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New findings 

 What is the topic for this review? 

The dichotomisation of continuous-level physiological measurements into 

“responders” and “non-responders”, when interventions/treatments are examined in 

robust parallel-group studies 

 What advances does it highlight? 

Sample responder counts are biased by pre-to-post within-subjects variability. 

Sample differences in counts may be explained wholly by differences in mean 

response, even without individual response heterogeneity, and even if test-retest 

measurement error informs the choice of response threshold. A less biased and 

more informative approach employs the SD of individual responses to estimate the 

chance a new person from the population of interest will be a responder.  

 

Abstract 

As a follow-up to our 2015 review, we cover more issues on the topic of “response 

heterogeneity”, which we define as clinically-important individual differences in the 

physiological responses to the same treatment or intervention that cannot be attributed to 

random within-subjects variability. We highlight various pitfalls with the common practice of 

counting the number of “responders”, “non-responders” and “adverse responders” in 

samples that have been given certain treatments/interventions for research purposes. We 

focus on the classical parallel-group randomised controlled trial (RCT) and assume typical 

good practice in trial design. 

We show that sample responder counts are biased because individuals differ in terms of pre-

to-post within-subjects random variability in the study outcome(s) and not necessarily 

treatment response. Ironically, sample differences in responder counts may be explained 
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wholly by sample differences in mean response, even if there is no response heterogeneity 

at all. Sample comparisons of responder counts also have relatively low statistical precision. 

These problems do not depend on how the response threshold has been selected, e.g. on 

the basis of a measurement error statistic, and are not rectified fully by the use of confidence 

intervals for individual responses in the sample. 

The dichotomisation of individual responses in a research sample is fraught with pitfalls. 

Less biased approaches for estimating the proportion of responders in a population of 

interest are now available. Importantly, these approaches are based on the standard 

deviation for true individual responses, directly incorporating information from the control 

group.  

 

Keywords: Response heterogeneity, Inter-individual differences, standard deviation, 

responders, within-subject random variability 
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1. Introduction and Background 

In a previous issue of Experimental Physiology, the paper, “True and false individual 

differences in the physiological response to an intervention” was published (Atkinson and 

Batterham, 2015). This earlier review was written because we observed that many claims of 

individual differences in the physiological responses to exercise training and other 

interventions were based solely on intervention group data, sometimes even if these data 

were collected as part of a parallel arm randomised controlled trial (RCT). In the context of 

personalised (precision) medicine, we showed how common plots and analyses of pre-to-

post changes (measured on a continuous scale) can be misleading when undertaken only 

on data from the intervention/treatment group because of unavoidable within‐subject random 

variation between the baseline and follow-up time-points. This source of variation is 

inevitable even with „gold‐standard‟ measurement tools/protocols that happen to have 

excellent short-term (over hours or days) repeatability. For example, the short term test-

retest coefficient of variation (CV) of body mass is probably less than 0.5%, but the pre-to-

post CV in body mass over a 6-12 month period (a typical intervention duration for a weight 

management service) will be considerably larger (Abe et al., 2019; Atkinson and Batterham, 

2017). This differential amount of variability, depending on duration of retest (follow-up) is 

likely to be present for most physiological measurements and functional tests (Abe et al., 

2019). We showed that this component of variance between baseline and follow-up may be 

so substantial that it can sometimes explain all the perceived individual response 

differences, as observed solely in the treatment/intervention group (Atkinson and Batterham, 

2015). 

In our previous review, we presented a “roadmap” for research (particularly RCTs) on 

physiological response heterogeneity, which included how to quantify individual response 

differences via a relatively simple comparison of the standard deviation (SD) of changes 

(baseline – follow-up values) between intervention and comparator arms in a parallel group 

study. We termed this difference between SDs of change in intervention and control groups 

the standard deviation for individual responses (SDir). Any substantial treatment effect 
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heterogeneity that is larger than the heterogeneity in the data due to random within-subject 

variability over time would be revealed if the SD of changes in the treatment group is larger 

than that in the comparator group (Hopkins, 2015; Atkinson and Batterham, 2015; Cortes et 

al., 2018; Atkinson et al., 2018). When these SDs are similar, any individual response 

differences to the treatment itself are not large enough to be detected beyond the typical and 

inevitable within-subjects random variability in the study outcome. Therefore, further 

analyses, e.g. identification of specific response moderators, may be unwarranted and 

wasteful of resources. In essence, this reflects the “counterfactual” nature of the control 

group, which must always be appreciated in parallel group trials, whether one is researching 

mean or individual treatment effects (Senn, 2015; 2018). 

In Panel 1, we present various questions which have been raised in conferences and 

communications about the SDir approach since our last publication, and we have 

endeavoured to answer these questions. Like the estimation of mean treatment effects, any 

SD of changes comparison is contingent on a well-designed, adequately powered and 

executed RCT. We preferred to interpret the SDir against a minimal clinically important 

difference (MCID), while retaining the original units of measurement. Recently, Cortes et al. 

