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Abstract

Covariance matrices that fail to be positive definite arise often in covari-
ance estimation. Approaches addressing this problem exist, but are not well
supported theoretically. In this paper, we propose a unified statistical and
numerical matrix calibration, finding the optimal positive definite surrogate
in the sense of Frobenius norm. The proposed algorithm can be directly ap-
plied to any estimated covariance matrix. Numerical results show that the
calibrated matrix is typically closer to the true covariance, while making only
limited changes to the original covariance structure.
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1. Introduction

The estimation of covariance matrices plays an essential role in multivari-
able data analysis. Covariances are required by many statistical modelling
approaches, including multivariate regression and the analysis of spatial data.
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Often, well-estimated covariance matrices improve efficiency in estimating
parameters in a mean function [22]. In some circumstances, the covariance
matrix may itself be of direct scientific interest: for instance, in spatial vari-
ation analysis for geographical data, and in volatility analysis for financial
data.

However, it is not uncommon that estimators of covariance matrices fail
to be positive definite. A typical example is the sample covariance matrix,
which is often singular when the sample size is close to, or less than, the
dimension of the random samples [3]. If singularity is caused by collinear-
ity, conventional ridge regression [18] or modern variable selection [6, 21]
approaches may solve the problem by excluding redundant variables. Di-
mension reduction approaches such as Principle Component Analysis [19]
can also help to exclude eigenvalues with ignorable contributions.

However, these resolutions only apply in cases where such redundance
truly exists. More often, non-positive definiteness may be put down to the
generic difficulty of maintaining positive definiteness in covariance estima-
tion; resulting estimators may not even be positive semidefinite. Even for
elaborately designed statistical approaches, the estimators of covariance ma-
trices can be ill-conditioned [5, 14]. A number of approaches have been
proposed to resolve this issue. However, these are either limited to special
circumstances or lack theoretical support. For instance, one alternative is to
use the Moore-Penrose inverse of a non-positive definite matrix to replace
the regular inverse typically used in statistical inferences [20]. However, this
does not directly resolve the non-positive definiteness, and is lack of statisti-
cal interpretation. Alternatively, a smoothing approach exists [23] in which
non-positive eigenvalues of the covariance matrix estimator are replaced by
certain positive values. However, justification for the selection of these posi-
tive values was scant.

Based on the fundamental work of Halmos [7], Higham [9] proposed a
solution for finding the nearest (in the sense of Frobenius norm) positive
semidefinite matrix to an arbitrary input matrix. However, this surrogate
positive semidefinite matrix is still singular [9, 10], so difficulty persists in
using the surrogate matrix in statistical practice. Rebonto and Jäckel [17]
considered a correlation matrix calibration using the hyperspherical decom-
position and eigenvalue correction, which again leads to positive semidefinite
correlation matrices. Hendrikse et al.[8] proposed an eigenvalue correction
method using bootstrap resampling in order to reduce the bias arising in
sample eigenvalues. Their work focused on the correction of the sample
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covariance, where the performance of the correction method relies on the
assumed distribution of the covariance matrix eigenvalues in the population.

In this paper, we propose a unified approach to calibrate a non-positive
definite covariance matrix to ensure positive definiteness. The calibrated co-
variance matrix is usually closer to the true covariance matrix than the orig-
inal covariance matrix estimator. Our proposed approach is implemented
through a straightforward screening algorithm. In Section 2, we briefly re-
view the matrix nearness problem, before proposing our novel calibration
method together with its integrated criterion and algorithm. In Section 3
we conduct two simulation studies, and in Section 4 we discuss two case
studies, including a calibration of the non-positive definite covariance matrix
obtained by nonparametric regression in Diggle and Verbyla [5]. Conclusions
are presented in Section 5.

2. Calibration method

2.1. The matrix nearness problem

In numerical analysis, a nearness problem involves finding, for a given
matrix and a particular matrix norm, the nearest matrix that has certain
important properties. Examples include finding the nearest covariance ma-
trix [9] or correlation matrix [2, 16] in the sense of the Frobenius norm (or
2-norm).

