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Abstract

The M49 group, residing outside the virial radius of the Virgo cluster, is falling onto the cluster from the south. We
report results from deep XMM-Newton mosaic observations of M49. Its hot gas temperature is 0.8 keV at the group
center and rises to 1.5 keV beyond the brightest group galaxy (BGG). The group gas extends to radii of ∼300 kpc
to the north and south. The observations reveal a cold front ∼20 kpc north of the BGG center and an X-ray-bright
stripped tail 70 kpc long and 10 kpc wide to the southwest of the BGG. We argue that the atmosphere of the
infalling group was slowed by its encounter with the Virgo cluster gas, causing the BGG to move forward
subsonically relative to the group gas. We measure declining temperature and metallicity gradients along the
stripped tail. The tail gas can be traced back to the cooler and enriched gas uplifted from the BGG center by
buoyant bubbles, implying that active galactic nucleus outbursts may have intensified the stripping process. We
extrapolate to a virial radius of 740 kpc and derive a virial mass of 4.6×1013Me for the M49 group. Its group
atmosphere appears truncated and deficient when compared with isolated galaxy groups of similar temperatures. If
M49 is on its first infall to Virgo, the infall region of a cluster could have profound impacts on galaxies and groups
that are being accreted onto galaxy clusters. Alternatively, M49 may have already passed through Virgo once.
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1. Introduction

Hierarchical structure formation is the cornerstone of modern
cosmology. As the most massive virialized systems in the
universe, clusters of galaxies formed late, with the vast bulk of
their dark matter, hot gas, and member galaxies assembled
from z∼0.5 (e.g., Boylan-Kolchin et al. 2009). Galaxy groups
are the building blocks of galaxy clusters, contributing 70% of
their mass (Berrier et al. 2009). Groups are continually being
accreted onto clusters through a web-like network of
filamentary structures. The radius that encloses a density
contrast of 200× the critical density of the universe, R200,
which is approximately the virial radius, has often been used as
the boundary of galaxy clusters. Recently, the splashback
radius, defined as the first apocenter radius of galaxy orbits
following their first pericenter passage, was proposed as a more
physical extent of the cluster halo. Cosmological simulations
suggest that the splashback radius is approximately 1.5× the
virial radius (More et al. 2015). We refer to the volume outside
the virial radius, but within the splashback radius, as the
cluster’s infall region. The infall region provides unique
distinguishing power for models of the hierarchical assembly
of dark matter halos and the growth of galaxy clusters. Due to
its low surface brightness, the infall region has rarely been
explored in the X-ray.

The intracluster medium (ICM) is a hot and ionized plasma
radiating in X-rays via bremsstrahlung and constituting 90% of
the baryonic mass in galaxy clusters. The ICM can be stirred by
infalling galaxies and groups, giving rise to a wealth of
astrophysical processes. Surface brightness edges in the ICM
may form in the upstream region of infalling subclusters,
separating gas of different entropies at so-called “cold fronts”
(e.g., A3667—Vikhlinin et al. 2001; NGC1404—Su et al.
2017a, 2017b). Bow shocks are expected in supersonic infall,
creating a shock-heated ICM. A highly turbulent ICM is
expected to form in the wake behind the infalling object
(Roediger et al. 2015; Kraft et al. 2017). High-metallicity gas
can be removed from infalling subclusters, due to the
dynamical pressure of the ICM, enriching the ICM over a
large span of radii (Su et al. 2014). Conversely, the ICM has
long been known to play a critical role in the evolution of
member galaxies (e.g., Oemler 1974; Butcher & Oemler 1978;
Dressler 1980). In contrast to their counterparts in the field,
cluster galaxies have quenched star formation. They also have
less molecular gas and more disrupted morphologies. Addi-
tionally, as most galaxies reside in groups, the intragroup
medium of infalling groups may affect the galaxy properties
before the galaxy interacts with the rich cluster environment
directly (often called preprocessing; Zabludoff et al. 1996;
Fujita 2004; Bianconi et al. 2018).
In the ΛCDM paradigm, the late assembly of clusters implies

that there is at least one infalling galaxy group residing in the
outskirts of each galaxy cluster (Haines et al. 2018). Dedicated
X-ray observations have revealed a number of infalling groups

The Astronomical Journal, 158:6 (13pp), 2019 July https://doi.org/10.3847/1538-3881/ab1d51
© 2019. The American Astronomical Society.

Original content from this work may be used under the terms
of the Creative Commons Attribution 3.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

1

https://orcid.org/0000-0002-0765-0511
https://orcid.org/0000-0002-0765-0511
https://orcid.org/0000-0002-0765-0511
https://orcid.org/0000-0003-0297-4493
https://orcid.org/0000-0003-0297-4493
https://orcid.org/0000-0003-0297-4493
https://orcid.org/0000-0002-0543-7143
https://orcid.org/0000-0002-0543-7143
https://orcid.org/0000-0002-0543-7143
https://orcid.org/0000-0002-9478-1682
https://orcid.org/0000-0002-9478-1682
https://orcid.org/0000-0002-9478-1682
mailto:ysu262@uky.edu
https://doi.org/10.3847/1538-3881/ab1d51
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-3881/ab1d51&domain=pdf&date_stamp=2019-06-07
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-3881/ab1d51&domain=pdf&date_stamp=2019-06-07
http://creativecommons.org/licenses/by/3.0/


such as the southern group in Hydra A (De Grandi et al. 2016),
the northeastern group in A2142 (Eckert et al. 2014, 2017),
NGC4389 in Coma (Neumann et al. 2003), and the southern
group in A85 (Ichinohe et al. 2015). These studies have greatly
enhanced our knowledge of the astrophysical processes in the
dynamically active cluster outskirts, i.e., shocks, bulk motion,
turbulence, ram pressure stripping, and cluster plasma physics.
However, none of the above examples are in the infall region of
galaxy clusters. In this paper, we present our study of M49
(NGC4472), a galaxy group residing beyond the virial radius
of a galaxy cluster, Virgo, the true frontier of cluster evolution.

Virgo is the nearest galaxy cluster at a distance of ∼16Mpc.
Its ICM has been studied extensively using X-ray imaging
spectroscopy (ROSAT–Böhringer et al. 1994; ASCA–Shibata
et al. 2001; XMM-Newton–Urban et al. 2011; Suzaku–
Simionescu et al. 2015, 2017). The cluster has an average
temperature of kT=2.3 keV. Using Suzaku observations out to
the virial radii, Simionescu et al. (2017) measured a hydrostatic
mass of M200=1.05×1014 Me and Rvir≈R200=974 kpc.
Its asymmetric X-ray morphology, multiple subclumps, and
low mass all suggest that Virgo is a dynamically young cluster
that is in the epoch of active accretion.