(2018) compared the SD of changes using a “relative” and unit-free F-ratio (treatment SD / 

control SD) approach. Both approaches could be reported in any RCT. 

Another practice that is common in research of this nature is counting the number (or 

proportion) of people in the study sample(s) who show observed responses above 

(responders) or below (non-responders) certain thresholds. In this, our update paper, we 

focus on the question of how robust the various responder identification type approaches are 

in physiological research. We maintain that there are also many pitfalls in these approaches, 

the worst scenario being that true clinically-important response heterogeneity has not been 

quantified and the responder counting analyses are not robust, leading to false inferences 

and recommendations about individuals who are deemed to be responders/non-responders 

in a given sample. Our primary aim, in this update review, is, therefore, to highlight these 
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pitfalls about sample responder counting and make recommendations on how to avoid these 

pitfalls.  

2. A definition of response heterogeneity in the context of precision medicine 

As in our previous review, we focus on a definition of response heterogeneity that is relevant 

to study variables (outcomes) measured on a continuous scale and that is most relevant to 

precision (personalised) medicine. We highlight the fact that the response heterogeneity we 

cover here is distinct from other aspects of personalised medicine, e.g. a personal risk 

profile, based on genes or other information, to predict future conditions or diseases. So, by 

“treatment response heterogeneity”, we refer to clinically important individual differences in 

the magnitude of response to the same treatment/intervention. We use these latter terms 

interchangeably. We refer to individual differences in treatment response that are not 

explained by random within-subject variability over time. We also emphasise that this 

definition refers to the responses to the same treatment prescribed to a sample of 

individuals, rather than observing how many people in different samples respond to different 

interventions beyond a certain threshold response value. We discuss later, and in more 

detail, how this latter approach tells us little about true response heterogeneity in the context 

of personalised or precision medicine. 

By “clinically important”, we mean a magnitude of response that, ideally, is anchored to a 

meaningful change in the risk of morbidity and/or mortality, or an overall endpoint that 

matters like the chance of winning an Olympic medal in an exercise science context. There 

are various ways in which “target differences” or minimal clinically important differences 

(MCID) can be arrived at, and we encourage readers to refer to the guidelines laid down in 

the DELTA1 and DELTA2 publications (Cook et al., 2014; 2018). Later, we also highlight the 

difference between this MCID and “minimal detectable change”, which is the magnitude of 

response that surpasses, with a certain probability, measurement error. Such a change may 

be “statistically significant” or be detectable amongst a background of experimental noise, 

but it may not necessarily be clinically important and be the same as the MCID (de Vet et al., 

2006). 
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3. How large should the mean treatment response be for response heterogeneity to 

matter? 

In our previously-reported “roadmap”, we showed how the SDir (derived from the standard 

deviations of change for both intervention and control groups) can be used to inform the 

magnitude of response heterogeneity that is adjusted for any within-subjects random 

variability (present in both treatment and control groups). The SDir is compared to a target 

clinically-important threshold, alongside the magnitude of mean treatment effect. One 

question within this approach is how likely is it that response heterogeneity is clinically 

important, if the mean intervention effect is already known to be close to zero?  

Harrell (2018) maintained that, if response heterogeneity is present when the mean 

treatment effect is tiny, it follows that there must be patients or subgroups for whom the 

treatment worsens the outcome. Harrell (2018) thought it not to make sense to perform 

further studies on a treatment known to be, on average, not beneficial at all just to gain 

further knowledge that the treatment could actually also be detrimental to some people. In 

the context of exercise training, this notion would translate to a researcher wanting to find 

out whether a certain training intervention worsens health for some people, even though it is 

already known that the intervention has close to a zero average effect.  

In theory, if a certain intervention leads to a clinically important benefit on average, and there 

is actually very little response heterogeneity, then this is preferable to the situation where 

response heterogeneity is present but only relatively few people will benefit from the 

intervention. Such interpretations of response heterogeneity, especially in the context of 

health economics, have been reported to be under-appreciated (Senn, 2015; 2018). 

Nevertheless, if the mean treatment response is small but response heterogeneity between 

people is indeed very large, then we believe that this finding is important to confirm robustly, 

as the treatment could benefit a reasonably large proportion of people in the population of 

interest. Therefore, we think it is interesting to know what proportion of people in a 

population of interest may be responders, non-responders or adverse responders. 

Nevertheless, there does not seem to be, at present, any agreed thresholds for these 
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proportions in order to guide research and practice, e.g. whether a certain treatment is worth 

rolling out if the estimated proportion of responders is say 20%.  

4. A hypothetical study and dataset 

In keeping with our previous review, we can communicate some pitfalls and issues via a 

hypothetical RCT and a data simulation involving large (n=1000) samples. This is not a 

simulation that is designed to illustrate the impact of sampling error on a certain statistic. We 

merely aim to scrutinise various responder counting approaches in hypothetical large 

samples with characteristics we can stipulate a priori. In this respect, we generated our 

samples using the popular package, Microsoft Excel, rather than dedicated code-dependent 

software such as R, with the belief that any researcher may like to reproduce, or formulate 

their own, data simulation. The overall benefits of this approach are that we know exactly 

what the parameters of the data are, e.g. Normal distribution of pre-to-post changes, we can 

pre-specify means and SDs that are realistic, and we can make inferences with decent 

precision with a sample size of 1000 (Morris et al., 2019). 

