting from the bubble’s collapse, these are likened to a shockwave that can 

travel at high speed through the material [104,107]. These reduce the crystallinity of cellulose of the 

biomass waste and also increase the overall available surface area of the substrate [3,108]. These 

various structural effects caused by ultrasound make this pre-treatment procedure attractive for 

further downstream thermochemical treatments, where less energy would be required to decompose 

the biomass waste material. Sonochemical effects on the other hand occur from the formation of free 

radicals during the cavity collapse [109]. These can then go on to undergo chemical reactions with 

molecular side chains that can alter the polymeric structure in tandem with mechano-acoustic 

alterations mentioned previously [104]. It has also been found that sonication can improve the 

gaseous products yield during thermochemical transformation, as well as improve the rate of 

reaction for the production of bio-diesel as compared to conventional approaches after substrate pre-

treatment [110]. Additionally, the use of ultrasound technologies has been used to demulsify bio-oils 

(a product of the thermochemical process of pyrolysis) so that they can be better separated and 

reformed via catalytic upgrade (oxidation or hydrogenation) [110]. There are two distinct methods of 

ultrasound pre-treatment, direct and an indirect irradiation. The former involves the submersion of 

a probe that can direct the waves from a point at a specific frequency and power output [105]. 

However, due to the severity of the process, probes are generally used in a pulsed action, an example 

of this was carried out by Yu and co-workers who operated for 10 sec and rested for 2 sec for a total 

of 0.5 h when they pre-treated a herbaceous biomass [111]. The second method is where a sample can 

be placed in a heated ultrasonic bath, where typical temperatures used have been 25–60 °C. This is 

where the waves operate in a sweeping action across the unit and will indirectly interact with the 

sample [107]. For both cases, the formed micro jets have the ability to not just breakdown the 

molecular structure of the material but can also reduce the overall particle size of the waste material. 

This mechanical action is likened to other milling techniques mentioned previously, where a smaller 

particle size can facilitate in a greater surface area for thermochemical transformation. Or has been 

found to increase glucose yield for enzymatic hydrolysis [105]. 

3.5. Wet Oxidation 

Utilising an oxidizing agent in an aqueous environment has been found to be a beneficial method 

of pre-treatment to breakdown lignocellulose into its constituent parts [112]. Often used as part of a 
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larger pre-treatment process, combined with various milling and explosion techniques (mentioned 

previously), the oxidative process has been found to increase the solubilisation of hemicellulose and 

breakdown lignin. This is why the process has been referred to as oxidative delignification in the past 

[13,82]. Examples of oxidisers used previously are pressurised gases such as air and oxygen (5–30 

bar) or liquid-based peroxides [3,112–114]. Operational temperatures for this process in the presence 

of an oxygen rich atmosphere have occurred between 120 and 350 °C [3,115]. Residence times are 

typically between 0.5 and 4 h, whereas hydrogen peroxide-based pre-treatments have occurred at a 

far milder temperature (30 °C) with a much longer residence time of ~8 h [13,115]. For the pre-

treatment of materials such as wheat straw, the solubilization of hemicellulose has been found to be 

a function of temperature, where the concentration in the solution increased by 3-fold when 

increasing the temperature of the process from 150 to 185 °C [116]. The oxidative mechanism evolves 

carbon dioxide and water as products where complete oxidation occurs. Additionally, the 

decomposition of polymeric chains can lead to the formation of low molecular weight carboxylic 

acids, aldehydes and alcohols upon hydrolysis [117]. Similar methods of free radical interactions are 

seen in sonochemical pre-treatments (mentioned previously), this can lead to the formation of 

hydrogen peroxide which is a strong oxidising agent in its own right [115]. Wet oxidation is often 

coupled with a sacrificial water soluble base, although providing an additional cost to the overall 

process, and has been found to be beneficial when isolating high cellulose yields from lignocellulosic 

biomass waste [116]. 

4. Chemical Methods of of Lignocellulosic Waste Pre-Treatment 

In chemical methods for pre-treating lignocellulosic biomass, the physical structure is not milled 

and the methods are usually performed in the absence of pressure, across an array of temperatures 

in the presence of an acidic or alkaline-based environment that can attack the chemical structure of 

the biomass waste material, often facilitating hydrolysis or delignification reactions. Here, the 

bonding (covalent) and intermolecular interactions (hydrogen bonding) are weakened causing the 

polymeric structure to deteriorate [118]. This induces the separation of lignin and hemicellulose 

components from the cellulosic superstructure. Other options available for this method of pre-

treatment are the use of ozone as a strong oxidization agent (Figure 7), organic solvents at high 

temperatures and ionic liquids. Finally, a pre-treatment protocol is discussed that, unlike many 

others, operates primarily to reduce inorganic components from the biomass waste substrate, while 

mildly altering the textural characteristics of the feedstock, this is called leaching (Figure 8). 