The M49 group resides at r=1.25 Rvir (4° from the cluster
center) and is falling onto the southern outskirts of Virgo
(Figure 1). Its brightest group galaxy (BGG), also called M49
(NGC4472; MK=−25.78), is optically brighter than M87
(MK=−25.38), the central galaxy of Virgo (ATLAS3D;
Cappellari et al. 2011). Throughout this paper “M49”

designates the M49 group rather than the BGG alone. The
enriched X-ray atmosphere of M49 was first detected by the
ROSAT X-ray observatory (Forman et al. 1993). Previous
X-ray studies of M49 were confined to the central 10–50 kpc.
M49 is a cool-core system with an average temperature of
1.3 keV. It harbors two X-ray cavities at a radius of ≈4 kpc
filled with radio emission, demonstrating feedback from its
active galactic nucleus (AGN; Biller et al. 2004; Gendron-
Marsolais et al. 2017). A prominent surface brightness edge is
present ∼20 kpc north of the group center (ROSAT–Irwin &
Sarazin 1996; Chandra–Biller et al. 2004; XMM-Newton–Kraft
et al. 2011), implying motion toward M87.
M49 provides the best opportunity to study accretion at

cluster outskirts. Thanks to its proximity and brightness, we
can study features with a sensitivity and linear resolution
unachievable in any other object. In particular, the spatial
resolution of observations matches that of high-resolution
simulations, bridging the gap between the microscale cluster
physics and the macroscale cluster evolution. The radial
velocity of M49 (958 km s−1) is close to the median value of
the Virgo cluster (1088 km s−1; Mei et al. 2007), implying that
M49 is moving close to the plane of the sky, which minimizes
projection effects. XMM-Newton is particularly suitable for
studying the gas properties of galaxy groups, thanks to its
relatively low and stable background at 1.5 keV, quality
resolution, and large effective area. In this paper, we present the
group gas properties of M49 out to radii >150 kpc in multiple
directions using mosaic XMM-Newton observations and use
them to probe the entire gas dynamics and merger history
of M49.
We adopt a luminosity distance of 16.7 Mpc for M49

(Blakeslee et al. 2009). This corresponds to an angular scale of
1″=0.081 kpc and a redshift of 0.0038 for a cosmology with
H0=69.6 km s−1 Mpc−1, ΩΛ=0.714, and Ωm=0.286. We
describe the observations and data reduction in Section 2. We
report the thermal and chemical properties and mass distribu-
tion of M49 in Section 3. The implications for the dynamics
and merging history of this group are discussed in Section 4,
and our conclusions are summarized in Section 5. Uncertainties
reported in this paper are at 1σ unless stated otherwise.

2. Observations and Data Reduction

2.1. XMM-Newton

Our analysis includes nine XMM-Newton pointings within a
1° radius of M49: five central pointings (C and N) and four
offset pointings (W, SW, and SE), in total ∼500 ks (unfiltered)
exposure time as indicated in Figure 1 and listed in Table 1.
Data analysis was performed using the XMM-Newton Science
Analysis System (SAS) version xmmsas-v15.0.0. All of the
ODF files were processed using emchain and epchain to
ensure the latest calibrations. Soft flares were filtered from
MOS and pn data using the XMM-ESAS tools mos-filter
and pn-filter, respectively (Snowden & Kuntz 2014). The
effective exposure time of each detector is listed in Table 1. In
all but two observations, MOS1 CCDs 3 and 6 were lost to
micrometeorites. We only include events with FLAG=0 and
PATTERN�12 for MOS data and with FLAG=0 and
PATTERN�4 for pn data. Point sources detected by the
XMM-ESAS routine cheese and confirmed by eye were
excluded from further analysis. Corrections were applied in

Figure 1. Mosaic Suzaku image of the M49 group and its surroundings in the
0.5–2.0 keV energy band in units of cts s−1 pixel−1. The image is exposure and
vignetting corrected with non-X-ray background subtracted. The white curve
marks the virial radius (Rvir ≈ R200 = 974 kpc) of the Virgo cluster. Yellow
circles indicate the field of view of the XMM-Newton observations used in this
study. The green cross marks the location of the W’ cloud at a distance of
23 Mpc and centered on NGC4365.
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spectral and imaging analysis to remove the effects of out-of-
time pn events due to the X-ray-bright core of M49.

2.1.1. Background Modeling

We consider two sources of background components: astro-
physical X-ray background (AXB) and non-X-ray background
(NXB). The AXB model contains a power-law model powCXB
with a photon index fixed at Γ=1.46 characterizing the cosmic
X-ray background (CXB; De Luca & Molendi 2004), a thermal
emission model apecMW with a temperature allowed to vary
between 0.15 and 0.6 keV representing the Milky Way emission
(McCammon et al. 2002), and another thermal emission model
apecLB with a temperature fixed at 0.11 keV for the Local
Bubble emission. Metal abundance and redshift were fixed at 1
and 0, respectively, for apecMW and apecLB. All of the
components except apecLB are expected to be absorbed by
foreground (Galactic) cooler gas, characterized by the phabs
model. The AXB components were determined via a joint fit of
offset pointings (W, SW, SE) and a RASS spectrum extracted
from a region farther south of M49. The best-fit parameters are
listed in Table 2.

The NXB model contains a set of fluorescent instrumental
lines and a continuum spectrum for each MOS and pn detector.
Fluorescent instrumental lines produced by the hard particles
are modeled with a set of Gaussian lines. Their centroid
energies are listed in Snowden & Kuntz (2013), and we set an
upper limit of 0.3 keV on each line width. We use a broken
power-law model, bknpow, to characterize the continuum
particle background component. The energy break is fixed at

3 keV. To constrain the NXB components, we obtain filter-
wheel-closed (FWC) observations taken at the nearest possible
time to each observation. For each region of interest, we
simultaneously fit the M49 and the FWC data with their NXB
parameters linked (ratios of their bknpow normalizations are
determined by simultaneously fitting spectra extracted from the
unexposed corners of both the FWC and M49 observations).
An additional quiescent level of soft proton flares may affect
some detectors. We compare the area-corrected count rates in
the 6–12 keV energy band within the field of view (excluding
the central 10′) and those in the unexposed corners of the
detector. If this ratio is below 1.15, we consider the observation
not contaminated by the residual soft proton flare (Molendi
et al. 2004). For contaminated observations, we add a power
law, powSB, to model this residual soft proton component. Its
photon index is allowed to vary between 0.1 and 1.4 (Snowden
& Kuntz 2014).