Obviously, all the usual pre-specified trial design and data analysis considerations are 

critical, whether it is treatment response heterogeneity that is of interest and/or the mean 

treatment response. Both these outcomes are reliant on good trial design. These issues are 

covered comprehensively in the CONSORT explanation and elaboration document (Moher 

et al., 2010). If there are deviations from typical good practice in trial design (Moher et al., 

2010), then the least of the researchers problems is how to robustly undertake a response 

variance comparison, or indeed any data analysis (Panel 1). No statistical analysis 

approach, whether it is designed to quantify mean treatment response or response 

heterogeneity, can retrieve poor study design characteristics (Campbell and Machin, 1993).  

In Table 1, we present the results of the data simulation for a three-group parallel arm 

intervention study designed to quantify the effects of two exercise interventions vs a control 

group on maximal oxygen uptake (VO2max). This design and context is similar to those 

reported recently by Williams et al. (2019). The three study groups are; control (zero change 

in true VO2max for all participants), Intervention 1 (a 3.6 ml/kg/min increase in true VO2max 
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for all participants) and Intervention 2 (a 2.0 ml/kg/min increase in true VO2max for all 

participants). We highlight the fact that the true change in VO2max is a constant value for 

every hypothetical participant, and only varies according to the study group they are in. In 

this way, we wish to set up the “null position” of no true treatment response heterogeneity. In 

this situation, it follows that there are no responders whatsoever in a sample when the mean 

response is below the response threshold. Later, we discuss the basis of how such a 

threshold should be selected. 

Within-subjects random measurement variability is inevitable in physiological research. 

Therefore, a random amount of within-subjects variability was added to each of the “true 

values” and this “error” had an approximate mean (SD) of 0 (3) ml/kg/min in order to provide 

each group‟s observed baseline and follow-up measurements. These errors led to the SD of 

change in each study arm to be 4.3-4.4 ml/kg/min, which are similar to the SDs of change 

reported by Prud‟Homme et al. (1984). These values of SDchange are expected because of 

the mathematical relationship between the SD of change and the within-subjects SD or 

“typical error”, e.g. SD of change = within-subjects SD x √2 (Atkinson and Nevill, 1996).  As 

is likely the case for real data, we assumed that the distribution of these within-subjects 

errors is Gaussian. Most measurement error statistics are reliant on this assumption 

(Atkinson and Nevill, 1996), which should, nevertheless, always be verified for any data 

analysis. Interestingly, non-Gaussian distribution of responses has been claimed for certain 

measurements of pain (BMJ, 2019), although whether this is the case in general has not yet 

been confirmed for studies on pain outcomes. Irrespective of this assumption, we highlight 

the fact that individuals can differ in how much random within-subjects variability influence 

the measurements made at baseline and follow-up timepoints, as is the case for real data. 

That is, in any study, some participants show higher amounts of random test-retest variability 

than other participants. This common measurement characteristic is important for explaining 

some of our observations and conclusions later in this review. The Excel spreadsheet for 

these data is available as a supplementary file. 
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Mean intervention effects in RCTs are most-appropriately quantified with a general linear 

model, including study group as a fixed factor and baseline VO2max as a covariate. This 

ANCOVA-model approach has been shown to be superior to a group x time interaction 

based model (Vickers, 2005), which is unfortunately often selected by physiologists and 

exercise scientists The estimated mean (95% confidence interval) change in VO2max (vs 

control) for interventions 1 and 2 are 3.6 (3.2 to 4.0) ml/kg/min and 2.2 (1.8 to 2.6) ml/kg/min, 

respectively. These are conditional mean changes, whereby group differences at baseline 

have been adjusted for in the model. The same baseline-adjusted modelling approach can 

be used to also derive the SDir (see later). 

5. Counting responders and non-responders in the sample using a defined response 

threshold 

The fundamental problem with sample responder counting in a parallel arm RCT is the 

“counterfactual”, whereby it is impossible to determine who is a responder in a treatment 

arm, because it is unknown what would have happened to that individual if, contrary to the 

fact, they had been in the control group (Senn, 2015). Consequently, there are four issues of 

practical validity to consider when counting the number of changes in a sample that surpass 

or fall short of a certain response threshold and comparing these counts between different 

study groups who received different interventions, 

(i) The relevance of this approach to response heterogeneity in the context of 

precision medicine, 

(ii) The sensitivity of the responder counts to group differences in mean response, 

(iii) The incorporation of probability inference for the precision of identifying 

responders or non-responders, and what is done with this information. 

(iv) How the response threshold has been selected.  
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5.1. What are responder counts in samples actually telling us? 