 

Figure 7. The process of ozonolysis and its effect on both delignification and the formation of hydroxyl 

radicals within the porous network of the biomass waste particles. Where:   biomass waste particles 

and:   water molecule. 
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4.1. Ozonolysis 

As a tool to promote lignin degradation, the use of ozone has gained a lot of attention over the 

past 20 years as a strong oxidising agent [119]. Due to the electron deficiency of ozone, it will 

preferentially attack areas of high electron density (e.g., aromatic and phenolic compounds). 

Therefore, the destruction of lignin is more selective than other areas of degradation in the 

lignocellulosic waste matrix, this being said, it has been found that hemicellulose can undergo mild 

alterations, too [13]. This pre-treatment has also been used in conjunction with acid treatments to 

reduce lignin that is generally acid insoluble [120]. On its own, ozonolysis has been credited as not 

producing any toxic components for downstream processing [13]. Microscopy techniques have 

concluded that delignification as a result of ozone has led to a change in the surface structure of the 

feedstock material, as well as its fibrous nature [64]. Structural alterations due to swelling such as 

pore expansion from the inherent moisture content (discussed earlier) lead to a greater surface area 

for ozone interaction. Due to the instability of ozone in water, hydroxyl radicals are readily formed 

which in their own right act as powerful oxidising agents, accelerating lignin degradation, shown in 

Figure 7 [121]. However, the cost of generating ozone (both equipment and energy requirements) for 

the role diminishes its attractiveness as a primary pre-treatment process [13,121]. This being said, 

there are no temperature constraints required for the process to be effective on the substrate. This is 

a room-temperature pre-treatment procedure that can be carried out in several different reactor 

configurations. Specifically it has been found that fixed bed reactors are the most effective and can be 

easily scaled up at industrial scale [119]. This type of reactor has been found to require an operation 

time of 1–3 h, with lignin decomposition at 34–78% dependant on the biomass waste feedstock used 

[120,121]. 

4.2. Acidic Pre-Treatment 

Although often labelled as hazardous and materials that cause corrosion, acids are chemical 

tools that assist in the solubilisation of the solid components of the lignocellulosic matrix of biomass 

waste [13,84,87,108,122]. There are two major variations in the use of acid as a pre-treatment process. 

The first utilises a high temperature (160–220 °C) with a low acid concentration to encourage the 

hydrolysis of hemicellulose [87,123]. The second variation is the use of low temperature (Ambient—

160 °C) with a high acid concentration [13,84,122,123]. However, it has been discussed that a high 

temperature can cause degradation of the hydrolysed products, specifically operating ring opening 

reactions on sugar derived aromatic molecules [122]. Whereas high acid concentrations can generate 

xylose-based molecules such as furfural from hemicellulose, although a platform molecule for fine 

chemical catalytic upgrading, molecules of this type are seen as inhibitors for enzymatic fermentation 

[18,123,124]. Other degradation products observed are acetic acid, hydroxyl-methyl-furfural and 

various other phenolic compounds [125]. Acetic acid although a product of acid treatment is a 

common acid used for the pre-treatment process itself [125]. A major downside to the use of 

concentrated acid is that cellulose can undergo severe degradation, this infers that dilute acids are 

not only a more selective approach to pre-treatment but are more cost effective for long term use as 

less corrosion should be encountered [126]. Although a very effective method of chemically pre-

treating a feedstock material, the use and recycling of inorganic acids such as HCl, H2SO4, HNO3 and 

H3PO4 can be proven very expensive alternatives, as is the use of corrosion resistant equipment and 

the eventual downstream neutralisation processing (increased further when using concentrated acid) 

[87]. An alternative to inorganic acids is the use of an organic molecule such as the previously 

mentioned acetic acid. Other acids of this family that have been considered are propionic, oxalic, 

formic, maleic, salicylic and fumaric [121,122,126–128]. Organic molecules of this type as seen as 

weaker acids than their inorganic counterparts, this means that they do not dissociate as readily in 

water. This comment means that by nature, organic acids are less harsh on their environment thus 

causing less side reactions and corrosion to the reactor. This being said, the use of less aggressive 

acids means that the overall concentration must be higher to accomplish similar goals [126,128]. 