Table 1
Observational Log of the M49 Group

Obs ID Name Obs-Date Exposure (ks)a R.A. (J2000) Decl. (J2000) PI

XMM-Newton

0112550601 M49-N 2002 Jun 5 25 (13, 13, 9) 12 29 46.00 +07 59 47.0 Turner
0200130101 M49-N 2004 Jan 1 111 (79, 78, 68) 12 29 46.75 +07 59 59.9 Maccarone
0722670101 M49-W 2013 Dec 28 73 (60, 61, 38) 12 27 57.67 +07 54 30.0 Kraft
0722670201 M49-SW 2013 Dec 30 73 (54, 59, 41) 12 28 44.18 +07 41 18.8 Kraft
0722670301 M49-SE 2014 Jan 9 73 (20, 21, 9) 12 30 15.30 +07 41 30.0 Kraft
0722670601 M49-SE 2014 Jan 13 32 (9, 10, 3) 12 30 15.30 +07 41 30.0 Kraft
0761630101 M49-C 2016 Jan 5 118 (88, 88, 70) 12 29 39.70 +07 53 33.0 Maccarone
0761630201 M49-C 2016 Jan 7 118 (82, 81, 64) 12 29 39.70 +07 53 33.0 Maccarone
0761630301 M49-C 2016 Jan 9 117 (82, 82, 68) 12 29 39.70 +07 53 33.0 Maccarone

Suzaku

801064010 M49 2006 Dec 3 121 (97, 99, 100) 12 29 46.58 +08 00 18.0 Loewenstein
807122010 VIRGO S8 2012 Jul 5 16 (14, 13, 14) 12 30 21.26 +09 54 57.6 Simionescu
807123010 VIRGO S9 2012 Jul 7 19 (17, 17, 17) 12 30 16.73 +09 35 19.7 Simionescu
807124010 VIRGO S10 2012 Dec 8 16 (12, 12, 12) 12 30 12.96 +09 16 24.6 Simionescu
807125010 VIRGO S11 2012 Dec 8 17 (17, 17, 17) 12 30 07.80 +08 56 35.5 Simionescu
807126010 VIRGO S12 2012 Dec 9 16 (14, 14, 14) 12 29 58.87 +08 37 08.4 Simionescu
807127010 VIRGO S13 2012 Dec 9 13 (10, 10, 10) 12 29 54.19 +08 18 43.2 Simionescu
807128010 VIRGO S14 2012 Dec 9 15 (15, 15, 15) 12 29 45.02 +07 40 56.3 Simionescu
807129010 VIRGO S15 2012 Dec 10 18 (15, 15, 15) 12 29 35.66 +07 21 17.3 Simionescu
807130010 VIRGO S16 2012 Dec 10 22 (20, 20, 19) 12 29 31.51 +07 03 11.2 Simionescu
807131010 VIRGO S17 2012 Dec 11 19 (17, 16, 17) 12 29 26.74 +06 44 42.7 Simionescu
807132010 VIRGO S18 2012 Dec 11 20 (17, 17, 17) 12 29 21.91 +06 25 14.2 Simionescu
807133010 VIRGO S19 2012 Dec 11 19 (19, 18, 18) 12 29 17.76 +06 07 05.5 Simionescu

Note.
a Effective exposure times of MOS1, MOS2, and pn for XMM-Newton and XIS0, XIS1, and XIS3 for Suzaku are listed in the parentheses. The quadrant 0 pn event of
0722670301 displays abnormalities and is not included in the analysis.

Table 2
X-Ray Background Model Parameters

Background kT or Γ XMM Norma kT or Γ Suz Norma

CXB 1.46 0.88±0.04 1.5 0.89
MW 0.183±0.001 1.97±0.06 0.2 2.2
LB 0.11 1.17±0.04 0.104 1.46

Note.Model parameters for XMM-Newton observations are determined in this
work; those for Suzaku observations are taken from Simionescu et al. (2017).
a ×10−6 normalization per arcmin2.
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2.1.2. Spectral and Imaging Analyses

Spectral analysis was restricted to the 0.5–10.0 keV and
0.7–10.0 keV energy bands for MOS and pn, respectively. Each
observation and its corresponding FWC data were fit jointly to
two sets of models. The first model set takes the form of
phabs×(powCXB +apecMW +vapecgroup) +apecLB.
Components of this model set were fixed at zero for the FWC
data. Parameters of the AXB models were fixed to the values
determined with offset pointings and listed in Table 2. The
thermal vapecgroup model is for the M49 emission. Abundances
of Si, S, and Fe were allowed to vary freely; O, Ne, Mg, Ar, Ca,
and Ni were associated with Fe based on the best fits and
uncertainties of the abundance ratios of 44 clusters, groups, and
massive ellipticals (the CHEERS sample) presented in Mernier
et al. (2016). The solar abundance standard of Asplund et al.
(2009) was adopted. The measured Fe abundance needs to be
multiplied by 1.07 and 0.68 when compared to Lodders (2003)
and Anders & Grevesse (1989), respectively. We included an
additional power-law component with an index of 1.6 for regions
at the BGG center to model the unresolved emission from low-
mass X-ray binaries (LMXB; Irwin et al. 2003). The second
model set characterizes the NXB components, and the spectra
were not folded through the Auxiliary Response Files (ARF).
Parameters of the NXB models were linked between the
observation and the FWC data. The spectral fit was performed
using XSPEC 12.7.0 (Arnaud 1996) and χ2 statistics. We adopted
a Galactic hydrogen column of NH=1.6×1020 cm−2 toward
M49, determined from the Dickey & Lockman (1990) map.

We produce background-subtracted, vignetting- and expo-
sure-corrected EPIC mosaic images of M49. Individual
detector images were created using the XMM-ESAS tasks
mos-spectra and pn-spectra, and combined with the
comb routine. We used the adapt_900 routine to bin each
image in 2×2 pixels and adaptively smooth it with a
minimum of 50 counts. The resulting image is shown in
Figure 2.