We will consider issues (i) and (ii) together, since we maintain that the sensitivity of the 

responder counting approach to the group mean change renders the approach irrelevant to 

response heterogeneity in the context of precision medicine. Note, in Table 1, that the SDs 

of observed changes are very similar (4.3-4.4 ml/kg/min) for all three groups, in agreement 

with the fact that no individual differences in change were simulated in all three groups. 

According to our previously-reported equation to estimate the SD for true individual response 

heterogeneity, this SD (95%CI) is 0.83 (-1.29 to 1.75) ml/kg/min and 0.41 (-1.47 to 1.58) 

ml/kg/min for Intervention 1 and 2 participants, respectively (observed response 

heterogeneity = random within-subject heterogeneity in the control sample). As mentioned 

above, these SDir estimates and confidence intervals can also be obtained using a 

modelling approach, adjusting for any differences at baseline (Atkinson and Batterham, 

2015). In the case of our large sample random data simulation, the SDir estimates are 

similar between equation and modelling approach. Importantly, the SDir values are small 

and, therefore, not indicative of any clinically important response heterogeneity. This is, of 

course, exactly what was simulated. These SDir values are not exactly zero because of 

sampling error (even for our relatively large sample sizes of 1000 in each group) and small 

random variability in the random number generator in Excel. Note also that, because of the 

sampling error we discussed in section 1, the lower confidence limit for both SDs is negative 

in sign. It can be seen that even with relatively large sample sizes of 1000 cases in each 

study arm, sampling error is still large enough for the 95% confidence interval of a very small 

SDir to overlap zero. 

Strikingly, the responder counts indicate that there are a number of responders and adverse 

responders in each sample, even in the control group. Nevertheless, we already know that 

the treatment response per se of every case is a constant value in each group and smaller 

than the response threshold we selected of 5 ml/kg/min. For example, the “error-free” 

increase for all cases in the Intervention 1 sample is 3.6 ml/kg/min. Nevertheless, the 

responder counts are telling us that 363 (36%) of this sample responded ≥ 5 ml/kg/min. This 
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discrepancy between observed counts and the true counts is due to the inevitable random 

within-subjects variability between the baseline and follow-up time points in the RCT. The 

distribution of this random variability tends to be Normal. Therefore, there are always some 

people who show larger amounts of this variability than other people. In our data simulation, 

the apparent “responders” are actually the cases who happen to show a relatively large 

amount of random variability between baseline and follow-up, and this variability happens to 

be in a positive direction, thus rendering the baseline to follow-up change large and positive. 

The apparent “adverse responders” are cases for which random variability happens to be 

large in the other direction, rendering a substantial apparent deterioration in VO2max. 

Counting the number of responders in a sample is compromised by within-subjects variation 

between time points (and individual differences in this within-subjects variation) and can be 

misleading. One may think that comparing responder counts between intervention and 

control groups would rectify this problem. Nevertheless, this is not the case because there 

can be problems also with such a comparison, and these are covered in the next section. 

5.2. Comparing responder counts between samples. 

Note in Table 1 and Figure 1 how the group differences in observed mean response lead to 

group differences in the observed numbers of responders, adverse responders, and trivial 

responders (according to a response threshold of 5 ml/kg/min and an adverse response 

threshold of -5 ml/kg/min). Therefore, although researchers have made inferences relating to 

response heterogeneity or “trainability” on the basis of such “responder counts” (Ross et al., 

2015; Williams et al., 2019; Hammond et al., 2019; Bonafiglia et al., 2019), it is in fact the 

group differences in mean treatment response that explain the differences in responder 

counts between our groups (Figure 1), besides the fact that the responder counts cannot be 

correct in the first place. Therefore, such group comparisons of responder counts do not 

provide much information about response heterogeneity, as defined in the context of 

precision medicine (section 2).  
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We have demonstrated that responder counts can differ between groups even if there is no 

treatment response heterogeneity present at all within each of the groups. The only factor 

we have manipulated in our simulation is the sample mean. It is incongruous for a proposed 

approach to quantifying individual differences in response to merely reflect differences in 

mean response. Interestingly, this distinction is an important aspect of the work of Geoffrey 

Rose, especially in how population mean characteristics underpin individual characteristics 

in public health (Rose, 2001). Ironically, these responder count comparisons could be telling 

us more about “average medicine” than personalised medicine. Another secondary problem 

with comparing responder counts between samples is the relatively low statistical precision 

or “power” of the comparison. This issue has been covered extensively by Snapinn and 

Jiang (2007).  

5.3. Does the use of a measurement error statistic to inform the response threshold 

help? 

