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Abstract 

BACKGROUND AND PURPOSE Mibefradil (Mib), a T-type Ca2+ channel blocker, has 

been investigated for treating solid tumours. However, its underlying mechanisms are still 

unclear. Here we aimed to investigate the pharmacological aspect of Mib on ORAI store-

operated Ca2+ channels.  

EXPERIMENTAL APPROACH Human ORAI1-3 in tetracycline-regulated pcDNA4/TO 

vectors was transfected into HEK293 T-REx cells with STIM1 stable expression. The ORAI 

currents were recorded by whole-cell and excised-membrane patch clamp. Ca2+ influx or 

release was measured by Fura-PE3/AM. Cell growth and death were monitored by WST-1, 

LDH assays and flow cytometry.  

KEY RESULTS Mib inhibited ORAI1, ORAI2 and ORAI3 currents in a dose-dependent 

manner. The IC50 for ORAI1, ORAI2 and ORAI3 was 52.6 μM, 14.1 μM and 3.8 μM, 

respectively. Outside-out patch demonstrated that perfusion of 10 μM Mib to the extracellular 

surface completely blocked ORAI3 currents and single channel activity evoked by 2-APB. 

Intracellular application of Mib did not alter ORAI3 channel activity. Mib at higher 

concentrations (>50 µM) inhibited Ca2+ release, but had no effect on cytosolic STIM1 

translocation evoked by thapsigargin. The inhibition of Mib on ORAI channels is structure-

related, since other T-type Ca2+ channel blockers with different structures, such as 

ethosuximide and ML218, had no or very small effect on ORAI channels. Moreover, Mib 

inhibited cell proliferation, induced apoptosis and arrested cell cycle progression. 

CONCLUSIONS AND IMPLICATIONS Our results suggest that Mib is a potent 

extracellular ORAI channel blocker, which provides a new pharmacological profile for the 

compound in regulating cell growth and death as an anti-cancer drug.  
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2-APB, 2-aminoethoxydiphenyl borate; CFP, cyan fluorescent protein; CRAC, Ca2+-release 

activated Ca2+ channels; DMSO, dimethyl sulphoxide; ER, endoplasmic reticulum; ESM, 

ethosuximide; EYFP, enhanced yellow fluorescent protein; FCS, fetal calf serum; HAEC, 

human aortic endothelial cells; IP3R, GPCR, G protein-coupled receptors; inositol 

trisphosphate receptor; IV, current-voltage; LDH, lactate dehydrogenase; Mib, mibefradil; 

PTK, protein tyrosine kinase; SERCA, sarco (endo)plasmic reticulum Ca2+-ATPase; SOCE, 

store-operated Ca2+ entry; STIM1, stromal interaction molecule 1; TEA, tetraethylammonium; 

Tet, tetracycline; TIRF, total internal reflection fluorescence; TG, thapsigargin; TRP, 

transient receptor potential; TRPC, transient receptor potential canonical; VGCC, voltage 

gated calcium channel 
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Bullet point summary 

 

What is already known 

 Mibefradil is a T-type channel blocker and has been repurposed as an anti-cancer drug. 

 ORAI proteins are store-operated Ca2+ channel molecules and can regulate cell 

growth and death.  

 

What this study adds 

 We discovered that mibefradil can inhibit ORAI channels. 

 The action mode via extracellular surface and the regulation of proliferation and 

apoptosis. 

 

Clinical significance 

 

 This finding gives a new pharmacological mechanism for the classic T-type channel 

blocker. 

 Inhibition on ORAI channels and store-operated Ca2+ entry could explain its anti-

cancer action.  

 



 

 

This article is protected by copyright. All rights reserved. 

Introduction 

ORAI channels have been regarded as the molecular fingerprints of Ca2+-release activated 

Ca2+ (CRAC) channels, the highly Ca2+ selective store–operated channels (SOCs) (Feske et 

al., 2006; Prakriya et al., 2006). The channels can be activated by the depletion of 

endoplasmic reticulum (ER) Ca2+ stores via the activation of G protein-coupled receptors 

(GPCR) and/or protein tyrosine kinase (PTK) coupled receptors. ORAI channels are widely 

expressed in many cell types and highly expressed in vascular smooth muscle cells (Trebak, 

2012) and proximal tubular cells (Zeng et al., 2017). There are three isoforms of ORAI 

channels, i.e., ORAI1-3. Loss-of-function mutation of ORAI1 caused immune deficiency 

(Feske et al., 2006) and dysfunction of thrombus formation (Bergmeier et al., 2009; Braun et 

al., 2009). Inhibition on ORAI channels enhances diabetic proteinuria (Zeng et al., 2017). 