Given an arbitrary square matrix X of order n, we denote its Frobenius
norm by ‖X‖ = trace(X⊤X)1/2. The nearness problem involves finding the
nearest symmetric positive semidefinite matrix P0(X):

P0(X) = argmin
A≥0

‖X − A‖ (1)

Throughout, we shall assume that A ≥ 0 denotes both non-negative definite-
ness and symmetry A = A⊤. Higham [9] used a polar decomposition to show
that the solution to (1) has the explicit form P0(X) = (B + H)/2, where
B = S(X) = (X +X⊤)/2 is the symmetric matrix version of X , and H is
the symmetric polar factor of B, satisfying B = UH with U a unitary ma-
trix and H ≥ 0. This solution has been compiled in a MATLAB file named
poldex.m, which can be found in the Matrix Computation Toolbox [11].
Clearly, if X is symmetric then the solution becomes P0(X) = (X + H)/2.
If, further, we are given the spectral decomposition of a symmetric X = X⊤

(that is, X = QΛQ⊤ for Q⊤Q = I and Λ = diag(λ1, . . . , λn)), we have
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P0(X) = Qdiag{max(λ1, 0), . . . ,max(λn, 0)}Q⊤. In other words, the nearest
positive semidefinite matrix P0(X) can be obtained by replacing by zero any
negative eigenvalues of a symmetric X [10], eliminating the corresponding
columns of Q (and causing some information loss). A immediate alternative
is to instead replace negative eigenvalues by positive values, so that a positive
definite correction of X is formed without this loss of information about Q.
However, the theory of this idea need to be justified, particularly on how to
choose appropriate replacement positive values, for which we will address in
this paper.

2.2. A new calibration approach

We now aim to find a positive definite matrix surrogate for a generic
X . First, we formulate this question as a nearness problem. For c ≥ 0,
let Dc = {A : A − cI ≥ 0} be the set of positive definite matrices with no
eigenvalue smaller than c. Given X , finding the nearest matrix Pc(X) ∈ Dc

to X in terms of the Frobenius norm amounts to defining

Pc(X) = argmin
A∈Dc

‖X − A‖. (2)

An explicit expression for Pc(X) is given in Theorem 1.

Theorem 1. Given X and a constant c ≥ 0, the nearest (in the sense of
Frobenius norm) matrix Pc(X) ∈ Dc to X is of the form

Pc(X) = P0(X − cI) + cI (3)

where (as before) P0(X − cI) = (B + H)/2 for B = S(X − cI) and H the
polar factor of B. Furthermore, if X is symmetric with spectral decomposition
X = Qdiag(λ1, . . . , λn)Q

⊤ then Pc(X) has the simplified form

Pc(X) = Qdiag{max(λ1, c), . . . ,max(λn, c)}Q
⊤. (4)

Proof: The details of the proof are deferred to the Appendix. �

Maintaining symmetry in covariance estimation is typically not difficult,
so direct use of (4) will often be sufficient in practice. For non-symmetric
X , one may directly symmetrize X before calibration. Note that Pc(X) only
depends on X via its symmetric version S(X), so (4) can equivalently be
applied to S(X).
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2.3. Selection criterion

Clearly Pc(X) varies with c and, as c decreases, the domain Dc of A
expands. At c = 0, Pc(X) = P0(X) becomes positive semidefinite (unless, of
course, all eigenvalues of X are already positive). Consequently, we require
a criterion for selecting an appropriate positive value, c = c∗, say. Let λ+

min

be the smallest positive eigenvalue of an estimated covariance matrix X .
In order to maintain, as far as possible, the covariance structure of X , it is
reasonable to constrain 0 ≤ c∗ ≤ λ+

min. Rather than make simple choices such
as c∗ = λ+

min/2, here we propose a tuning approach, balancing proximity to
X with proximity to singularity. Writing cα = 10−αλ+

min, where α ≥ 0 is a
tuning parameter, with c0 = λ+

min and c∞ = 0 (i.e., c → 0 as α → ∞), we
choose c∗ as follows:

Definition 1. Define c∗ = cα∗
via

α∗ = argmin
α

‖X − Pcα(X)‖+ α, (5)

where (as before) cα = 10−αλ+
min.