We performed a two-dimensional spectral analysis using
Weighted Voronoi Tesselation (WVT) binning (Diehl & Statler
2006) based on the Voronoi binning algorithm presented in
Cappellari & Copin (2003). We generated a WVT binning image

containing 173 regions for the image in the 0.5–2.0 keV energy
band with a signal-to-noise ratio of at least 80 in each bin. We
used a single vapec model to probe the hot gas emission in each
region. The resulting temperature and Fe abundance maps are
shown in Figure 3.

2.2. Suzaku

To complement the XMM-Newton analysis, we reduced all
existing Suzaku observations within 2° of M49. The observa-
tions were taken along the north–south directions, including 12
pointings as part of a Suzaku Key Project to map the Virgo
cluster out to Rvir in four directions (Simionescu et al.
2015, 2017) and one deep (∼100 ks) observation centered on
M49. The observational log is listed in Table 1. We produce a

Figure 2. Mosaic XMM-Newton image of the M49 group in the 0.5–2.0 keV
energy band and in units of cts s−1 deg−2. The image is corrected for exposure
and vignetting, with the instrumental background subtracted. The colored
regions are defined for the spatial spectroscopic analysis, the results of which
are plotted in Figures 4, 6, and 7.

Figure 3. XMM-Newton Spectroscopic maps with the X-ray contour in the
0.7–1.3 keV energy band overlaid. Top: temperature map of M49 in units of
keV. Bottom: Fe abundance map of M49 in units of the solar abundance
derived with a single-temperature model. White circles indicate the locations of
ghost cavities.
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mosaic image that is corrected for exposure and vignetting
with NXB subtracted as shown in Figure 1. Data reduction
and analysis were performed with HEASOFT6.19 using
CalDB20160607. Detailed procedures are stated in Su et al.
(2013, 2015). In brief, all data were converted to 3×3 modes.
Events with a geomagnetic cutoff rigidity (COR < 6 GV) and
an Earth elevation <10° were removed. The calibration source
and hot pixels were excluded. Flares exceeding the average
count rate by 3σ were filtered. Bright sources were identified by
eye. A circular region with a radius of 2′ centered on each
source was excluded. We extracted spectra from a circular
region with a radius of 7′ from each pointing, which is
sufficiently broad for the point-spread function (PSF) of
Suzaku. The FTOOL xissimarfgen was used to generate
an ARF for each region and detector assuming uniform sky
emission with a radius of 20′. Redistribution matrix files (RMF)
and NXB spectra were generated for each region and detector
with xisrmfgen and xisnxbgen, respectively. Spectra
extracted from all pointings were fit simultaneously; parameters
of the four outermost pointings were linked. We left out
the pointing centered on the BGG M49 because it is much
deeper and brighter in X-rays than all other regions, and we do
not wish to let it dominate the simultaneous fit. Energy ranges
were restricted to 0.5–7.0 keV for the back-illuminated
CCD (XIS1) and to 0.6–7.0 keV for the front-illuminated
CCDs (XIS0, XIS3). We fit each spectrum to the model
phabs×(vapecICM + powCXB + apecMW) +apecLB.
The model parameters of the AXB components were fixed to
the values determined for the southern side of Virgo by
Simionescu et al. (2017) and listed in Table 2.

3. Results

We present the radial profiles of the normalization (per area)
and temperature of the thermal emission model, vapecICM, to
the north and south of M49 reaching a radius of 500 kpc
(Figure 4), derived from the Suzaku observations. The
normalization profile displays a hump-shaped feature on top
of a gradually declining profile, demonstrating the presence of
the M49 group in the outskirts of the Virgo ICM. The group
gas reaches radii of 250 kpc and 400 kpc to the north and south,
respectively. M49 is a BGG with its own extended atmosphere,
as opposed to a bright early-type galaxy, and its atmosphere has
come into direct contact with the Virgo ICM. Below, we
present the gas properties of this infalling group.

3.1. Surface Brightness and Contact Discontinuity

In Figure 5, we present the XMM-Newton surface brightness
profile of M49 in the 0.7–1.3 keV energy band to the north. The
energy band was chosen to maximize the source-to-background
ratio (Ettori et al. 2010; Kraft et al. 2017). The previously
reported bright edge (Irwin & Sarazin 1996; Biller et al. 2004;
Kraft et al. 2011) is visible at ∼20 kpc north of the group center
(marked by the magenta solid line). South of this edge may be
the regime of the interstellar medium (ISM) of the BGG M49.
This is consistent with the strong gradient in metallicity across
this edge (see Section 3.2). We fit the surface brightness profile
across this edge to a broken power-law density model. We
obtain a break at 19.0±0.1 kpc from the group center. Taking
into account the difference in the cooling function on each side,
we obtain a best-fit density jump of 1.9±0.3.

3.2. Thermal and Chemical Distributions

In Figures 6 and 7, we present radial profiles of the
temperature and Fe abundance centered on M49 in four
directions, derived from the XMM-Newton observations.
Different extraction regions are coded in the colors indicated in
Figure 2. The temperature is below 1 keV at the group center
and gradually increases to ∼1.5 keV at r=50 kpc and stays
between 1 keV to∼2 keV up to a radius of 160 kpc. We note
an increase in temperature on the fainter side of the northern
edge, implying that it is a cold front (Figure 6). The XMM
image in Figure 8 reveals two sets of cool filamentary arms to
the east and west of the nucleus at radii of 25–35 kpc, possibly
associated with X-ray cavities produced in a previous AGN
outburst; the lack of radio counterparts makes them “ghost
cavities” (also see Kraft et al. 2011). The temperature map
(Figure 3-top) reveals a channel filled with cooler gas elongated
east–west out to a radius of 50 kpc. This is similar to the
thermal structure of NGC1399, the central galaxy of the
Fornax cluster (Su et al. 2017c). In these systems, cool gas
from the cluster center may have been lifted up by buoyant
bubbles. We note that the northern edge of the BGG is
remarkably sharp, but with a bump feature extending from its
eastern side (Figures 2 and 8). This feature is likely to be low-
entropy gas lifted up by the eastern bubble (Figure 3-top).
Being denser than the group gas at this radius would make the
cool gas slower to respond to the ram pressure, disrupting the
cold front. The original cold front may be facing northeast
rather than due north. In other words, M49 may be heading
northeast, which naturally explains the stripped tail to the
southwest (Section 3.3).
The metallicity profiles outside the core decline from 1 Ze

to 0.2 Ze over a radial range of >100 kpc and stay above the
metal abundance of the Virgo outskirts (Simionescu et al.
2015). The metallicity profile of M49 is broadly consistent with
that of typical galaxy groups presented in Mernier et al. (2017).
In Figure 7, we plot the scaled K-band surface brightness
profile derived from the Wide-field Infrared Survey Explorer
infrared image. The stellar component of M49 reaches the
background level outside a radius of 10 kpc. The distribution of
the hot gas that is more enriched than the Virgo ICM extends
far beyond the domain of the BGG, corroborating the
hypothesis that M49 possesses its own group gas. The
temperature and metallicity profiles to the north change more
quickly than in other directions, implying that the BGG has
moved northward relative to the group gas.
A drop in metal abundance is observed at the center of M49