Therefore, these channels may act as potential therapeutic targets for immune disorders, 

cardiovascular diseases and diabetic complications.  

Mibefradil (Mib), also known as Ro 40-5967 (Bezprozvanny & Tsien, 1995), is a tetralol 

derivative chemically distinct from other calcium channel antagonist. It has been reported as 

a potent T-type voltage-gated calcium channel (VGCC) blocker with a high selectivity over 

L-type VGCC (10- to 15-fold preference for T-type over L-type) (Martin et al., 2000; Mishra 

& Hermsmeyer, 1994). It blocks all three subtypes of T-type channel, i.e., Cav3.1, Cav3.2, 

and Cav3.3, with an IC50 of 5.8-7.2 µM (Alexander et al., 2017). Mib was initially developed 

as a cardiovascular drug and used in clinic with the trade name Posicor® to treat hypertension 

and angina (Lee et al., 2002), but withdrawn from the market by Hoffmann-La Roche in 1998 

because of drug interactions with liver enzymes (SoRelle, 1998). Recently, Mib has been 

repurposed from an abandoned antihypertensive to a targeted solid tumour treatment, and it 

has been rescued from drug-drug interactions by using short-term dose exposure (Holdhoff et 

al., 2017). Mib is currently in a phase Ib clinical trial with the National Cancer Institute Adult 

Brain Tumour Consortium (Holdhoff et al., 2017). The mechanism of anti-cancer therapy 

was speculated via the blockage of Ca2+ influx through T-type channels, but it is still unclear 

how the T-type channel in non-excitable cancer cells can be activated and thus exerted its 

anti-tumour effects.  

Since ORAI channels are regulated by GPCR via many hormones and growth factors and 

VGCC may have a functional interaction with ORAI/STIM1 (Wang et al., 2010), and 

additionally Ca2+ influx via store-operated channels is critical for cell proliferation and 

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=977
http://www.guidetopharmacology.org/GRAC/ReceptorFamiliesForward?type=GPCR
http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=80
http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=80
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apoptosis (Abdullaev et al., 2008), we therefore hypothesize that the T-type channel blocker 

Mib may exert its effect beyond acting on T-type channels. Here we examined the effect of 

Mib on ORAI channels using inducible HEK293 T-REx cells overexpressed with ORAIs and 

STIM1, and found that Mib had a potent inhibition on ORAI channels.  

Methods 

Cell culture and transfection 

Human ORAIs (GenBank accession number: ORAI1, NM_032790; ORAI2, NM_032831; 

ORAI3, NM_152288) in pcDNA4/TO tetracycline-regulatory vector tagged with fluorescent 

report genes (mCherry-ORAI1, mCherry-ORAI2 and monomeric cyan fluorescent protein 

mCFP)-ORAI3 were transfected into HEK-293 T-REx cells (RRID: CVCL_D585, 

Invitrogen, UK). The human STIM1 (accession number: NM_001277961) tagged with 

enhanced yellow fluorescent protein at the C-terminus (STIM1-EYFP) was stably co-

expressed in the cells with ORAIs. The detail procedures for transfection were described 

previously (Zeng et al., 2012). The cells with stable expression of STIM1-EYFP and 

inducible ORAIs were used in the study. The functional expression of ORAIs and STIM1 in 

the transfected cells have been characterized in our previous reports (Daskoulidou et al., 

2015; Zeng et al., 2014; Zeng et al., 2017). The cells were seeded onto coverslips in culture 

dishes and the ORAI channel expression was induced by 1 µg∙mL-1 tetracycline for 24-72 h 

before electrophysiological recording or Ca2+ imaging. The non-induced cells without 

addition of tetracycline or non-transfected HEK-293 T-REx cells were used as controls. 

HEK-293 T-REx cells were grown in DMEM-F12 medium (Invitrogen, UK) containing 10% 

fetal calf serum (FCS), 100 units∙mL-1 penicillin and 100 µg∙mL-1 streptomycin. Cells were 

maintained at 37°C under 95% air and 5% CO2 and seeded on coverslips prior to 

experiments. Human aortic endothelial cells (HAECs) were purchased from PromoCell 

(Heidelberg, Germany), and endothelial cells EA.hy926, a permanent cell line derived from 

HUVECs, were purchased from American Type Culture Collection (ATCC) (ATCC Cat# 

CRL-2922, RRID: CVCL_3901) (Middlesex, UK). Endothelial cells were cultured in 

endothelial cell medium (PromoCell, Germany) supplemented with 2 % FCS, 0.1 ng/ml 

recombinant human epidermal growth factor, and 1 ng∙mL-1 basic fibroblast growth factor. 