Rather than simply minimize the quantity ‖X − A‖, in (5) we also add
a penalty (namely, α) that penalises small values of c. Such penalty terms
are widely used in a variety of statistical contexts, such as the AIC/BIC and
penalty functions [1, 6, 21]. Reassuringly, positive definite covariance matri-
ces remain unchanged after calibration. To see this, note that Pλ+

min
(X) = X

if X is itself positive definite. In this case, choosing α = 0 (so c = λ+
min)

thus makes both ‖X − Pcα(X)‖ and α vanish, so c∗ = λ+
min and the solution

P∗(X) = Pc∗(X) completely reduces to X .
The tuning parameter α can also be interpreted in terms of the condition

number of the matrix Pcα(X) [24, p146]. For a positive semi-definite matrix,
the condition number is the ratio of its biggest to smallest eigenvalues. The
condition number can warn us the numerical inaccuracy in calculating the
inverse of a given matrix. In our case, let λ+

max be the biggest positive eigen-
values of X and d = λ+

max/λ
+
min. Then the condition number of the calibrated

matrix Pcα(X) is κ(Pcα(X)) = 10αd. Therefore, the penalty α approximates
the number of digits of accuracy we are prepared to sacrifice in the inversion
of Pcα(X) in order to reduce ‖X − Pcα(X)‖.
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2.4. Algorithm

In practice, we implement a screening-search strategy for the tuning pa-
rameter α. Rather than let α ∈ [0,+∞), we constrain the screening to a
feasible region. This strategy is employed in the following algorithm.

Step 1. Given a feasible region of α, say [0, αN ], create a partition 0 =
α0 < α1 < α2 < . . . < αN . For α ∈ {α0, . . . , αN}, compute the corresponding
cα and use (4) to calculate the resulting solution matrix Pcα(X). We choose

α∗ = argmin
α∈{α0,...,αN}

‖X − Pcα(X)‖+ α. (6)

Step 2. Set c∗ = cα∗
, and return P∗(X) = Pc∗(X) as the final calibrated

covariance matrix.

In terms of the screening region [0, αN ] and its partition, we make the
following recommendations. In most applications, 10−α become negligible
when α > 10, so we take our default option to be αN = 10. Options of
larger αN are possible when the original λ+

min is in large scale. However, we
would not recommend a too large αN , as it corresponds to a large condition
number of P∗(X). When screening α ∈ [0, αN ], we suggest a uniform parti-
tion of the region: for example, given αN = 10, we could use the partition
0, 1, . . . , 10 or 0, 0.5, . . . , 10. More refined partition would be preferable when
extra accuracy in calibration is demanded.

3. Simulation studies

In this section, we carry out two simulation studies to assess the per-
formance of our proposed calibration method. In Simulation 1, we consider
three commonly used covariance structures: compound symmetry, first-order
autoregressive (ar(1)) and tri-diagonal. In Simulation 2, a more general co-
variance structure formed by the modified Cholesky decomposition [15] is
investigated. Covariance matrices are fitted via the nonparametric covari-
ance estimation approach of Diggle and Verblya [5]. The advantage of that
approach lies in that the variogram considered therein has a clear statistical
interpretation, being useful in describing spatial correlation in geo-statistics
[4], and in judging if the covariance structure is stationary. Here we focus on
the non-positive definite covariance matrices obtained by that approach to
assess the performance of the proposed calibration method.
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The longitudinal data we consider here are described by (yij, tij), i =
1, . . . , n, j = 1, . . . , ni, where yij represents the measurement j (out of ni)
on subject i and tij is its measurement time. Let µij = µi(tij) be the mean
of yij and µi = (µi1, . . . , µini

