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Abstract

Flaring is a combustion process commonly used in the oil and gas industry to dispose flammable
waste gases. Flare flameout occurs when these gases escape unburnt from the flare tip causing the dis-
charge of flammable and/or toxic vapor clouds. The toxic gases released during this process have the
potential to initiate safety hazards and cause serious harm to the ecosystem and human health. Flare
flameout could be caused by environmental conditions, equipment failure and human error. However,
to better understand the causes of flare flameout, a rigorous analysis of the behaviour of flare systems
under failure conditions is required. In this article, we used fault tree analysis (FTA) and the dynamic
Bayesian network (DBN) to assess the reliability of flare systems. In this study, we analysed 40 different
combinations of basic events that can cause flare flameout to determine the event with the highest impact
on system failure. In the quantitative analysis, we use both constant and time-dependent failure rates of
system components. The results show that combining these two approaches allows for robust proba-
bilistic reasoning on flare system reliability, which can help improving the safety and asset integrity of
process facilities. The proposed DBN model constitutes a significant step to improve the safety and
reliability of flare systems in the oil and gas industry.
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1 Introduction
Technological systems are widely used in many areas. These systems make our lives more comfortable;
however, energy is needed to operate these systems. Assurance of an uninterrupted supply of energy is a
priority for society in order to efficiently utilize the available energy sources and develop new sources for
future use. Of many energy sources, crude oil contributes significantly to the total world energy consump-
tion. For example, in 2014, crude oil was estimated to provide 52.5% of the world’s energy, out of which oil
and natural gas accounted for 31.3% and 21.2%, respectively (IEA, 2016). According to BP (2017), there
were 1706.7 billion barrels of oil and 186.6 trillion cubic metres of gas reserves available worldwide at the
end of 2016. The distribution of the world gas and oil reserves is shown in Fig.1. Fig.2 shows the global
natural gas and oil production for the last eleven years and it shows that production has increased in recent
years.

The increased production rate of oil and gas in every year shows how heavily we rely on these as
energy sources. Our high dependence on gas and oil as an energy source has its own attendant impact
on the environment. During the crude oil production process, different associated natural gases (mainly
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Figure 1: Distribution of (a) world gas reserves and (b) world oil reserves (BP, 2017)

(a) Global natural gas production (b) Global oil production

Figure 2: Global natural gas and oil production until 2016

hydrocarbons) are produced. A typical natural gas sample contains CH4, C2H6, C3H8, n−C4H10, i−
C4H10, n−C5H12, i−C5H12, C6H14, C7H16, H2S, CO2, and N2, where ‘n’ stands for ‘normal’, i.e., straight
chain, and ‘i’ stands for ‘iso’ or branched-chain alkanes (Fawole et al., 2016; McEwen and Johnson, 2012;
Ismail and Umukoro, 2016; Sonibare and Akeredolu, 2004). These associate gases become a waste stream
and are either vented or flared due to the unavailability or inadequacy of technology, infrastructure, and
market structure. These actions have a harmful impact on the environment (Fawole et al., 2016; Sonibare
et al., 2010; Osuji and Adesiyan, 2005).

In addition to venting and reinjecting, flaring is a common method used to dispose the natural gases
associated with extracted crude oil in upstream operations, downstream refining, and chemical processing
industries. Flaring is commonly used to dispose of hydrocarbon gases by the oil companies due to their
cost-effectiveness and ability to burn efficiently (Anejionu et al., 2015). The primary function of a flare
is to oxidize associated gases through combustion to produce less harmful emissions to the atmosphere
rather than simply venting the gases, hence allowing safe, reliable, and efficient removal of waste gases.
Flare systems are increasingly susceptible to weather conditions, such as wind, which can severely affect
the combustion efficiency of the system. Reduced combustion efficiency would lead to the emission of
unburned gases such as soot, carbon monoxide, and hydrogen sulphide to the atmosphere. The inefficient
combustion of methane will result in an increase in greenhouse gas emissions. Inefficiency in sour gas flares
will result in the emission of toxic gases such as hydrogen sulphide, which may have hazardous impacts
on the environment as a continuous exposure to which is hazardous to the health of people and animals
(Hassan and Kouhy, 2013; Zadakbar et al., 2011; Ismail and Umukoro, 2012; Sinaki et al., 2011). Zadakbar
et al. (2011) have studied the risks associated with the flare flame-out condition.

As flaring is a very common activity in process industries, and failures of flare systems have the poten-
tial to cause significant harm to humans and the environment, it is expected that flare systems have high
level of reliability. A safety and reliability analysis will assist to recognize the potential causes of flare
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system failures, thereby providing potential solutions to improve safety by preventing failures. There are
many reliability analyses approaches available to evaluate the reliability of the systems. One of the popular
approaches for reliability assessment is the FTA (Vesely et al., 2002). FTA is a deductive analysis method,
in which investigation begins with a hazardous event. It then works backwards to find the root causes of the
hazardous event. The causes of system failure are represented as logical relationships among different sys-
tem components’ failure (i.e., basic events (BEs) in a fault tree) and Boolean gates such as ‘AND’ and ‘OR’
gates are used to represent these relationships. Even though fault tree analysis has some limitations, it has
been widely applied for systems reliability and risk assessment (Bhangu et al., 2015; Renjith et al., 2010;
Ramesh and Saravannan, 2011; Ferdous et al., 2009; Khan et al., 2002; Khan and Abbasi, 2000). Classi-
cal fault trees are not suitable for capturing time-dependent behaviour and it is not suitable for analysing
systems if there are mutually exclusive basic events or common cause failures. Moreover, events in classi-
cal FTs are considered statistically independent, however, in practice this is not always a valid assumption
(Bobbio et al., 2001). In situations where events are statistically dependent, this assumption may produce
misleading results about system reliability.