(Figure 7). Such a central metallicity drop has been widely
observed in clusters, groups, and elliptical galaxies (Sanders
et al. 2016; Mernier et al. 2017). The deposition of metals onto
dust grains may be responsible for the metallicity drop in some
systems (Panagoulia et al. 2013, 2015; Lakhchaura et al. 2019),
whereas M49 is nearly dust free (Temi et al. 2007). The
metallicity map (Figure 3-bottom) reveals that the distribution
of the central metallicity drop of M49 deviates from azimuthal
symmetry. The low-metallicity gas is coincident with the cool
gas elongated east–west out to the ghost cavities at r50 kpc.
A similar coincidence between low metallicity and the radio
lobes at r∼5 kpc has been noted in the Chandra study of
Gendron-Marsolais et al. (2017). The central low metallicity
and cool gas may have been uplifted by AGN outbursts over
multiple cycles.
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Figure 4. Radial profiles of the projected spectrum normalization per unit area (a circular region with a radius of 20′) and the hot gas temperature centered on M49
with the x-axis increasing northward. Red circles: results from Suzaku. The data of the other colors are derived with XMM-Newton observations. The corresponding
regions are indicated in Figure 2. The black solid line is the best-fit normalization profile in the absence of M49, indicating the underlying Virgo ICM distribution. The
vertical arrow marks the northern surface brightness discontinuity. The vertical blue line marks the virial radius (R200) of Virgo.

Figure 5. Surface brightness profiles of the upstream region derived with
XMM-Newton observations in the energy band of 0.7–1.3 keV and in units of
cts s−1 arcmin−2. The profile is centered on M49. Blue solid line: the best fit of
a broken power-law density model. The bright surface brightness edge is
marked by the solid vertical magenta line.

Figure 6. Projected temperature profiles centered on M49 derived with XMM-
Newton. The corresponding regions are indicated in Figure 2. The best-fit 2D
and 3D profiles of the central–western regions (black, cyan, and blue) are
plotted in black and red solid lines, respectively. The vertical magenta solid line
marks the northern edge in surface brightness.
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3.3. The Stripped Tail

The group center, dominated by the ISM of M49, is
significantly brighter in X-rays than the ambient atmosphere.
As shown in Figure 8, we detect a 70 kpc long and 10 kpc wide
gaseous tail adjacent to the BGG to the southwest, nearly
opposite to the contact discontinuity to the north. Surface
brightness profiles along and across part of the tail (green and
red annular sectors) are shown in Figure 9. We extract spectra
from four regions along the tail (white solid box). For
comparison, we extract spectra from a region adjacent to the
tail (white dashed box). We first fit these spectra to a single-
temperature thermal model (Figure 10). To minimize the effects
of group gas projected on the tail, we employ a two-
temperature thermal model: vapecgroup+vapectail. The
temperature and metallicities of the vapecgroup component
are fixed at the best fits of the single-temperature model of the
adjacent region. The normalization (per area) of vapecgroup is
allowed to vary within 20% relative10 to that of the adjacent
region. The resulting best-fit parameters of vapectail, shown in
Figure 10, reflect the intrinsic properties of the tail. The
temperature of the tail declines from 1.3 to 1 keV, consistently
cooler than the ambient group gas at 1.5 keV. The Fe
abundance declines from ∼1.3 Ze to ∼0.4 Ze along the tail
and eventually reaches the Fe abundance of the ambient
group gas.

The extended tail is probably shielded from the ram pressure
force by the BGG such that the tail and the ambient group gas
would be in pressure equilibrium. Assuming Ptail=Pgroup, we
calculate the density and volume of the tail using the intrinsic
temperature (Figure 10) and the best-fit normalization of
vapectail. We obtain the depth of the tail along the line of sight,
which is 3–8 times the width of the tail. Such a pancake-shaped

stripped tail is counterintuitive and unexpected from simulations.
We then calculate the tail density assuming that the tail is
cylindrical as shown in Figure 11. The resulting tail entropy
(K= kT/n2/3) and pressure are consistently lower and higher than
those of the ambient group gas, respectively.

3.4. Mass Analysis

The atmosphere of M49 is least disturbed to the west, where
the XMM-Newton coverage also reaches farthest from the
group center, so we use this region to determine the mass
profile of the group. The projected temperature profile centered
on the BGG (corresponding to the black, cyan, and blue
regions in Figure 2) is shown in Figure 6. We adopt a
simplified version of the analytic formula constructed by
Vikhlinin et al. (2006) to model the deprojected temperature
profile of typical cool-core systems,
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The corresponding projected temperature can be obtained by
projecting the gas-density-weighted T3D along the line of sight.
We fit the measured projected temperature profile to the 2D
formula given by Mazzotta et al. (2004),
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The best-fit 2D and 3D temperature profiles are plotted in
Figure 6.
We derive the 3D gas-density profile following Lovisari

et al. (2015). We extract the surface brightness profile in the
0.7–2.0 keV energy band over the same region as the
temperature profile (Figure 12) and fit it to a double β-model
which takes the form of
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and corresponds to a density profile of
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where n01 and n02 are the central densities of the two
components and can be related by
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To determine the central electron densities (n n n0 01
2

02
2= + ),

we fit the spectra extracted from a circular region of Rextr=6′ to
the vapec model; the normalization is defined as
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where DA is the angular distance of the source, and ne and nH
are the electron and proton densities, for which we assume
n n1.21e H= . We solve for n01 and n02 by integrating
Equation (4) over an infinite cylinder with a radius of Rextr

and matching it to the best-fit normalization.

Figure 7. Metallicity profiles centered on M49 derived with XMM-Newton.
The corresponding regions are indicated in Figure 2. Red lines: the range of the
Virgo ICM Fe metallicity on its southern outskirts taken from Simionescu et al.
(2015). Blue lines: the range of the average Fe metallicity profile of typical
galaxy groups taken from Mernier et al. (2017). Black solid line: the scaled
K-band surface brightness profile of M49. The vertical magenta solid line
marks the northern edge in surface brightness.