)⊤ be the vector of the means of the responses
yi = (yi1, . . . , yini

)⊤. Assume Σi is the covariance matrix of the responses
yi, where the elements of Σi are defined by a generic covariance function
(Σi)j,k = Σ(tij , tik). Following [5], a multivariate normal distribution is as-
sumed, i.e., yi ∼ N (µi,Σi). The main covariance fitting process of [5] is
briefly summarized as follows. Firstly, a local polynomial smoothing tech-

nique is used to estimate the variances in Σi, (̂Σi)j,j, using the sample vari-

ances (yij − µ̂ij)
2, j = 1, . . . , ni, where µ̂ij are the fitted means through cer-

tain nonparametric regression estimation methods, such as [25]. Secondly,
a bivariate local polynomial smoothing method is used to model the var-
iograms v̂ijk through the sample variograms {(yij − µ̂ij) − (yik − µ̂ik)}

2/2.

Finally, the off-diagonal elements of Σi, (̂Σi)j,k, j 6= k, are estimated through

(̂Σi)j,k = {(̂Σi)j,j + (̂Σi)k,k}/2− v̂ijk.

3.1. Simulation 1

We generate 100 datasets based on the Gaussian process mechanism de-
scribed above. In each dataset there are n = 50 subjects and ni = m = 10 or
20 repeated measurements for each subject. The means µij are formulated
as µij = tij + sin(tij) for all i, j, with measurement times tij = j for all j.
Given a common variance σ2 and a correlation parameter ρ, the covariance
structure Σi of subject i is assumed to have the particular structure described
below:

1. Compound symmetry. Within-subject correlation is assumed equal for
any disjoint pair of observations. In other words, Σi = σ2{(1−ρ)I+ρJ},
where ρ ∈ (−1/(m − 1), 1), I is an identity matrix and J is a matrix
of ones with order m.

2. ar(1). Within-subject correlation decreases with the time separation
as Σi = σ2(ρ|j−k|) (j, k = 1, . . . , m, ρ ∈ (−1, 1)).

3. Tri-diagonal. Within-subject correlation vanishes except for adjacent
observations, i.e., the (j, k)-th element of Σi is given by

(Σi)j,k =





σ2, j = k
σ2ρ, |j − k| = 1
0, |j − k| ≥ 2
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where ρ ∈ (−{cos(π/(m+ 1))}−1/2, {cos(π/(m+ 1))}−1/2).

Table 1: Calibration for conventional covariance structures with m = 10
ρ 0 0.2 0.5 0.8

‖Σ̂−Σ‖ 13.8075 13.8161 13.8507 13.8815
Compound non-P.D.frequency (%) 94 96 100 100

symmetry ‖P∗(Σ̂)− Σ‖ 13.7601 13.7694 13.7956 13.8280

‖Σ̂− P∗(Σ̂)‖ 0.6648 0.7194 1.0337 1.3536

‖Σ̂−Σ‖ 13.8075 13.8715 13.9560 13.8937
non-P.D.frequency (%) 94 67 20 9

ar(1) ‖P∗(Σ̂)− Σ‖ 13.7601 13.8371 13.9207 13.8611

‖Σ̂− P∗(Σ̂)‖ 0.6648 0.4311 0.5305 0.5815

‖Σ̂−Σ‖ 13.8075 13.8687 14.0129 /
non-P.D.frequency (%) 94 69 27 /

Tri-diagonal ‖P∗(Σ̂)− Σ‖ 13.7601 13.8331 13.9826 /

‖Σ̂− P∗(Σ̂)‖ 0.6648 0.4425 0.4304 /

We explore with four different values of ρ ∈ {0, 0.2, 0.5, 0.8}, representing
different degrees of within-subject correlation. An exception exists in the
tri-diagonal case, where ρ can only take three different values ρ = 0, 0.2, 0.5,
as ρ = 0.8 leads to a non-positive definite matrix Σi. Table 1 and Table 2
display the simulation results with m = 10 and m = 20. The labels ‖Σ̂−Σ‖,