4.3. Base Pre-Treatment 
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In a similar way as wet oxidation and ozonolysis, alkaline-based pre-treatments of biomass 

waste have been found to encourage the solubilisation of lignin and hemicellulose [129]. This is 

accomplished by the cleavage of ester linkages and alkaline saponification of acetyl esters releasing 

acetate in the absence of high operating temperatures [126,130]. In fact, there have been reports of 

alkaline-based pre-treatments operating in a very broad temperature range between −15 and 210 °C 

[122,126,127,131,132]. The wide temperature range makes the use of a base as pre-treatment tool very 

appealing as less energy can be used to accomplish the task at hand as well as being less caustic than 

highly concentrated acidic alternatives [132]. However, as this form of pre-treatment can occur at 

room temperature, the residence time is negatively impacted upon as a successful process can take 

days-weeks to be completed [7,87]. Other than facilitating saponification reactions, alkaline-based 

treatments have also been found to alter textural properties of the biomass waste material. This is 

where the internal surface area, pore size and cellulosic crystallinity have been altered [83,133]. This 

is emphasized by a swelling effect that takes place due to the addition of alkaline chemicals [134]. 

Examples of alkaline chemicals used range from aqueous solutions of NaOH, KOH, Ca(OH)2, LiOH, 

Urea, NH4OH and Na2CO3 to anhydrous ammonia and hydrazine [7,24,83,121,122,131,132]. 

Previously in this review, the majority of technologies that alter the crystallinity of cellulose cause it 

to diminish and produce more amorphous regions. However, the addition of an alkaline-based pre-

treatment medium to biomass waste has been found to increase the crystallinity by hydrolysing 

glycosidic linkages in the non-ordered (amorphous) regions of cellulose when operating at a high 

temperature (121 °C) [134,135]. 

4.4. Ionic Liquids 

More recent than other pre-treatment process is the use of ionic liquids. This species of chemicals 

is often seen as a greener approach to chemical pre-treatment as ionic liquids can act as efficient 

solvents due to their ability to solubilise crystalline cellulose [121,136]. This can be accomplished 

under very low reaction conditions and can even be used in conjunction with standard laboratory 

solvents to separate the constituent lignocellulosic components [118]. This is due to their inherently 

high polarity of the ionic liquid that means lignin specifically can be easily extracted [137]. While the 

naturally low vapour pressure of the ionic liquid means that they can be recovered relatively easily 

with a solvent [82]. This means that their usability to upgrade biomass to potential fine chemicals and 

or future fuels is an attractive concept. The use of ionic liquids in large-scale pre-treatment operations 

is, however, not currently feasible due to the high initial chemical cost, as well as intensive 

downstream residue cleaning processes. This said, ionic liquids are recyclable and reusable, 

increasing their practicality for further investigation. The structure of ionic liquids are pure salts 

typically based around imidazole as the cationic species, possessing high thermal stabilities (~300 °C) 

and low melting points (below 100 °C) [118,136]. To lower the initial cost of using an ionic liquid, 

there has been some experimentation into diluting the species in water or other organic solvents, this 

has also been beneficial in reducing the viscosity of the suspension [138]. However, by conducting 

the pre-treatment process in this way has been found to diminish the effectivity of the ionic liquid 

and how it solubilises cellulose [139]. Overcoming the lower activity can lead to higher temperatures 

required and longer residence times [82,138]. General temperatures used for a range of biomass 

feedstock materials have been in the range of 90–130 °C [82]. As well as a variable amount of time 

required between 1 and 24 h to reach completion [82,140,141]. 

4.5. Leaching for Extracting Inorganic Components 

During thermochemical downstream processes such as pyrolysis and gasification, the high 

temperatures used lead to the full decomposition of the biomass waste. This often leaves behind 

inorganic components (ash) which have melting points far higher than the carbonaceous matrix of 

the waste, i.e., SiO2, MgO, CaO, P2O5, K2O and Na2O as well as other oxides present in much lower 

concentrations [142,143]. The resulting ash formed from biomass waste can build up and deposit on 

the heat exchanger as well as lead to slagging, fouling and corrosion of the reactor and pipes when 

operating past 800 °C [144]. For the case of fluidised bed reactors, inorganics can build up causing 
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de-fluidisation and bed agglomeration [142,145]. Other elements such as Cl and S can also present 

negative effects to the overall process as well as cause deactivation/poisoning of the heterogeneous 

catalyst if used during fast pyrolysis [146]. High concentrations of alkali metals can promote 

fragmentation-based side reaction pathways during catalytic upgrading such as cellulose ring-

scission [147–149]. Gas and liquid phase by-products generated can be toxic by nature and, therefore, 

a cause for environmental concern [142]. However, low alkali content in the feedstock can facilitate 

depolymerisation of the cellulose component [148,149]. 