It is clear that the approach of responder counting is compromised by within-subjects 

random variability and group differences in mean response. One question is whether this is 

so, irrespective of how a certain response threshold is formulated, i.e., whether it was 

formulated on the basis of a well-defined minimal clinically important response or in 

comparison to a measurement error statistic like the technical error of measurement, or a 

combination of both the MCID and a measurement error threshold. We selected a response 

threshold of 5 ml/kg/min merely for illustrative purposes knowing that all “error-free” 

responses in both treatment arms are below this MCID. A response threshold should be 

selected on the basis of clinical importance rather than measurement variability (Cook et al., 

2014; 2018). Nevertheless, suppose we select 2 x the “typical error” as our threshold, as 

several authors have done (Ross et al., 2015). Using the information from our control group, 

we can calculate typical baseline to follow-up variability by dividing the SD of changes by the 

square root of 2, giving a typical error of about 3 ml/kg/min. Two times this value gives 6 

ml/kg/min. The proportion of “responders” in each group whose change in VO2max exceeds 

this threshold is 7%, 29% and 19% for control, intervention 1 and intervention 2, 
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respectively. Again, there is a suggestion of “responders” within each sample, when in fact 

there are no cases which exceed a treatment response per se of 6 ml/kg/min in all three 

samples. Moreover, the differences in responder counts are due almost solely to the 

differences in mean response between the groups. The responder count differences are not 

an indication that response heterogeneity differs between the groups, even though the 

response threshold was selected on the basis of a random within-subjects test-retest or 

baseline to follow-up statistic. 

Whatever the threshold value is, and however it is selected, this would not alter the fact that 

it is the group differences in mean response, and not response heterogeneity, which are 

explaining the group differences in “responder counts” in our simulation. This relationship 

between the difference between two group means and the difference in area under the 

Normal curve of changes is well known, has mathematical underpinnings, and can be shown 

by inputting values in to this useful on-line calculator, 

http://onlinestatbook.com/2/calculators/normal_dist.html. For example, if a mean of -0.11 

ml/kg/min and an SD of change of 4.3 are entered into the calculator and the area under the 

Normal curve (AUC) above the threshold of 5 ml/kg/min is calculated, this AUC is 12%, 

which agrees reasonably well with the 13% in our simulated control group (Figure 1). If the 

mean is altered to the 3.6 ml/min/kg and SD = 4.4 ml/kg/min observed for the Intervention 1 

group, then the AUC above 5 ml/kg/min becomes 38%, which, again, agrees well with our 

simulation results (Table 1, Figure 1).  

We maintain that the dependency of responder count comparisons on group differences in 

mean change is not fully appreciated by researchers, even though it is clearly illogical for 

inferences on individual response heterogeneity (in the context of precision medicine) to be 

made entirely on the basis of the magnitude of group mean response. For example, Ross et 

al. (2015) studied what they claimed was the “individual cardiorespiratory fitness response” 

to different types of exercise interventions (undertaken by different groups). The number of 

“responders” was found to increase as the group mean response increased. This approach 

to responder counting has also been adopted by researchers who defined their study topic 

http://onlinestatbook.com/2/calculators/normal_dist.html
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as “trainability” (Williams et al., 2019). Most definitions of this term encompass the notion 

that individuals differ in their response to the same or similar interventions. Therefore, it is 

unclear how this approach to responder counting relates to this primary question of interest. 

We repeat; observing more individual changes in a sample that surpass a certain response 

threshold when the mean change of that sample is higher has very little to do with individual 

response heterogeneity in the context of precision medicine. 

5.4. Quantifying the probability of being a responder/non-responder in the sample of 

interest 

Approaches have been developed for quantifying the probability that a particular person in 

the sample of interest is a responder or non-responder (or a “trivial responder”). The context 

of our review is research and, particularly, an RCT in which parallel samples of participants 

are measured on a particular study outcome at baseline and at a later follow-up time-point. 

This context is not the same as clinical decision making on individual patients nor when 

monitoring individual or team athletes. Therefore, if responders and non-responders can be 

identified in a particular study, it is important for the researcher to communicate exactly what 

will be done with this information, especially with governance and ethics in mind (Harriss et 

al., 2017). According, to the UK Health Research Association (Health Research Authority, 

2018), any information communicated to participants about their research results should be 

in line with the arrangements agreed by the original ethics committee that approved the 

study. This means that full details about how the researcher feeds back information and 

advice to a non-responder or adverse responder should be transparent in the ethics 

approval process and be present on any participant information sheet. 

Bonafiglia et al. (2019) cited the paper by Swinton et al. (2018) in order to attach a 

probability interval around each participant‟s response in the intervention sample itself. For 

example, assuming a large sample, Swinton et al, (2018) reported that an interval of 95% 

width is calculated by response ± SDchange for control x 1.96. This 1.96 multiplier can be 

replaced by values from the t distribution for smaller sample sizes. In Table 2, we show the 

results of applying the similar approach reported by Bonafiglia et al. (2019) to our simulated 
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data. In keeping with their approach, we set the response threshold to 1 MET (3.5 

ml/kg/min). Each individual response interval was calculated according to the equation 

presented by Bonafiglia et al. (2019), whereby Individual 95% CI = Response estimate ± 

(1.96 × TE), The typical error term (TE) is SDchange in the control group divided by √2 = 

4.32/√2 = 3.06. Note that TE itself was used by Bonafglia et al. (2019) rather than the 

SDchange advised by Swinton et al. (2018). Nevertheless, in each study group, we counted 

the number of responders, “uncertain responders”, and adverse responders on the basis of 

each individual‟s whole confidence interval being higher, overlapping or lower than the 

response threshold.  