In recent years, the Bayesian network (BN) has been increasingly used in system safety and reliability
analysis applications. As a graphical inference methodology, BN expresses causal relationships among
events. BN can either be used for the prediction of the probability of unknown variables or for updating
the probability of known variables given some evidence. Weber et al. (2012) and Kabir and Papadopoulos
(2019) have provided a comprehensive review of the application of BNs in dependability analysis and risk
assessment. Applications of BNs in systems engineering include but are not limited to: reliability and risk
analysis (Khakzad et al., 2013; Hänninen et al., 2014; Yazdi and Kabir, 2018; Yuan et al., 2015), system
safety improvement (Garcı́a-Herrero et al., 2013; Trucco et al., 2008), mapping of fault trees into Bayesian
networks (Bobbio et al., 2001; Barua et al., 2016; Zarei et al., 2017; Kabir et al., 2014b; Yeo et al., 2016),
and diagnostic analysis (Wu et al., 2015; Musharraf et al., 2016).

Considering the fact that the flare flame-out has high potential to cause adverse environmental effects,
this paper aims at performing reliability analysis of a flare system. In the past, Berrouane and Lounis
(2016) evaluated the reliability of flare system using FTA. That analysis was not rigorous and has a number
of limitations:

• Due to the use of classical FTA, during the reliability assessment, the study was not able to consider
the dynamic characteristics of the system and was not able to model the statistical dependencies
between the events. This may have produced inaccurate results.

• The analysis was done based on the constant failure probability of events, however, in practical system
many components have time-dependent failure rates due to exposure to fatigue and ageing, which was
not considered.

• The criticality of the events with respect to their contribution to the occurrence of flare flame-out was
not studied.

In this paper, we overcome the above mentioned limitations of the previous study by using both FTA
and DBN for the reliability assessment of the flare system. We retained the FT used in the previous study
to determine the root-causes of the flare flameout. In this current study, we proposed to map a FT into
DBN, and the occurrence probability of the hazardous event (flare flameout) is estimated by mapping the
FT into a DBN, which addresses the issue of dependency between events. Moreover, in the analysis, both
constant and time-dependent failure rates of the events are considered at the same time. We compare the
results obtained by FTA and DBN, and it shows that the reliability of the system obtained by the FTA is
not accurate. Finally, we determine the criticality of the components using the DBN model, which will
be particularly important for the decision maker to understand where to put more effort to enhance the
reliability of the system.
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2 Methodologies Used

2.1 Fault Tree Analysis
A fault tree (FT) is a deductive, top-down graphical method that is used to identify the potential causes of
undesired events, often referred to as a top event (TE). The graphical representation of the FT is based on
Boolean logic, which shows logical relationships between different faults and their causes. The top event
usually represents a system failure which may lead to safety hazards or economic loss. As a deductive
method, the derivation of fault tree starts by considering the TE as the root of the tree and subsequently,
constructing the tree downwards until the basic events (BEs) causing the top event are known. In a FT,
a BE is symbolised by a circle and it represents a lower level fault which does not require any further
decomposition. An intermediate event, graphically represented by a rectangle, is an event that is caused by
other lower-level events occurring further down the tree. In an FT, the ‘AND’ and the ‘OR’ gates are most
widely used. An example FT is shown in Fig. 3.

Figure 3: An example fault tree

After construction, both qualitative and quantitative analysis could be performed on a FT. Qualitative
analysis of a FT usually yields a set of minimal cut sets (MCSs). A MCS is the smallest combination BEs
that can cause the top events of the FT. The FT in Fig. 3 can be qualitatively analysed to obtain four MCSs:
1. A.C, 2. A.D, 3. B.C, and 4. B.D. Note that the event A is shared between MCSs 1 and 2, the event B
is shared between MCSs 3 and 4, the event C is shared between MCSs 1 and 3, and the event D is shared
between MCSs 2 and 4. The quantitative data about system components such as failure rates or failure
probabilities are used in the quantitative analysis of FT to evaluate quantitative system properties such as
reliability, availability, criticality of components, etc. The quantitative analysis of FT is usually performed
under the assumption that the events in the FT are statistically independent. Nevertheless, in practice,
basic/intermediate events can be statistically dependent (Talebberrouane et al., 2016; Kamil et al., 2019).
Hence, statistical independence assumption could result into an inaccurate evaluation of system reliability
and other related indices.