HAECs at passages 2–3 were used for the experiment. The human proximal tubular cell line 

(HK-2) was purchased from LGC standards (ATCC Cat#  CRL-2190, RRID: CVCL_0302, 

UK). HK-2 cells were maintained in DMEM/F-12 medium with 5 mM glucose and 
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supplemented with 10% FCS, 10 mM HEPES and antibiotics. All the cultured cells were 

maintained at 37 °C under 95 % air and 5 % CO2.  

 

 Electrophysiology 

The procedure for whole-cell clamp is similar to our previous reports (Xu et al., 2012; Zeng 

et al., 2014; Zeng et al., 2017). Briefly, electrical signal was amplified with an Axopatch 

200B patch clamp amplifier and controlled with pClamp software 10. A 1-s ramp voltage 

protocol from –100 mV to +100 mV was applied at a frequency of 0.2 Hz from a holding 

potential of 0 mV. Signals were sampled at 3 kHz and filtered at 1 kHz. The glass 

microelectrode with a resistance of 3-5 MΩ was used. The pipette solution contained (in mM) 

145 Cs-methanesulfonate, 10 BAPTA, 8 MgCl2, and 10 HEPES (pH 7.2 adjusted with 

CsOH). Same pipette solution was used for outside-out patches. The standard bath solution 

contained (mM): 130 NaCl, 5 KCl, 8 D-glucose, 10 HEPES, 1.2 MgCl2, and 1.5 CaCl2. The 

pH was adjusted to 7.4 with NaOH. Some experiment was performed using divalent cation 

free solutions (mM): 150 NaCl, 10 HEPES, 10 D-glucose, 10 EDTA, and 10 

tetraethylammonium chloride (TEA-Cl). For single channel recordings, the current was 

sampled at 10 kHz. The experiment was performed at room temperature (25 C). 

 

 Ca2+ measurement and live cell imaging 

Cells were preincubated with 2 µM Fura-PE3/AM at 37°C for 30 min in Ca2+-free bath 

solution (mM):130 NaCl, 5 KCl, 1.2 MgCl2, 10 HEPES, 8 D-glucose, and 0.4 EGTA, 

followed by a 20-min wash period in the standard bath solution at room temperature. The 

ratio of Ca2+ dye fluorescence (F340/F380) was measured using FlexStation 3 (Molecular 

Device, USA). Control groups were set in parallel in the 96-well plate. For STIM1 

translocation experiment, the procedure was similar to our previous report (Zeng et al., 2012). 

The stably transfected STIM1-EYFP cells were seeded on 13-mm glass coverslips and 

cultured for 24 - 48 h. Live cell images for EYFP fluorescence were captured using the 

microscope equipped with a Nikon Plan Fluor ×100/1.30 oil objective. Total internal 

reflection fluorescence (TIRF) microscopy was performed in some experiments using a 

Nikon CFI Apochromat TIRF objective ( × 100, 1.49 NA) and sCMOS camera (ORCA-

Flash4.0 V2, Hamamatsu, Japan) as we describe previously (Zeng et al., 2017). 
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Colocalization analysis was performed with NIS-Elements AR v4.30 (Nikon). The images 

were analyzed with the NIS-Elements software (Version 3.2, Nikon, Tokyo, Japan). All the 

experiments were performed at room temperature. 

 

Cell proliferation and cell death assays 

Cell proliferation was determined using a water-soluble tetrazolium-1 (WST-1) assay in 

which tetrazolium salts are cleaved by mitochondrial dehydrogenase to form formazan in 

viable cells. For necrotic cell death, the activity of lactate dehydrogenase (LDH) in the 

culture medium that released from the cytosol was determined using a Cytotoxicity Detection 

Kit. The procedures for WST-1 and LDH assays are similar to our previous report (Xu et al., 

2008). The absorbance for WST-1 assay and LDH assay were measured using a 

spectrophotometer.  

 

Fluorescence activated cell sorting (FACS) 

The HK-2 cells were seeded in a 6-cm petri dish at a confluence of 5000 cells/mL and 

incubated in a humidified atmosphere of 5% CO2 and 95% air at 37 °C for 24 hours. The 

cells were the pre-treated with different concentrations of Mib for 24-hour incubation, then 

trypsinised with 0.25% trypsin-EDTA and centrifuged twice for washout with PBS in FACS 

tubes at 300 g for 5 minutes. The propidium iodide (10 μg/mL) was added to all the tubes and 

incubated for 15 minutes before mounting for FACS detection. The cell cycle was analysed 

using CellQuest software. 