‖Σ̂ − P∗(Σ̂)‖ and ‖P∗(Σ̂) − Σ‖ denote the average Frobenius norm between

the true covariance matrix Σ, the estimated covariance matrix Σ̂ and the
calibrated covariance matrix P∗(Σ̂). The row headed “non-P.D.frequency”

records the proportion of non-positive definite Σ̂ arising in the covariance
estimation procedure. The very high rate of non-positive definite Σ̂, par-
ticularly when m = 20, demonstrates the need for calibration. Also, the
‖P∗(Σ̂) − Σ‖ are smaller than ‖Σ̂ − Σ‖, indicating that, on average, P∗(Σ̂)

is closer to the true covariance matrix than Σ̂. Furthermore, the reported
‖Σ̂−P∗(Σ̂)‖ are relatively small, meaning that the calibration method makes
no essential changes to the original covariance matrix, other than in correct-
ing its non-positive definiteness. Comparing Table 2 with Table 1, the aver-
aged Frobenius norms ‖P∗(Σ̂)−Σ‖, ‖Σ̂−Σ‖ and ‖Σ̂−P∗(Σ̂)‖ increase with
m, indicating the dimension dependency of the Frobenious norm. Another
potential reason is that Σ̂ with higher dimension were more frequently to be
non-positive definiteness, so that more actual calibrations were manipulated.
When ρ = 0 all three structures reduce to the identity structure and the
results become identical.
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Table 2: Calibration for conventional covariance structures with m = 20
ρ 0 0.2 0.5 0.8

‖Σ̂−Σ‖ 29.0470 29.2198 29.2109 29.3859
Compound non-P.D.frequency (%) 100 100 100 100

symmetry ‖P∗(Σ̂)− Σ‖ 28.7750 29.0383 29.1101 29.3128

‖Σ̂− P∗(Σ̂)‖ 3.2369 2.0760 1.6720 1.6933

‖Σ̂−Σ‖ 29.0470 29.1571 29.3189 29.4197
non-P.D.frequency (%) 100 100 100 74

ar(1) ‖P∗(Σ̂)− Σ‖ 28.7750 28.8966 29.1032 29.3403

‖Σ̂− P∗(Σ̂)‖ 3.2369 2.9150 2.1133 0.7128

‖Σ̂−Σ‖ 29.0470 29.0928 29.2723 /
non-P.D.frequency (%) 100 100 100 /

Tri-diagonal ‖P∗(Σ̂)− Σ‖ 28.7750 28.8416 29.0362 /

‖Σ̂− P∗(Σ̂)‖ 3.2369 2.8607 2.5349 /

3.2. Simulation 2

We now consider a more general covariance structure via the modified
Cholesky decomposition [15]. With a covariance matrix Σi of order m, the
modified Cholesky decomposition of Σi is specified by TiΣiT

⊤
i = Di, where

Ti =




1 0 0 · · · 0
−φi21 1 0 · · · 0
−φi31 −φi32 1 · · · 0

...
...

...
. . .

...
−φim1 −φim2 −φim3 · · · 1




, Di =




σ2
i1 0 · · · 0
0 σ2

i2 · · · 0
...

...
. . .

...
0 0 · · · σ2

im


 ,

and where φijk and σ2
ij are the generalized autoregressive parameters and

innovation variances, respectively. We then parameterize φijk and σ2
ij as

functions of their corresponding measurement times, φijk = g(tij, tik) and
ln σ2

ij = q(tij), where g(., .) and q(.) are two- and one-dimensional smooth-
ing functions, respectively. With different specifications for g(., .) and q(.),
the covariance matrix Σi encompases a wide range of covariance structures.
Here we assume g(tij, tik) = m−2(t2ij + t2ik) exp{−(tij − tik)/4} and q(tik) =
2 ln[ln{tik/(m+2)}], with m = 10, 20. With the same mean function of Sim-
ulation 1, 100 simulated datasets are generated. The numerical results are
presented in Table 3. Again, we see that our proposed method provides, on
average, a closer-to-true surrogate covariance matrix. In the case of m = 20,
the calibrated covariance matrix P∗(Σ̂) substantially improves Σ̂ in the sense

of the Frobenius norm (‖P∗(Σ̂) − Σ‖ = 36.5162 while ‖Σ̂ − Σ‖ = 45.5746).