We can compare the responder counts presented in Table 2 with what we would be 

expecting already knowing the exact nature of our simulated data. For example, we already 

know that the mean treatment effect for intervention 1 is 3.6 ml/kg/min and there that is no 

individual heterogeneity in treatment response in this study group. When the response 

threshold is selected to be 3.5 ml/kg/min, we would, therefore expect about 50% of the 

intervention 1 participants to be above this threshold and 50% of the sample responses to be 

below this threshold. This is because the threshold is close to the mean treatment effect. 

Nevertheless, we do not observe these expected counts because in Table 2, only about 8% 

of the participants have a response that is above 3.5%, according to the approach reported 

by Bonafiglia et al. (2019). This approach is clearly erroneous for the robust identification of 

responders and non-responders.  

Unfortunately, the approach reported by Bonafiglia et al. (2019) is also sensitive to group 

differences in mean response, which compromises its usefulness for indicating response 

heterogeneity or group differences in response heterogeneity. The fact is that only the mean 

treatment effect differs between groups in our simulation. Again, when a mean treatment 

effect is different between samples, then naturally so is the number of people in each sample 

whose response is higher or lower than a certain threshold value, and this is also the case 

here when individual confidence bands are estimated for each individual response.  
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5.5. Sample response “dichotomania” 

There are some other important factors to consider when a researcher is interested in using 

response thresholds on ratio or interval data, to categorise sample participants as 

responders or non-responders. Most importantly, the act of converting measurements on a 

continuous ratio or interval scale into a binary (response/no response) variable has received 

much criticism amongst statisticians, some of whom have labelled this procedure as 

“dichotomania” (Senn, 2005). Besides the issue of poorer statistical power for 

dichotomisation vs analysis of the original continuous data, dichotomisation leads to 

problems in adjusting for baseline differences between study groups. Senn (2005) also 

showed how some responder threshold definitions lead to illogical and inconsistent labelling 

of a “responder”, especially if these definitions are based on multiple outcomes, e.g. both 

systolic and diastolic blood pressures, and are dependent on the initial status of the 

outcome, e.g. being in a higher hypertensive category than a lower category and/or using a 

percentage change as the response threshold. 

Lastly, if one is interested in designing studies to inform precision medicine in general, one 

needs to question the efficiency and utility of identifying responders and/or non-responders 

merely in the study sample, even if this identification process was robust. For example, if 4 

people (10%) from a sample of 40 people who received a certain exercise intervention were 

found to be “non-responders”, is the researcher obliged to undertake further studies on these 

4 people to see what does “work” for them? Such an approach could be very costly relative 

to the scope of the research impact. In this respect, we believe that researchers seem to be 

confusing empirical trials of effectiveness in a research context with exercise performance 

support work, e.g. sports science support or coaching. Again, the most relevant question in a 

research context is not necessarily which individuals in a sample itself are responders/non-

responders, but what are the chances a new person from the population of interest is a 

responder or a non-responder, that is, statistical inference, and not necessarily participant 

identification in the particular study sample itself. 
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6. Estimating the proportion of responders in a population of interest. 

From the arguments presented above, we maintain that identifying people from observed 

values in a single or multiple intervention sample as “responders” or “non-responders” is 

fraught with pitfalls, Although there are approaches for observing individual change for a 

person in an intervention/treatment sample and estimating confidence intervals for their 

“true” individual change, we have shown that the observed change itself can be 

contaminated by within-person random variability between baseline and follow-up 

measurements. Also, we do not think that robust conclusions can be derived by comparing 

responder or non-responder counts between different samples because such comparisons 

lack statistical power and may merely be proxies for sample differences in mean response 

(Senn, 2005; 2015; 2018; Snappin and Jang, 2007). We, therefore, favour approaches that 

do not involve the identification of responders or non-responders in the particular sample(s) 

of interest, but estimate the proportion of responders or non-responders in the population of 

interest. An analogous estimation would be the chance that any new person from the 

population of interest would be a responder or not.  

We maintain that an estimation of how many people in a population of interest who may 

benefit or not from an intervention can be useful. Approaches for this notion have been 

forwarded recently by Swinton et al. (2018) and Hopkins (2018). Importantly, these 

approaches involve the SDir, directly accounting for the random within-subjects variability 

that is present. Essentially, this SDir is considered a parameter for the distribution of true 

responses in the population of interest alongside the mean treatment effect (Figure 2). Then 

the proportion of people predicted to be above or below a certain response threshold is 

estimated using the characteristics of the Normal distribution. Again, there are online 

calculators for this step like the one we mentioned in section 5.3, as well as dedicated 

spreadsheets (Swinton et al., 2018). Only with this approach, does one get close to what 

was actually defined in our simulated datasets (Table 3). For example, the mean treatment 

response for intervention 1 is 3.6 ml/kg/min. Let us assume an MCID of 3.5 ml/kg/min 

(Bonafiglia et al., 2019). Because the mean intervention response is very similar to the 
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selected MCID of 3.5 ml/kg/min, and because the SD for true individual response differences 

is small (0.83 ml/kg/min), it is not surprising that just over half (55%) of all people in the 

population are estimated to be responders and 45% are trivial responders, with no adverse 

responders present. For intervention 2, the SD for true individual responses is 0.41 

ml/kg/min and the mean treatment effect is 2.2 ml/kg/min. Therefore the number of 

responders in the population of interest above an MCID of 3.5 ml/kg/min is estimated to be 

zero for intervention 2, with zero people being lower than the adverse response threshold of 

-3.5 ml/min. Therefore, everyone‟s (100%) response in the population of interest is expected 

to be trivial for intervention 2. This is of course what we simulated; a mean intervention 

response of approximately 2 ml/kg/min and no individual differences in response. 