 

 Chemicals and reagents 

All general salts and reagents were from Sigma (UK). Mibefradil dihydrochloride hydrate, 2-

aminoethoxydiphenyl borate (2-APB), tetracycline, thapsigargin, ethosuximide and WST-1 

and LDH assay kits were purchased from Sigma-Aldrich. ML218 was purchased from 

Alomone Labs (Jerusalem, Israel). Fura-PE3/AM was purchased from Invitrogen (UK). Fura-
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PE3/AM (1 mM) and 2-APB (100 mM) were made up as stock solutions in 100% dimethyl 

sulphoxide (DMSO). Mib was prepared as 10 mM stock solution in H2O.  

 

Statistics 

Data and statistical analysis comply with the recommendations on experimental design and 

analysis in pharmacology (Curtis et al., 2015). Data are expressed as mean ± SEM. In this 

study, “n” refers to independent experiments where recombinant channel expression was 

induced by the addition of tetracycline for 24-72 h to cells maintained on separate coverslips. 

We consider electrophysiological recordings derived from these separate dishes to constitute 

independent experiments, as is typical in ion channel experiments. The experiments are not 

blinded and randomized, but controlled studies. Experimenter treated the cells with 

tetracycline to induce gene expression as a positive transfected group, and cells without 

treatment as a negative control. Self-controlled design was used to test drug effect through 

comparison of before and after drug applications. The unblinded experimental data were 

analysed in an identical manner for all conditions to eliminate possible operator bias. Mean 

data were compared using paired t test for the results before and after treatment without 

blinding experimental design, or the ANOVA Bonferroni's post-hoc analysis for comparing 

more than two groups with significance indicated if P<0.05. For all ANOVAs, post hoc tests 

were only applied when F achieved and there was no significant variance inhomogeneity. 

 

Nomenclature of targets and ligands 

Key protein targets and ligands in this article are hyperlinked to corresponding entries in 

http://www.guidetopharmacology.org, the common portal for data from the IUPHAR/BPS 

Guide to PHARMACOLOGY (Harding et al., 2018), and are permanently archived in the 

Concise Guide to PHARMACOLOGY 2017/18 (Alexander et al., 2017). 

 

Results 

ORAI channels inhibited by Mib  
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The expression of human ORAI1-3 tagged with mCherry or CFP and STIM1-EYFP in HEK-

293 T-REx cells was induced by tetracycline and confirmed by their plasma membrane 

localization as described previously (Daskoulidou et al., 2015; Zeng et al., 2017; Zeng et al., 

2012). The whole cell current was recorded by patch clamp after 24-72 hours induction of 

gene expression. The currents of ORAI1 and ORAI2 were activated by thapsigargin (TG, 1 

µM) with an inwardly rectifying IV curve (Figure 1), which is similar to our previous reports 

(Zeng et al., 2014; Zeng et al., 2017). The TG-evoked currents achieved maximum within ~5 

min after the formation of whole-cell patch configuration (Figure 1A-B). Mib inhibited 

ORAI1 and ORAI2 currents in a concentration dependent manner with an IC50 of 52.6 µM 

and 14.1 µM, respectively (Figure 1C). For ORAI3 channels, 2-APB (100 µM) was used as a 

channel activator and the IC50 of Mib was 3.8 µM (Figure 1D-E), suggesting that Mib is more 

potent for ORAI3. In the non-induced HEK-293 T-REx cells, Mib had no significant effect 

on the endogenous current (Figure 1F).  

In order to explore the possibility of class effect due to T-type channel inhibition, the non-

selective T-type channel blockers ML218 and ethosuximide (ESM) with different backbone 

of chemical structures were examined (Figure 2A). ML218 at the concentrations of 1 and 10 

µM, which can nearly abolish the T-type channel current (Xiang et al., 2011), had no 

significant effects on ORAI3 channels (Figure 2B). ESM has an EC50 of 0.6 mM for T-type 

channel (Gomora et al., 2001), but the concentration of ESM at 1 mM only showed a small 

inhibition (Figure 2C-D), suggesting that both compounds are insensitive to ORAI3 channels. 

Therefore, the inhibition on ORAI channels by Mib should be chemical structure specific, 

rather than the indirect class effect of T-type channel inhibition. 