10 The surface brightness fluctuation on a scale of 10×10 kpc2 in the adjacent
region is 20%.
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With the 3D temperature and density profiles, one can
calculate the total mass within a radius r assuming hydrostatic
equilibrium and spherical symmetry:

M r
kTr

G m

rd

dr

rdT

Tdr
, 7

pm
r

r
< = - +

⎛
⎝⎜

⎞
⎠⎟( ) ( )

where k is the Boltzmann constant, μ=0.6 is the mean atomic
weight, and G is the gravitational constant. We randomly varied
the data points of the observed temperature and surface brightness
profiles 1000 times over their statistical uncertainties. Each time,
we obtain a new set of best-fit profiles and a new total mass.
We use the standard deviation of the resulting data points as the
uncertainty on mass. The enclosed total mass profile reaches 9.2±
0.2×1012Me within 160 kpc. Assuming that the temperature and
density profiles follow Equations (2) and (4), we extrapolate to a

virial mass of Mvir≈M200 of 4.6±0.2× 1013 Me out to R200=
740±11 kpc.

4. Discussion

We have studied in detail the properties of the hot gas in the
nearest infalling galaxy group M49, which resides beyond the
virial radius of Virgo. Its temperature is below 1 keV at the
group center and rises to 1.5 keV outside the BGG. The group
atmosphere is >30× more extended than the stellar distribution
of the BGG. Below, we discuss its dynamical state and merging
history.

4.1. The Northern Edge: A Merging Cold Front

A surface brightness edge 20 kpc north of the BGG center
has been noted in previous X-ray studies (Irwin & Sarazin
1996; Kraft et al. 2011). Lacking information about the global

Figure 8. XMM-Newton image in the 0.7–1.3 keV energy band. A stripped tail is visible to the southwest of the BGG. We extract spectra from the white solid box for
the tail gas and from the white dashed box for the ambient group gas. Black contour: radio emission from the VLA First survey. Two ghost cavities are marked by the
dashed yellow circles. We derive surface brightness profiles along and across the tail using the green and red annular sectors.
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gas distribution, previous authors have taken this edge as the
merging front between M49 and the Virgo ICM, and
determined the Mach number of the merger shock to be

3 = based on the large discrepancy between the hot gas
pressure just inside the northern edge and the expected Virgo
ICM pressure at this radius. This Mach number corresponds to

an uncomfortably large infall velocity of >2000 km s−1 for a
low-mass cluster like Virgo, exceeding the free-fall velocity
from infinity. The likelihood11 for this to happen is only
f�1×10−5 based on the velocity distribution function of
dark matter substructures (Hayashi & White 2006).
Our study has shown that the northern edge is not the

interface between M49 and the Virgo ICM. The group gas is

Figure 9. Surface brightness profiles along and across part of the southwest tail in
the energy band of 0.7–1.3 keV. The circle and square data points correspond to the
green (N–SW) and red (NW–SE) annular sectors, respectively, marked in Figure 8.

Figure 10. Gas properties of the stripped tail compared to the ambient group gas.
Temperatures and Fe abundances measured along the tail (corresponding to the
solid box region in Figure 8). Blue data points: results of a single-temperature
model. Red data points: results of a two-temperature model; parameters of the
hotter temperature component are fixed at the best fit of the ambient group gas
(light blue lines, corresponding to the dashed box region in Figure 8). Red data
points reflect the intrinsic temperatures and Fe metallicities of the tail gas.

Figure 11. Derived properties of the stripped tail (corresponding to the white
solid box region in Figure 8). Blue solid lines represent the group gas profiles
derived from Equations (1) and (4)

Figure 12. XMM-Newton azimuthally averaged surface brightness profile in the
0.7–2.0 keV energy band of the M49 group, the Fornax cluster (Su et al. 2017d),
and isolated galaxy groups (in blue) studied in Lovisari et al. (2015).

11 flog V V

1.55

3.3
sub 200= -( ) , where Vsub is the infall velocity of the subcluster

and V200=[10 GH(z)M200]
1/3 is the circular velocity of the main cluster.
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extended to a radius of 250 kpc to the north while this edge is at
r∼20 kpc. This interface separates the more enriched ISM of
the BGG and the M49 group gas. Our analysis suggests that
this r∼20 kpc edge has a density jump of 1.9±0.3 and a
temperature jump of 0.87 0.06

0.07
-
+ , corresponding to a pressure

jump of 1.66 0.24
0.35

-
+ . We estimate the Mach number via the

pressure jump (Landau & Lifshitz 1959):

P

P
1

1

2
, 1. 80

1

1

  g
= +

- g g-
⎜ ⎟⎛
⎝

⎞
⎠ ( )

( )

We take the ratio of specific heats to be γ=5/3. We obtain
0.67 0.22

0.29 » -
+ , corresponding to a velocity of 453 143

192
-
+ km s−1

for a kT∼1.7 keV free stream. The inner 20 kpc of M49 is
moving subsonically northward relative to the group gas,
forming a cold front. That the temperature and Fe abundance
profiles vary abruptly to the north relative to those in other
directions supports this scenario. As illustrated in Figure 13, we
speculate that this relative motion may be initiated by the
encounter between the M49 group gas and the Virgo ICM,
which slows down the outer layer of the M49 gas while its low-
entropy BGG atmosphere keeps moving to the north and makes
contact with higher entropy group gas at larger radii.