Hopkins (2018) suggested a similar approach to that of Swinton et al. (2018). Confidence 

intervals for these proportions are best derived using bootstrapping (Swinton et al., 2018), 

preferably the bias-corrected and accelerated bootstrap. However, bootstrapping the whole 

analytical process involving such a relatively complex linear mixed model incorporating 

baseline values of the outcome and perhaps other covariates can be computer-intensive for 

this standard deviation estimation problem. Analytic formulae are available (Mathur  and 

VanderWeele, 2019), but are not robust when the proportion is <0.15 or >0.85. Note that 

these formulae were derived for application to meta-analyses, but are directly transferable to 

deriving confidence intervals for proportions of individual responders, rather than proportions 

of individual studies. We maintain that only these approaches, which use the SDir, give 

estimated population proportions that are relatively unbiased. 

Summary 

We have followed up our earlier review on this research topic by highlighting some additional 

pitfalls in the analysis of individual physiological responses to an intervention or treatment. 

We have focussed particularly on the act of counting the participants in a study group whose 

individual response is above or below a certain response threshold deemed to be important. 

Before doing this, researchers need to ask themselves the following sets of questions; 
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1. What is the goal in identifying research participants as responders, non-responders, 

or adverse responders? Are these people to be followed up with further study? Who 

will fund such studies? How should this information be fed back to participants and 

what will the participants‟ likely reactions be? 

2. What is the response threshold that is clinically or practically important? Given that 

such a threshold might not coincide with the minimal detectable change (as indicated 

by a measurement error statistics), how should this threshold be rationalised? Can a 

response threshold be formulated in relation to a robust anchor of morbidity and/or 

mortality or can it be rationalised on the basis of the fraction of a between-subjects 

standard deviation?  

Once a researcher is comfortable that these questions have been answered, we recommend 

that the approaches of Swinton et al. (2018) and Hopkins et al. (2018) are followed because 

these approaches use the SDir and infer to a population of interest rather than the study 

sample participants. Importantly, the approaches by Swinton et al. (2018) and Hopkins 

(2018) were the only ones that fully reflected the underlying characteristics of our data 

simulations. The approaches based on counting responders in each sample of interest are 

biased relative to the “truth” of our simulation. This bias is not resolved by selecting a 

response threshold based on measurement error or by calculating confidence intervals for 

individual response values. 
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Figure 1. The distributions of individual changes for each of the three simulated study 

samples, together with the proportion of “responders”, “trivial responders” and 

“adverse responders” in each sample. The MCID was an improvement in VO2 peak 

of 5 ml/kg/min and the MCID for adverse response was -5 ml/kg/min. 
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Figure 2. The hypothetical distribution of responses (free from random within-

subjects variability) for a population of interest (Hopkins 2018). SDir = the SD for 

individual response heterogeneity. The net mean change is the baseline-adjusted and 

control group adjusted mean treatment effect for the sample. P = proportion of the 

population of interest. 
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Panel 1. Questions and Answers about between-group response variance 

comparisons and the SDir 

 

1. How should a negative SDir be interpreted? 

A negative sample SDir could result from several isolated factors or a combination of a 

number of factors in a similar way to a sample mean treatment effect that is negative (larger 

change in control group than in intervention group). First the population SDir may be 

negative. The confidence interval for the SDir will be informative in this respect, especially if 

the upper confidence limit itself is also negative. Nevertheless, the most likely explanation for 

a negative SDir is sampling error combined with a population SDir that is small. Again, the 

confidence interval for the SDIr will be informative here. Just as these underlying factors do 

not necessarily compromise the calculation of a mean treatment effect, these explanations 

also do not compromise the calculation of the SDir. 