Extracellular effects of Mib on ORAI3 

The action site for Mib was determined for ORAI3 channel. The higher concentrations of 

Mib (100 µM) were included in the pipette solution to see whether the activation of ORAI3 

current can be prevented. After whole cell configuration was formed for 5 min, 2-APB (100 

µM) was added in the bath solution. We found that intracellular application of Mib failed to 

prevent the ORAI3 current evoked by 2-APB, which could be repeatedly activated by 2-APB 

after washout (Figure 3A-C), suggesting that the action site of Mib on ORAI3 channel is 

located in the external surface of the transmembrane domains. 
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To further confirm their extracellular effects, outside-out patch was performed on the cells 

overexpressing ORAI3/STIM1. Mib at 10 µM significantly inhibited the ORAI3 current in 

the outside-out patches (Figure 3D-F).  

Single channel activity of ORAI3 was inhibited by Mib 

Outside-out membrane patches were performed to explore the effect of Mib on ORAI3 

channel activity. Unitary events were detected after perfusion with 2-APB (100 µM) in the 

Tet-induced ORAI3-STIM1 cells. An example time series plot for single channel open 

probability was dramatically increased by 2-APB (Figure 4A). The slope conductance for 

ORAI3 channel evoked by 2-APB was calculated based on the average single channel current 

amplitude at each voltage step and the value was 71.0 ± 1.4 pS (n = 11) (Figure 4B). The 

amplitude histograms show that the unitary current events of ORAI3 evoked by 2-APB were 

nearly abolished by Mib (Figure 4C), suggesting the direct inhibition of Mib on ORAI3 

channels.  

No effect of Mib on STIM1 translocation  

The cytosolic STIM1 clustering and movement onto subplasma membrane is a critical 

process for ORAI and STIM1 interaction and ORAI channel opening, which can act as a new 

target for ORAI channel modulators (Zeng et al., 2014; Zeng et al., 2012). Therefore we 

examined the effect of Mib on STIM1 movement. The subplasmalemmal translocation and 

clustering of STIM1 was induced by ER Ca2+ store depletion with thapsigargin (TG) in the 

HEK293 cells stably expressing STIM1 tagged with EYFP and determined by a TIRF 

microscopy in comparison to epi-fluorescence images. Pre-treatment with Mib did not affect 

STIM1-EYFP clustering, cytosolic translocation, and co-localization with ORAI channels 

near subplasmalemmal membrane (Figure 5, also see Supporting Information Figure 1), 

suggesting that Mib did not affect the STIM1 clustering and translocation in the cells.  

Effects of Mib on ER Ca2+ release and SOCE  

The effects of Mib on Ca2+ release were examined in the EA.hy926 cells, HK-2 cells and 

HEK-293 T-REx cells. The TG-induced ER Ca2+ release was significantly inhibited by high 

concentrations of Mib (100 µM) in EA.hy926 cells and HK-2 cells (Figure 6A-D). Similar 

inhibitory effect on Ca2+ release was seen in HEK-293 T-REx cells; however, lower 

concentrations of Mib (0.1-10 µM) had no significant effect on Ca2+ release, and there were 
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no significant effects on basal intracellular Ca2+ level (Figure 6E-F). The inhibitory effect of 

Mib on ER Ca2+ release seemed to be unrelated to the ORAI channels, because transfection 

of ORAI siRNAs significantly reduced the SOCE, but had no influence on ER Ca2+ release 

(Figure 6G-H). Similar siRNA result was observed in the HK-2 cells as we described 

previously (Zeng et al., 2017). These results suggest that other underlying mechanisms could 

be involved in the inhibition of ER Ca2+ release by Mib. As expected, Mib nearly abolished 

the SOCE in both EA.hy926 cells and HK-2 cells (Figure 6A-D). 

Effect of Mib on cell proliferation and cell death 

Anti-tumour effect has been demonstrated for Mib (Haverstick et al., 2000; Santoni et al., 

2012) therefore we tested the effects of Mib on cell proliferation and cell death using in vitro 

cell models. Mib significantly inhibited the proliferation of immortalized cell line (HK-2 and 

EA.hy926 cells) and the primary cultured normal human aortic endothelial cells (HAEC). 

The EC50 of anti-proliferation for HK-2, EA.hy926, and HAEC were 28.2 µM, 5.9 µM, and 

14.2 µM, respectively (Figure 7A-B), suggesting that the inhibition of proliferation in 

endothelial cells is more sensitive to Mib than that in HK-2 cells, which could be due to 

higher expression level of ORAIs in endothelial cells (Supporting Information Figure 2). Mib 

also significantly induced cell death as assayed by LDH release (Figure 7C). The effect of 

Mib on cell cycle was examined using flow cytometry. Lower concentrations of Mib (1, 5 

µM) increased the percentage of cells at G0/G1, but at high concentrations decreased the 

percentage of cells at S phase and G2/M phase (Figure 7D-G).  