4.2. Uplift in Single-phase Galaxies

A leap forward in understanding the fueling of supermassive
black holes is brought by molecular gas detected at centers of

strong cooling systems (Edge 2001). High-resolution submilli-
meter observations, particularly with ALMA, reveal that such
molecular clouds have a surprisingly low velocity and reside
preferentially in the wake of buoyant bubbles (Russell et al.
2014, 2016, 2017; Vantyghem et al. 2016). McNamara et al.
(2016) therefore proposed that low-entropy gas lifted by rising
bubbles becomes thermally unstable and condenses into molecular
gas, which could in turn fuel the AGN, dubbed as “stimulated
feedback.” We observe in M49 that low-entropy gas has been
lifted by AGN bubbles out to 50 kpc (Section 3.2), whereas
Herschel observations of C II[ ] and Hα reveal a lack of cold gas in
this galaxy (Werner et al. 2014). Another nearby massive elliptical
galaxy, NGC1399, displays similar properties (Su et al. 2017c;
Werner et al. 2014).
The single-phase gas in M49 and NGC1399 can be

understood as follows: their central cooling time substantially
exceeds the free-fall time (tcool/tff> 20), preventing precipita-
tion throughout the cool cores (Voit et al. 2015). Wang et al.
(2019) performed a hydrodynamical simulation of the AGN
feedback process specifically tailored to M49. The authors
found that during each feedback cycle, its tcool/tff oscillates
between 70 and 5. Cold gas that fuels the black hole can only
form at its nucleus. In contrast, their simulation tailored to the
multiphase galaxy, NGC5044, indicates a nonlinear perturba-
tion with tcool/tff frequently reaching unity, causing its hot gas
to precipitate into extended cold filaments, consistent with
observations (David et al. 2014). In brief, for systems like M49
and NGC1399, despite the fact that low-entropy gas has been
uplifted out to large radii, their initial tcool/tff is sufficiently
large, allowing the cooling-driven AGN feedback to operate
under a single-phase condition.

4.3. Ram Pressure Stripping and Transport Processes

The BGG is moving relative to the group gas of M49, which
may be responsible for the evident southwest tail originating at
a distance of 50 kpc from the group center (Figure 8). We
measure a negative metallicity gradient along the tail, which
eventually reaches the level of the group gas. This finding
provides evidence that metals are being removed from infalling
galaxies via ram pressure stripping, which could be an efficient
enrichment process in the ICM (see Schindler & Diaferio 2008
for a review). Stripping would occur once the ram pressure
(Pram∼ ρoutv

2) exceeds the gravitational restoring force per unit
area (Gunn & Gott 1972). McCarthy et al. (2008) presented a
stripping condition for gaseous objects with spherical symme-
try, such as early-type galaxies:

v
GM

R2
. 9out

2 tot in

in
r

p r
> ( )

We assume that the stripping starts at the inner end of the tail,
which is 50 kpc from the group center. We apply an enclosed
total mass of Mtot=2×1012 Me at Rin=50 kpc derived
from Equation (8), and we assume ρin≈1.2ρout based on the
density ratio of region 1 relative to the ambient ICM
(Figure 11-top). It would require a relative velocity of
570 km s−1 for the stripping to take place, in broad agreement
with the relative velocity of 310–645 km s−1 that we derived in
Section 4.1 based on the jump condition. The tail can be traced
back to the western ghost cavity. AGN outbursts may have
stirred up the ISM, lifting lower entropy gas to larger radii
where the gas is less tightly bound, facilitating the stripping

Figure 13. A sketch demonstrates the dynamical state of the system. The
encounter between the M49 group and the Virgo ICM slows down the outer
layer of the M49 gas while its BGG continues moving to the north. The relative
motion between the BGG and the M49 group gas gave rise to the northern cold
front and the southwest stripped tail.

10

The Astronomical Journal, 158:6 (13pp), 2019 July Su et al.



process. A similar connection between AGN outbursts and
stripping has been noted in M89 (Roediger et al. 2015; Kraft
et al. 2017). The tail gas may originate from r=20 kpc from
the group center, where the entropy value is the same as that of
the tail. We estimate a tail gas mass of 2×108 Me. We follow
Equation (11) in Su et al. (2017c) to calculate the minimum
work required to lift such gas from r=20 kpc to the inner end
of the tail (r= 50 kpc). We obtain a minimum work of
2×1056 erg, comparable to the enthalpy of the ghost bubbles
(Kraft et al. 2011). Based on the estimated velocity of the BGG
relative to the group gas, it would take 100–220Myr to form a
70 kpc long tail, which is also consistent with the age of the
ghost cavities (Kraft et al. 2011).

The temperature of the tail declines from 1.3 to 1 keV along
the tail, implying that the tail is not being heated up by the
ambient group gas. Instead, it may be cooling while expanding.
The tail entropy is consistently two to three times smaller than
the ambient group gas (Figure 11). We estimate the timescale
tcond for the tail to be erased by thermal conduction in the
Spitzer regime (Spitzer 1956). The thermal energy needed is
E n l d k T21 tail

2 3

2
p= ´ D , where l and d are the radius and

length of the tail, respectively. The heat conducted from the
ICM to the tail is E2=qtcond2πld, where q k T

l
k= D is the heat

flux and 1.6 10 T27
keV

5 2
ICMk = ´ ( ) s−1 cm−1 is the thermal

conductivity. By equating E1 and E2, we obtain tcond∼5Myr,
which is approximately 20–40 times shorter than the estimated
age of the tail. Thermal conduction may have been suppressed
in the downstream region of M49. The pressure in the tail is a
factor of 2 higher than that of the ambient group gas. Gas in the
tail may be highly inhomogeneous, causing an overestimate of
the mean density, which may explain the high pressure and low
entropy of the tail.

4.4. The Infall Velocity of M49 and the Heated ICM

The ICM temperature declines from ∼2 to 1 keV over a
radial range of 0.5–1.5 Rvir southward of the Virgo cluster
(Figure 4). A region of elevated temperature is visible at
≈250 kpc north of M49 (also see Simionescu et al. 2017),
which could be due to a shock or adiabatic compression. At this
stage, if there ever was a shock propagating into the IGM of
M49, it must be well past the galaxy, allowing the flow to be
responsible for the northern cold front and the downstream tail.
Therefore, any remaining shock at the interface between M49
and Virgo must be propagating into Virgo. Assuming the
temperature elevation near R=60′ is due to the shocked gas,
we take the temperature of 2 keV near R=75′ to be the
preshock temperature (Figure 4). The ICM temperature
changes abruptly from ≈2 keV to 3.3 keV0.7

1.2
-
+ , corresponding

to a Mach number of1.65 0.35
0.60

-
+ , based on the Rankine–Hugoniot

shock equations (Landau & Lifshitz 1959):
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We estimate the expected infall velocity of M49 assuming it
has experienced free fall from the turnaround radius (2 Rvir) to
its current position (1.25 Rvir). We assume that the dark matter
halo of the cluster is truncated at Rvir≈R200. The gravitational
potential outside Rvir can be described by a point-mass

potential:

G R r
4

3
200 , 11c 200

3p rF = - ( )

where z H z G3 8c
2r p=( ) ( ) is the critical density of the

universe. We note that its current infall velocity should be
∼680 km s−1. The sound speed for a 2 keV quiescent ICM is
cs=730 km s−1. This leads to a Mach number of 1  ,
falling short of producing a temperature jump of a factor of
1.65 0.35