 

2. What if there are systematic changes in the mean for the control group? 

A population change in the control group due to, for example, learning effects does not affect 

the SD of change in the control group. This fact is inherent in the mathematical 

underpinnings of the SD. Nevertheless, such a systematic mean change in the control group 

is important for a robust estimate of the mean treatment response (intervention mean 

change – control mean change). Recently, Hammond et al. (2019) speculated that the SD of 

change comparison approach is “questionable” when “the control group is contaminated with 

other sources of variability, beyond that of which is random”. This statement denotes a lack 

of appreciation of the difference between systematic and random sources of variance. For 

example, if we added 1 ml/kg/min to all the true follow-up values in our control group, the SD 

of change would be unaffected, and this will always be so because of the term; (sample 

mean – observed value) within the equation for the standard deviation. This is why the 
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random variability we refer to is often also termed “residual” variance, meaning the random 

variation that is leftover once any systematic sources of change have been partitioned. This 

appreciation of how a systematic constant does not affect the variance is “Rule 2” for the 

variance, which is covered at: http://www.kaspercpa.com/statisticalreview.htm  

 

3. How would poor trial design affect the SDir?  

Just as any analysis of mean treatment response does not rectify a poor design, then any 

analysis of response heterogeneity cannot retrieve a poorly designed RCT. Researchers 

should endeavour to design, analyse and report their RCTs in accordance with best practice 

guidelines like CONSORT (Moher et al., 2010). 

 

4. How would loss of participants to follow-up affect the SDir? 

Loss of data at follow-up is a common problem in randomised controlled trials, but there are 

principled approaches for dealing with this problem (Bell et al., 2014; White et al., 2005; 

2011). Any partially missing data (for outcome or covariates), or participant withdrawal 

between baseline and follow-up, should be considered carefully. Such loss of data does not 

necessarily compromise a trial – again, irrespective of whether the mean response or 

response heterogeneity is of primary interest (Panel 1). The extent of any resulting problems 

would depend, in part, on the missing data mechanism. There is no reason to believe that 

data assumed to be missing at random would bias the estimate of a standard deviation of 

change in the exploration of response heterogeneity (Newman and Sin, 2009). The variance 

of change is the statistic used in the calculation of the SDir and the variance is not biased by 

sample size (Zar, 1999). It is good practice to pre-specify a principled approach to 

addressing missing data in the statistical analysis plan for the trial (see e.g., Belle et al., 

2014; White et al., 2005; 2011).  
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Table 1. Various mean (SD) measurements for the three parallel groups in the 

hypothetical study. In each group, there are no individual differences in response, merely 

differences between groups in the constant change value for each participant, plus random 

amounts of within-subjects variability between baseline and follow-up. Control = 0 change, 

Intervention 1 = 3.6 ml/kg/min change, Intervention 2 = 2.0 ml/kg/min change. Random 

within-subject variability was added to each true value of each participant in each group so 

that the mean (SD) random variability added was approximately 0 (3) ml/kg/min. These 

errors were Normally distributed. The correlation coefficient between baseline and follow-up 

values was 0.9 for each group. The response threshold was 5 ml/kg/min. This observed 

change is not from the ANCOVA model, i.e. not baseline and control group adjusted. 

 

Measurement (ml/kg/min) Control Group 
(n=1000) 

Intervention 1 
(n=1000) 

Intervention 2 
(n=1000) 

True baseline mean (SD) 34.8 (7.8) 35.0 (8.2) 35.1 (8.3) 

True follow-up mean (SD) 34.8 (7.8) 38.6 (8.2) 37.1 (8.3) 

True change for all participants 0 3.6 2.0 

Observed baseline mean (SD) 34.8 (8.2) 35.0 (8.8) 35.0 (8.9) 

Observed follow-up mean (SD) 34.7 (8.3) 38.5 (8.8) 37.0 (8.9) 

Observed change (SD)* -0.1 (4.3) 3.5 (4.4) 2.0 (4.3) 

Sample responder counts 

No. of responders 127 363 249 

No. of “adverse” responders 126 27 57 

No. of trivial responders 747 610 694 
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Table 2. Number of responders, “uncertain” responders, and adverse responders in 

each of the three study groups according to the individual confidence interval 

approach reported by Bonafiglia et al. (2019). According their approach, the response 

threshold was set at 1 MET (3.5 ml/kg/min). Each individual response interval was calculated 

according to Individual 95% CI = Response estimate ± (1.96 × TE), where TE is SDchange 

in the control group divided by √2 = 4.32/√2 = 3.06. 

 

 Control Group Intervention 1 Intervention 2 

Responders 11 (1.1%) 83 (8.3%) 38 (3.8%) 

Uncertain 974 (97.4%) 916 (91.6%) 957 (95.7%) 

Non-responders 15 (1.5%) 1 (0.1%) 5 (0.5%) 
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Table 3. Use of the SDir to estimate the proportion of predicted responders, predicted 

trivial responders, and predicted adverse responders in each of the three populations 

of interest according to the approach reported by Swinton et al. (2018). The proportion 

of responders was estimated as the proportion of a Normal curve above the thresholds of 

3.5 and 5.0 ml/kg/min when the Normal curve has parameters of mean treatment effect 

(from baseline and control group adjusted ANCOVA model) and SD = the “true” SD for 

response heterogeneity.  

Response 

threshold 

Label Intervention 1 

Mean change = 3.6 

SDIR = 0.83 

Intervention 2 

Mean change = 2.2 

SDIR = 0.41 

3.5 ml/min/kg Responders 55% 0% 

Trivial 45% 100% 

Non-responders 0% 0% 

5.0 ml/min/kg Responders 5% 0% 

Trivial 95% 100% 

Non-responders 0% 0% 
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