 

Discussion 

In this study we have found that ORAI channels are blocked by Mib. The blocking effect is 

concentration-dependent and reversible. The action site is located on the extracellular cell 

surface. High concentrations of Mib not only reduce SOCE but also inhibit Ca2+ release from 

ER. Mib significantly inhibits cell proliferation and promotes cell apoptosis by arresting the 

progression of cell cycle from G1/G0 to S phase, and to G2/M phase. These findings provide 

a new pharmacological profile for Mib, which is commonly used as T-type Ca2+ channel 

blocker and has recently been repurposed as an anti-cancer drug. 
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ORAI channels are main components of SOCE in the endothelial cells and HK-2 cells, which 

has been demonstrated by gene silencing using ORAI siRNAs in this study and our previous 

report (Zeng et al., 2017). Mib at high concentrations nearly abolish the SOCE in the two cell 

types. The effect on ORAI subtypes has been compared using an inducible overexpressing 

system, and Mib is more sensitive to ORAI3 than ORAI1 and ORAI2. The EC50 for ORAI 

channel blockage is similar to the EC50 for blocking T-type Ca2+ channels (Alexander et al., 

2017), suggesting the inhibition on SOCE is one of the main mechanisms of action for the 

compound. Mib seems to be more sensitive to the overexpressed T-type Ca2+ channels than 

the native T-type Ca2+ channels, such as T channel isoforms α1G, α1H, and α1I isoforms with 

an EC50 around 1 µM (Martin et al., 2000). Since inhibition of SOCE or ORAI channels has 

been demonstrated as anti-proliferative in several types of normal and cancer cells (Konig et 

al., 2013; Umemura et al., 2014; Vaeth et al., 2017), the anti-cancer effect of Mib could be 

explained at least in part due to the blockage of ORAI channels, rather than the sole blockage 

on T-type Ca2+ channel, although the T-type channels are highly expressed in some types of 

cancer and have been regarded as the potential therapeutic target for regulating cancer cell 

growth and death (Zhang et al., 2017).  

We have explored the action site of Mib using outside-out patch and whole cell patch with 

intracellular drug application. Mib inhibits the ORAI3 current and abolishes the single 

channel open probability extracellularly, suggesting that ORAI channel shows a druggable 

target on the external surface. The slope conductance of 2-APB-activated ORAI3 channel 

with 71 pS in this study is much bigger than the chord conductance estimated at a holding 

potential of -100 mV by noise analysis method in divalent-free solution (Yamashita & 

Prakriya, 2014). This discrepancy could be due to the differences of bath solution and/or 2-

APB concentration. However, direct single channel event detection using step voltage 

protocol in this study is much more clear and accurate than the noise analysis method. In 

addition, Mib has no effect on cytosolic STIM1 clustering and movement, suggesting the 

blockage by Mib is on the channel protein itself. The ER Ca2+ release is an initial step for 

activate ORAI channels or causes SOCE, Mib at lower concentrations (<10 µM) has no 

significant effect on ER Ca2+ release, which is consistent with the report on calcium transient 

and spontaneous rhythmic calcium oscillations (Lowie et al., 2011); however, the inhibition 

on Ca2+ release by Mib was significant at high concentrations, which could be a mechanism 

of its cytotoxicity. We have also analysed the basal intracellular Ca2+ level and Mib seems to 
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have no significant effects on the basal Ca2+ level in our acute in vitro Ca2+ detection using 

Flexstation.  

The effect of Mib on cell proliferation and death has been investigated in this study. Mib 

potently inhibits the proliferation of vascular endothelial cells (human aortic endothelial cells 

and EA.hy926 cells). This result is accordant with the reports on calf pulmonary artery 

endothelial cells (Nilius et al., 1997), rat microvascular endothelial cells (Manolopoulos et al., 

2000), human pulmonary smooth muscle cells (Rodman et al., 2005) and some cell lines 

(U87, N1E-115 and COS7) (Panner & Wurster, 2006). ORAI channels are highly expressed 

in human proximal tubular cells and are involved in the protein reabsorption (Zeng et al., 

2017), while T-type Ca2+ channel could play a role in calcium reabsorption (Leclerc et al., 