0.65
-
+ . Had M49 fallen from infinity, we would expect a

Mach number of 1.3 ~ . The distance between the leading
edge and the bow shock decreases as the infall velocity
increases (Equation (23) in Farris & Russell 1994):

D R0.8
1 2

1 1
, 12CS

2

2





g
g

=
- +
+ -

( )
( )( )

( )

where R is the radius of a nearly spherical infalling object. The
3 keV region is near the boundary between the group gas and
the cluster gas (Figure 4). If the bow shock resides in this
region, it would correspond to an implausibly strong shock of

4 > . We therefore speculate that the temperature peak may
not be associated with a shock. Higher resolution observations
are needed to resolve the scenario as we expect to observe a
surface brightness edge near the heated ICM, in the case of a
shock.
The infalling group, M49, might be able to compress some

of the outer atmosphere of the Virgo cluster, causing adiabatic
heating. Given a constant P T1 g g- , the ICM pressure needs to
increase by a factor of 3.5 1.6

4.1
-
+ in order to produce a temperature

jump of 1.65 0.35
0.60

-
+ . For an infall velocity of ∼453 km s−1

(Section 4.1), we obtain

P

P

P v

P
3.6, 13

f

i

M49
2

Virgo

r
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+
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where P n kT2 3.5 10 keVM49 e
4= = ´ - cm−3 and ρ=4.7×

10−13 g cm−3 are extrapolated to r=300 kpc based on
Equations (2) and (5), and PVirgo=1.8×10−4 keV cm−3 is
the pressure of the Virgo ICM just inside its virial radius taken
from Simionescu et al. (2017). It is therefore plausible for the
adiabatic compression to be responsible for the temperature
elevation.
Alternatively, this 3 keV temperature could be an over-

estimate. After all, this temperature increase was not detected
by ASCA (Shibata et al. 2001). We allow the CXB component
in this region to vary freely and obtain a best-fit hot gas
temperature of 1.5 keV0.3

0.5
-
+ , similar to the quiescent ICM; the

best-fit normalization of the thermal vapecICM component
also falls on the extrapolation of the quiescent Virgo ICM
(black solid line in Figure 4). Meanwhile, the best-fit normal-
ization of the CXB component is 27% higher than what we
adopted. The surface brightness fluctuations of unresolved
point sources in the 0.5–2.0 keV band are expected to be

3.9 10B
12

0.01
1 2s = ´ W- - erg cm−2 s−1 deg−2, where Ω0.01 is the

solid angle in units of 0.01 deg−2 (Miller et al. 2012). For the
size of our extraction region, we expect a fluctuation of
1.9×10−12 erg cm−2 s−1 deg−2. This is 26% of the CXB
surface brightness adopted in our analysis. Thus, the temper-
ature enhancement might be explained by the CXB fluctuation.
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4.5. The Group Atmosphere and Merger History

We compare the XMM-Newton surface brightness profile of
M49 in the 0.7–2.0 keV energy band with the Fornax cluster (Su
et al. 2017d) and typical isolated galaxy groups studied in Lovisari
et al. (2015) in Figure 12. These systems all have average
temperatures in the range of 1.0–2.0 keV. The central 5–10 kpc of
M49 has a similar surface brightness to other groups, but it
declines more quickly beyond 10–20 kpc and falls below most
other isolated groups. This is consistent with an elevated fraction
of quenched galaxies observed in the infall region compared with
“field” galaxies (Boselli & Gavazzi 2006). If this is M49ʼs first
infall onto the outskirt of Virgo, it may have been through a
severe environment outside the virial radius of Virgo. The outer
layer of its group gas has been stripped off. The impact of an ICM
environment on infalling objects i.e., via ram pressure stripping,
can reach beyond the virial radius.

In an alternative scenario, M49 could be a splashback group.
Gill et al. (2005) found that half of the galaxies in the infall
region have already orbited through the main cluster. M49 may
have just turned around at its apocenter and started to accelerate
toward M87, forming a cold front and leaving behind a
slingshot tail (Sheardown et al. 2019). Extended X-ray
mapping of the Virgo cluster reveals sloshing fronts in multiple
directions and over a large span of radii, including two large-
scale sloshing fronts at r=200–300 kpc (Simionescu et al.
2017). Roediger et al. (2011) investigated the sloshing scenario
in Virgo through tailored simulations and identified M60, M85,
and M86 as the candidates for the disturbing subclusters.
However, it is difficult to reconcile their dynamical configura-
tion and geometry. The addition of M49 would help explain the
complicated thermal distribution of the Virgo ICM. We expect
future numerical simulations to resolve the orbits of M49 and
the merger history of Virgo.

5. Conclusions

M49 is a galaxy group falling onto the outskirts of the Virgo
cluster. At a distance of ∼16Mpc, this infalling group provides
us with the best opportunity to study the assembly of galaxy
clusters beyond the virial radius. We present results from deep
XMM-Newton and Suzaku mosaic observations of M49 to
probe its gas properties from the group center out to radii of
150–500 kpc. We see evidence that the group atmosphere
slows down upon encountering the Virgo cluster gas, causing
the BGG to move forward subsonically at v≈450 km s−1

relative to the group gas and creating a prominent cold front
∼20 kpc north of the BGG center and a stripped tail trailing
behind the central galaxy (Figure 13).

The southwest stripped tail adjacent to the BGG is 70 kpc
long (Figure 8). The tail temperature declines outward along
the tail, suggesting that the tail is not being heated up by the
ambient group gas but is cooling via expansion. The metallicity
of the tail declines from ∼1.3 Ze to ∼0.4 Ze with distance from
the galaxy center and eventually reaches the level of the group
gas, supporting the case that ram pressure stripping could be
effective at enriching the ICM. AGN outbursts in the BGG may
have facilitated the stripping process. Inhomogeneities cause
the mean gas density to be overestimated, which might account
for the measured tail entropy and pressure being lower and
higher, respectively, than those of the ambient gas.

Although M49 has an extended group halo, its atmosphere
appears truncated when compared with isolated galaxy groups

(Figure 12). If this is M49ʼs first infall, our findings imply that
the Virgo ICM extends well beyond the virial radius and
provides a severe environment for infalling objects. Alterna-
tively, M49 may be a splashback group, so that its atmosphere
was truncated during its passage within the virial radius of
Virgo. Its merger history may help explain the complicated
sloshing structure observed in the Virgo ICM.
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