Overcoming issues caused by inorganic residues is a necessary requirement for thermochemical 

downstream valorisation [150]. A method to accomplish this is leaching, also referred to as a ‘washing 

pre-treatment’ [151]. This is where the waste material is submerged and agitated in a liquid medium 

such as de-ionised (demineralised) water or acidic species, examples of acids used are acetic, citric, 

hydrochloric and sulphuric acid [142,148,150–156]. Recently, there has also been work carried using 

an aqueous phase bio-oil with a high water content (73.2 wt%) and inherently low pH (2.9) as an 

inorganic leaching medium [151]. During the pre-treatment process the solvent used will enter the 

porous network in a similar manner to other physicochemical and chemical treatments, swelling the 

structure (increasing both pore volume and available surface area) and reducing the cellulose 

crystallinity. This is shown in Figure 8, where blue arrows are the solvent entering and red arrows 

are the leachate leaving the waste particles. As the solvent diffuses through the material, inorganic 

material will be transferred into the leachate [157]. Identical with other processes is that the 

temperature, residence time, solvent used and agitation rate governs the effectivity of the pre-

treatment [158]. Temperature is particularly vital albeit not as high as many of the other pre-treatment 

processes. Often occurring at room or ambient temperatures, leaching has taken place between 15 

and 90 °C [144,151,153,156,159,160]. It is understood that higher temperatures used for leaching can 

enable the removal of SiO2, depending on the bonding strength of the silica to the organic substrate 

[159]. Higher temperature washing pre-treatments in water have also been found to benefit the 

removal of S, K and Cl in both the substrate and produced char from pyrolysis by up to 90% [159–

161]. Care must be taken when operating at high temperatures as the solubilisation of hemicellulose 

can take place, as discussed previously for hot water treatments. Combining size reduction 

techniques with leaching pre-treatments has been found to enhance the removal of rogue elements 

such as Mg, Na, K, P, S and Cl [162]. This is due to a greater surface area to volume ratio for the 

solvent to penetrate the substrate and facilitate removal of inorganic constituents. 

 

Figure 8. The general process of leaching where the solvent enters the waste particle (blue arrow) and 

the leachate (red arrow) leaves the biomass waste particle. Where:   biomass waste particles. 
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5. Other Forms of Lignocellulosic Waste Pre-Treatments 

After considering the more mainstream methods of physical, physicochemical and chemical pre-

treatment, there are several novel techniques which have been explored in recent years that have 

yielded promising results. By exploiting modern technologies such as linear accelerators, high 

intensity radioactive sources and electricity, the waste material can be rapidly modified without the 

need to use additional or tandem methods of pre-treatment, unlike others mentioned previously. 

5.1. Pulsed Electric Field (PEF) 

Pulsed Electric Field (PEF) pre-treatment procedures operate in a similar way to the directed 

ultrasonic probe albeit in a fraction of a second (each pulse lasting for 100–800 s), while operating at 

a field strength between 0.5 and 50 kV cm−1 [163–166]. This novel pre-treatment process is where a 

solid sample is placed between two electrodes, typically spaced ~5 cm apart [166]. Here, a high 

voltage is discharged between the anode and cathode under ambient conditions. The biomass, 

situated between the probes undergoes rapid breakdown as the porous network ruptures [7,163]. The 

electrical discharge has been found to perforate the structure of the substrate. This is where pores are 

dramatically opened or new cavities are formed (similar to explosion treatments highlighted in 

Figure 4) [7]. Extreme perforation of the porous network can allow for follow up pre-treatments such 

as acid hydrolysis to be more effective than when carried out before PEF. However, any of the 

treatments listed previously that utilise the porous structure of the feedstock material could benefit 

from this method of physical treatment. Kumar et al. have found that utilising 2000 pulses at a field 

strength of 10 kV cm-1 can improve the hydrolysis of cellulose for upgrading [51,163,164]. In addition 

to assisting the diffusion of soluble molecules throughout the substrate, this pre-treatment process 

can also facilitate in improved dehydration as the energy put into the material generates a large hot 

spot, reducing moisture content [7]. 