2004). We found that high concentrations of Mib (>25 µM) cause apoptosis of proximal 

tubular cells, suggesting that Mib may impair kidney function. We have also observed the 

effect of Mib on cell cycle. Mib treatment increases the HK-2 cell number at G0/G1 phase 

and decreases the cell number in G2/M, suggesting the cell cycle progressing from G1 to S, 

and G2 to M phase is arrested. This finding is similar to the reports on ovarian cancer cells 

(Dziegielewska et al., 2016) and Jurkat cells (Huang et al., 2015), which could be related to 

Ca2+ signalling in the initiation of DNA synthesis (G1 to S phase) and the mitosis (G2 to M 

phase) (Panner & Wurster, 2006). However, high concentrations of Mib (i.e., more than 25 

µM) could show non-specific cytotoxicity by stimulating apoptosis and reducing the cell 

population at G0/G1 phase, since more specific tools to inhibit Ca2+ permeable channels, 

such as siRNAs, mainly increase the cell population at G2/M phase, rather than reduce the 

cell numbers at G2/M phase (Cai et al., 2009; Zeng et al., 2013). The significant inhibition on 

Ca2+ release by high concentrations of Mib should impair intracellular Ca2+ dynamics and 

thus change cell viability. Several studies have demonstrated the critical roles of ORAIs and 

STIMs in apoptosis and cancer migration and metastasis (Faouzi et al., 2011; Jardin & 

Rosado, 2016; Tanwar & Motiani, 2018) and we have shown the potent inhibition on ORAI 

channels by Mib in this study, for example, the EC50 of 3.8 µM for ORAI3, therefore it is 

reasonable to speculate that the anti-tumour effect of Mib could also be mediated by the 

inhibition on ORAI channels when high dosage is used for cancer therapy (150-350 mg/day, 

ClinicalTrials ID: NCT02202993) and the maximum plasma concentration may achieve 

several micrograms per litre (Holdhoff et al., 2017; Welker et al., 1998). 
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Apart from the inhibition on ORAI channels, Mib also inhibits K+ channels, such as KV10.1 

channel (Gomez-Lagunas et al., 2017), ATP-activated K+ channels (Gomora et al., 1999), and 

two P domain potassium channels (Czirjak & Enyedi, 2006); and Ca2+-activated Cl- channel 

(Nilius et al., 1997). It has also been demonstrated to activate TRPM7, but the effective 

concentration is much higher with an EC50 of 53 µM (Schafer et al., 2016). Mib has no 

effects on TRPM3, TRPV1 and TRPA1, suggesting Mib has some specificity for ion 

channels. We have also examined other T-channel blockers, such as ML218 and 

ethosuximide, with different chemical structures. The two compounds have no or small effect 

on ORAI channels, suggesting the blocking effect of Mib on ORAI channels is specific for its 

chemical structure, but unrelated to class effect of T-type Ca2+ channel blockage.  

In conclusion, our data suggest a new pharmacological profile for Mib, which acts as a pan 

inhibitor for ORAI channels. The specific action site for Mib on ORAI channels is accessible 

via an extracellular surface, which could be developed as a new target for compound 

screening or future potential anti-proliferative drug development.  
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Figure 1 Mibefradil (Mib) inhibits ORAI channels. (A) ORAI1 current in the stable cells 

overexpressing with mCherry-ORAI1/STIM1-EYFP in the presence of TG (1 µM) in the 

pipette solution and the effect of Mib (10 µM). (B) ORAI2 current in the cells overexpressing 

mCherry-ORAI2/STIM1-EYFP in the presence of TG (1 µM) and the effect of Mib (10 µM). 

(C) Concentration-response curves for Mib on the ORAI1 and ORAI2 with an EC50 of 52.6 

µM and 14.1 µM, respectively. (D) ORAI3 current in the stable cells overexpressing CFP-

ORAI3/STIM1-EYFP was induced by 2-APB (100 µM). Mib (10 µM) inhibited the ORAI3 

current. (E) Concentration-response curve for Mib on ORAI3 channel with an EC50 of 3.8 

µM. (F) Cells without induction of gene expression by tetracycline (Control). The IV curves 

were shown as insets after leak subtraction. The n numbers are shown in the parentheses.  
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Figure 2 Effect of T-type Ca2+ channel blocker ML218 and ethosuximide. (A) Structure of 

mibefradil, ML218 and ethosuximide (ESM). (B) Effect of ML218 on ORAI3 current. (C) 

Example of ESM (1 mM) on ORAI3 channel. (D) Normalized data showing the effects of 