Comparing the case ofm = 10 tom = 20, ‖Σ̂−P∗(Σ̂)‖ substantially increases
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from 1.1041 to 26.5426. This is partly because of the dimension dependency
of the F-norm. It may also imply that the covariance estimate Σ̂ with m = 20
were more ill-conditioned and deeper calibrations were made.

Table 3: Calibration of a more general covariance structure with m = 10 and m = 20
m 10 20

‖Σ̂−Σ‖ 14.4988 45.5746
non-P.D.frequency (%) 89 100

‖P∗(Σ̂)− Σ‖ 14.4718 36.5162

‖Σ̂− P∗(Σ̂)‖ 1.1041 26.5426

4. Example analyses

In this section, we revisit two substantive analyses to demonstrate the
properties of the proposed calibration method for covariance matrix calibra-
tion.

4.1. Cattle data

Kenward’s cattle data [13] involves 60 cattle assigned randomly into two
treatment groups: half of the cattle received treatment A, and the other
half received treatment B. The cattle were weighed 11 times in total over a
nineteen-week period. The data are balanced in the sense that the weighing
times were the same for every cow. Using Diggle and Verbyla’s nonparamet-
ric regression approach [5] to model these two treatment groups separately,
we calculate the associated covariance matrix estimates for the two groups.
In this instance, both groups’ estimated covariance matrices are positive def-
inite. Here, we illustrate the need for calibration in missing data settings, by
artificially removing different portions of the cattle data. For each subject,
the first six repeated measurements are kept observed, but from the seventh
repeated measurement onwards the measurement is set to be missing with
probability θ. Once a measurement is missing, all subsequent measurements
for this subject are also dropped. With this manipulation, non-positive def-
inite covariance estimates emerge as θ increases. The missingness rate is set
to be θ = 0% (full data), 10%, 20%, 30%, respectively. These data sets with
missingness are then analyzed and calibrated where necessary. Because the
true covariance Σ is unknown, the sample covariance based on the full data,
Σs, is used as a benchmark for Σ.
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Table 4: Calibration results of cattle data with/without missingness
Positive F-Norm among Σ̂, Σs and P∗(Σ̂)

θ definiteness of Σ̂ ‖Σ̂−Σs‖ ‖P∗(Σ̂)− Σs‖ ‖Σ̂− P∗(Σ̂)‖
A 0% Yes 116.8018 116.8018 0

10% Yes 197.2300 197.2300 0
20% No 215.1713 213.5823 12.7821
30% No 347.9251 344.2363 24.2091

B 0% Yes 109.7911 109.7911 0
10% Yes 307.9060 307.9060 0
20% Yes 348.7275 348.7275 0
30% No 511.1006 498.6707 30.1888

Table 4 shows that for the full data set or cases with relatively low miss-
ingness rates (treatment A with missing rate up to 10%, treatment B with

missing rate up to 20%), the Σ̂ are positive definite. In these cases, the

calibrated matrices P∗(Σ̂) are identical to Σ̂, the calibration keeping Σ̂ un-
changed. When the missing rate increases to 20% for treatment A and 30%
for treatment B, Σ̂ become non-positive definite. In these circumstances,
the proposed calibration method yields surrogate matrices P∗(Σ̂) that are
positive-definite and whose Frobenius distances to Σs are shorter than those
from Σ̂.