5.2. Electron Beam 

Often used for the irradiation of contaminated materials for sterilisation, radiation processing is 

an interesting method of pre-treatment [167]. By using a linear accelerator (LINAC), a beam of high 

energy electrons (<10 MeV) can be generated [167–169]. The electrons are passed solely along a linear 

beamline in a series of segments which have variable magnetic polarities. Although not as 

penetrating as other forms of radiation such as gamma, the electron beam is able to interact with 

moisture in the substrate, forming radicals in a similar approach to other processes. Similar to 

microwave irradiation, the use of an electron beam can be considered a physicochemical process, 

albeit without the need for pressure and temperature constraints. This is where the beam physically 

alters the material by irradiating it with 10–1000 kGy, causing a chemical transformation 

[126,167,170]. Although this pre-treatment process is often seen purely as a physical approach that 

can improve the accessible surface area of the substrate for biological processing [171]. However, for 

thermochemical processing, the use of an electron beam can cause polymer degradation [172]. This 

means that bond breaking between cellulose and hemicellulose will occur due to an increase in water-

based reactions [167]. This also means that cellulose crystallinity can be decreased, as well as 

alterations in the hemicellulose and lignin matrix due to OH-radicals causing solubilization [168]. 

This method has also been found when in conjunction with base (NaOH) to destabilize the linkages 

between the components [173]. This method of pre-treatment could be an effective tool for large-scale 

use. However, the cost of installing and operating a LINAC is not feasible, additionally the radiation 

exposure must be closely monitored as over irradiating the substrate can lead to full decomposition 

[174]. 

5.3. Gamma Irradiation (γ-Irradiation) 

Another electromagnetic-based method of pre-treatment that utilises highly penetrating 

radiation is the use of gamma rays [170]. A radioactive source such as Co-60 or Cs-137 have been 

considered as a source of high energy photons as they undergo decay [164,167,170]. Ionizing radiation 
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of this type has been found to destabilise the lignocellulosic matrix, this means that instead of the 

individual components breaking down or solubilising as seen by other pre-treatments, the 

encapsulation of cellulose by hemicellulose and lignin is weakened so that the individual components 

are more accessible, or less energy is required to breakdown the material thermochemically. Gamma 

irradiation has also been found to lower the overall degree of polymerisation specifically between 

cellulose and lignin [170]. By not digesting or solubilising an individual part, this method of pre-

treatment on its own could be useful for thermochemical processing such as pyrolysis or gasification. 

In conjunction with other pre-treatment processes, ionization of this type can enhance solubilization, 

disintegration and hydrolysis reactions, this is also useful for the biochemical processing [175]. 

However, similarly with electron beam treatments, if the intensity and residence time is high enough, 

the overall polymeric structure will degrade, and the organic matter will be digested. Khan found 

that the combination of -rays with an oxygen rich environment will generate energetic peroxide-

based radicals within the lignocellulosic waste matrix [176]. These entities are very destructive and 

will cause bond breakages throughout the substrate [170]. The thermal stability of a herbaceous waste 

material such as rapeseed straw when exposed to 1200 kGy has been found to decrease, along with 

the size of the particles, while increasing the overall surface area [164]. The time taken for this kind 

of pre-treatment is dependent on the rate or irradiation, where a mild dose at a high rate can be 

completed in a few minutes and a larger dose can require a few hours at a similar rate [177]. 

6. Conclusions 

A variety of physical, physicochemical and chemical pre-treatments of lignocellulosic waste 

aiming at upgrading them to suitable solid fuels have been discussed and reviewed depending on 

their ability and feasibility when considering a process route for an optimised downstream 

thermochemical and at a lesser extent for biochemical operation. Starting with the reduction of 

inherent moisture and the particle size of lignocellulosic biomass waste, the feedstock can undergo a 

method of physicochemical or chemical treatment to fully optimise them as a solid fuel for 

downstream valorisation for energy production. For most of the review, each technique has been 

considered independent to the next. However, numerous lignocellulosic waste pre-treatment 

technologies can be combined to suit the desired downstream operation (thermochemical or 

biochemical). Specifically, for thermochemical processing such as pyrolysis, gasification and 

combustion, the reduction/solubilisation of an individual component is not desired. These pre-

treatments are better suited for biological upgrading for ethanol production and enzymatic processes. 

Mechanical/physical treatments for particle size alterations and general methods to reduce the level 

of polymerisation such as dilute acids/bases, ozonolysis, microwave irradiation or steam explosion 

could be proven the most effective, whereas stronger acid treatments or CO2 explosions which 

generate acidic species within the porous structure can produce a wide array of platform/transient 

molecules in the liquid bio-oil for potential downstream reformation post pyrolysis. It is clear that for 

the benefit of both the equipment (lack of corrosion and blockages) as well as the full utilisation of 

the bio-derived feedstock, a method of leaching or washing must take place. The absence of inorganic 

constituents from the biomass waste matrix has been found to reduce ash effect and limit alkali metals 

in the produced char. Simple, low cost methods of leaching have been mentioned, where a 

combination with other techniques such as milling and the addition of dilute acid could prove the 

most effective of all for the pre-treatments of waste materials for especially thermochemical 

valorisation. 
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