ML218 and ESM on ORAI3 (n = 5 for each ML218 treated group; and n = 5 for 1 mM ESM-

treated group, *P < 0.05). 
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Figure 3 Extracellular effect of Mib on ORAI3 channels. (A) Whole-cell patch was recorded 

in the ORAI3 cells using pipette solution containing 100 µM Mib. 2-APB (100 µM) was 

added in the bath solution. (B) Example IV curves for 2-APB-activated ORAI3 current with 

Mib [Mib (in)] or without Mib (without Mib) in the pipette solution. (C) Mean data for 2-

APB activated current recorded with pipette solution containing Mib or without Mib (Control) 

(n = 11 for each group). (D) Example of outside-out patches showing the effect of Mib (10 

µM). (E) IV curve for outside-out patch in (D). (F) Normalized mean data for the outside-out 

patch current inhibited by Mib (10 µM) (n = 5, *P < 0.05).  

 



 

 

This article is protected by copyright. All rights reserved. 

 

Figure 4 Single channel activity of ORAI3 and the effect of Mib. (A) Original outside-out 

patch recording showing single channel activity of ORAI3 was induced by 2-APB (100 µM) 

in Tet-induced ORAI3/STIM1 cells. Time-series plot for single channel open probability 

(NPo), showing the activation by bath-applied 2-APB. (B) Mean unitary current sizes for 2-

APB-evoked single channel events plotted against voltage. The mean slope conductance, 

fitted by straight lines, was 71.0 ± 1.4 pS (n = 11 cells). (C) Example outside-out patch traces 

and amplitude histograms for control (no 2-APB), 2-APB (100 µM) and 2-APB (100 µM) 

plus Mib (10 µM) groups.  
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Figure 5 STIM1 subplasmalemmal translocation and STIM1/ORAI1 clustering after Ca2+ 

store depletion in the stable transfected STIM1–EYFP/CFP-ORAI1 cells and the effect of 

Mib. (A) TG (1 μM) induced STIM1/ORAI1 puncta formation at the plasma membrane. Both 

TIRF and EPI-F images were sampled and the subplasmalemmal STIM1 clusters (puncta) 

and co-localization with ORAI1 were analysed. The boxed areas were enlarged in the 

corresponding panels. (B) Cells pretreated with Mib (50 μM) or without Mib (Control) and 

then added with TG (1 μM). The data are pooled from 5 independent experiments and ten 

images for each group were analysed (n = 10; NS, non-significant). 
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Figure 6 ER Ca2+ release and SOCE inhibited by Mib and silencing of SOCE by ORAI 

siRNAs. (A) Vascular endothelial cells EA.hy926 were loaded with Fura-PE3/AM and the 

ER Ca2+ release was induced by 1 μM thapsigargin (TG). The fluorescence at a ratio of 

F340/380 was monitored in the group with or without pretreatment with Mib. The SOCE was 

evoked by refilling 1.5 mM Ca2+ in the bath solution. (B) Mean data was measured at the 

peak of Ca2+ release or peak of SOCE (n = 8). (C) ER Ca2+ release and SOCE in HK-2 cells. 

(D) Mean data for HK-2 cells (n = 8). (E) Effects of Mib at different concentrations on ER 

Ca2+ release in HEK-293 T-REx cells. (F) Mean data for the effect on Ca2+ release and basal 

Ca2+ level (n = 8). (G) After transfection with ORAI siRNAs (siORAI1, siORAI2 and 

siORAI3) and the control report fluorescence protein (DsRed) for 48 hours, ER Ca2+ release 

and SOCE were detected by FlexStation 3. (H) Mean ± SEM data for the groups of control 

(sham transfection); a red fluorescent protein report gene (DsRed); and Orai1-3 siRNAs (n = 

8 for each group). *P < 0.05. 

 



 

 

This article is protected by copyright. All rights reserved. 

 

 

Figure 7 Effect of Mib on cell proliferation and cell death. The cell proliferation was 

monitored by WST-1 assay and the absorbance was measured at a wavelength of 450 nm 

with a reference at 650 nm. (A) Effect of Mib on the cell proliferation of HK-2 cells and 

EA.hy926 cells (n = 8 for each group). (B) Effect on human aortic endothelial cells (HAEC) 

(n = 8). (C) HK-2 cell death was detected by lactate dehydrogenase (LDH) release assay (n = 

8). (D-F) Effect of Mib on cell cycle. Cells were stained with propidium iodide and the 

percentage of propidium iodide -labelled cells at different cell cycle stage was determined by 

FACS analysis. The representative FACS histogram for vehicle (D, Control) and Mib (5, 25 

μM) for (E-F). (G) Mean ± SEM data from independent experiments (n = 6). * P<0.05 

comparing with the control group. 

 