4.2. CD4+ data

Figure 1: Variograms of CD4+ data
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The CD4+ data comes from an AIDS cohort study [12] comprising 369
infected patients. In total, 2376 repeated measurements of CD4+ cell counts
were taken over a period of eight and half years. The data are highly un-
balanced, with measurement times varying from subject to subject. Diggle
and Verbyla [5] analyzed the CD4+ data using their proposed nonparametric
covariance structure estimation method. Their estimated covariance matrix
turns to be non-positive definite, however. We reanalyze the CD4+ data and
then use our proposed calibration method to calibrate the original covariance
matrix estimate.

Figure 2: Original covariance estimate Σ̂ (left) and its calibration matrix P∗(Σ̂)
(right) in the CD4+ data

The estimated variogram surface is presented in Figure 1, corresponding
to Figure 8 of [5]. The variogram varies for time pairs with equal lags,
implying that the underlying longitudinal process for the CD4+ cell counts
may be non-stationary. In Figure 2, we plot the original covariance matrix
estimate Σ̂ and its calibrated covariance matrix P∗(Σ̂), where Σ̂ is found to
be non-positive definite, as mentioned by [5]. From Figure 2 we can see that

Σ̂ and P∗(Σ̂) are very similar in terms of shape and structure, indicating that
the calibration approach maintains the major characteristics of the original
covariance matrix.
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5. Discussion

We have proposed a calibration approach that provides a positive definite
surrogate for any given non-positive definite matrix. The calibrated covari-
ance matrix preserves the major characteristics of the original matrix, while
being closer to the true covariance than the original matrix, in the sense
of the Frobenius norm. Figure 3 illustrates the idea behind our approach,
where the dashed circle represents the domain D0 of all positive semidefi-
nite matrices whilst the solid circle is the domain Dc of all positive definite
matrices with eigenvalues no smaller than c. Given a positive constant c, a
non-positive definite matrix Σ̂’s nearest positive definite matrix Pc(Σ̂) will be
closer to the true covariance matrix, provided Σ ∈ Dc. We might therefore
expect that using our positive definite surrogate will improve efficiency and
accuracy in mean estimation.

c

P(  )c

Figure 3: Illustration plot on Σ, Σ̂, Pc(Σ̂) and c

One potential extension is to replace the domain Dc by a more general
set {A : A − diag(c1, . . . , cn) ≥ 0} where the ci are all positive. However,
this extension implies different restrictions imposed on the eigenvalues at
different positions, which may be difficult to justify. It also uses the same
number of parameters as the dimension of the covariance matrix, requiring
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intensive computational efforts, particularly for high-dimensional data. We
feel that this particular extension is unlikely to offer substantial benefit.

Our proposed method is not constrained by model assumptions, and
hence can be used in both likelihood-based methods (such as generalised
linear models) and moment-based approaches (such as generalized estimat-
ing equations). Neither is it limited by data structures, indicating it can be
applied into any multivariate data setting. In principle, it is applicable to
any field of multivariate data analysis where non-positive definiteness of a
covariance matrix estimator is a concern. Since the proposed approach is a
calibration approach, rather than a covariance estimation approach itself, it
can be directly incorporated in any existing covariance estimation process,
and offers a routine check and calibration of covariance matrix estimators.

Appendix: Proof of Theorem 1

We seek
Pc(X) = argmin

A∈Dc

‖X − A‖.

Rewrite this as

argmin
A:(A−cI)∈D0

‖(X − cI)− (A− cI)‖ = argmin
A′∈D0

‖(X − cI)−A′‖+ cI.

From [9], this latter is just P0(X − cI) + cI, as required. If, further, X is
symmetric, it has spectral decomposition X = QΛQ⊤ (say) for orthogonal Q
and diagonal Λ. Therefore X − cI = Q(Λ− cI)Q⊤, and

Pc(X) = Qdiag{max(λ1 − c, 0), . . . ,max(λn − c, 0)}Q⊤ + cI.

But cI = QcQ⊤, so Pc(X) = Qdiag{max(λ1, c), . . . ,max(λn, c)}Q⊤, as re-
quired. �
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