There are many methods available to perform quantitative FTA such as the analytical method, binary
decision diagram, and Monte Carlo simulation (Vesely et al., 2002; Kabir, 2017). In analytical method, also
known as rare event approximation, mathematical formulas are used to approximate the probability of FTs’
top events. If the exponentially distributed failure rate (λ ) of BEi and the operating time t is provided, then
the BEi’s occurrence probability is computed as:

Pr{BEi}(t) = 1− e−λ t (1)

Note that the BEs usually represent mechanical components, which are exposed to fatigue or ageing
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can have time-dependent failure rate distributions defined for them. The Weibull distribution is one of the
regularly used life distributions used to define failure behaviour of mechanical components. The probability
density function (PDF) of the Weibull distribution is given by:

f (t) =
β

η

( t
η

)β−1
e−
(

t
η

)β

(2)

Where β and η are the shape and scale parameter, respectively. The occurrence probability of a BE with
Weibull distribution can be calculated as:

Pr{BEi}(t) =
∫ t

0
f (t)dt = 1− e−

(
t
η

)β

(3)

As the MCSs are presented as the intersection of the statistically independent BEs, the occurrence
probability of a MCS is calculated as (Henley and Kumamoto, 1981):

Pr{Mi}(t) =
m

∏
i=1

Pr{BEi}(t) (4)

where m is the number of basic events in the MCS, Pr{Mi}(t) is the occurrence probability of the MCS i at
time t.

Finally, as the TE is the union of the MCSs, the TE probability is approximated as (Esary and Proschan,
1963):

Pr{T E}(t) = 1−
m

∏
k=1

(
1−Pr{Mk}(t)

)
(5)

where P(TE) is the TE’s occurrence probability. To address the uncertainty associated with the failure data
and system behaviour, fuzzy set theory has been used by several researchers such as (Halloul et al., 2019;
Shi et al., 2014; Tanaka et al., 1983; Kabir et al., 2016; Yuhua and Datao, 2005; Markowski et al., 2009;
Kabir et al., 2014a).

It is worthwhile noting that, FT software often use“rare event approximation” i.e. simple sum of MCSs
probabilities as standard method for quantifying FTs due to efficiency of computation. The calculation
is precise only if MCSs do not share events and therefore are statistically independent, otherwise it leads
to approximation. The FT handbook suggests that this is typically an accurate approximation and the
calculated top event probability value is within about 10% of the true value if the basic event probabilities
are less than 0.1 (Vesely et al., 2002). Even if some the basic event probabilities are greater than 0.1, the
approximation could still be accurate if most of the basic event probabilities are less than 0.1. For critical
applications, the FT handbook suggests application of more accurate approximation approaches.

2.2 Bayesian Networks
Over the years, Bayesian Networks (BN) have gained popularity in system safety and reliability modelling
and risk management. BN have the capability to aggregate diverse sources of information in a single
model to offer a comprehensive reliability assessment of systems. Like FTs, Bayesian networks contain a
qualitative and a quantitative part. The qualitative part of a BN is a directed acyclic graph representing the
causal relationship between a set of variables (Pearl, 1988). The quantitative part of a BN includes a set of
prior probability distributions for a set of variables and a set of conditional probability distributions defining
the cause-effect relations among the nodes in terms of numerical values. In a BN, if an arc starts at node
X and ends in node Y, then node X is the parent of node Y. A node without a parent is considered as a root
node and a node without any child node is considered as a leaf node.
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Figure 4: Example of a Bayesian Network

BNs utilise the chain rule and d-separation rules (Pearl, 1988) while performing inference on the model.
According to the d-separation rules, “the root nodes are conditionally independent and all other nodes are
conditionally dependent on their direct parents”(Khakzad et al., 2011). In a BN model, chain rule can be
used to calculate the joint probability distribution of a set of random variables {V1, V2, V3, . . . , Vn−1, Vn}
as:

Pr{V1, V2, V3, . . . , Vn−1, Vn}=
n

∏
i=1

Pr{Vi|Parents(Vi)} (6)

BNs in their classical form cannot model the changes in variables over time, i.e., they perform analysis
for a fixed time. DBNs (Neapolitan, 2004) are extensions of classical BNs, which provides a flexible
structure and distinctive modelling mechanism for explicit modelling of the temporal progression of a set
of variables over time. In a DBN, the overall timeline is divided into several discrete time slices. This
permits a node at the ith time interval to be conditionally dependent on both its parents in the same interval
and its own and its parents’ states in the previous interval (Khakzad, 2015). Fig. 5 shows a DBN model of
the BN of Fig. 4 over a discretized timeline t ∈ [0,T ]. The black arcs within the same time interval are the
intra-interval arcs, whereas the red dashed arcs connecting the nodes in the consecutive time intervals are
the inter-interval arcs. According to Fig. 5, the conditional probability of the copy of node A at time slice
t +∆t would be P(At+∆t |At).

As reported in (Abbassi et al., 2016; Baksh et al., 2015; Sigurdsson et al., 2001; Neil et al., 2008; Doguc
and Ramirez-Marquez, 2009), both classical and dynamic BNs have been widely used in the risk and relia-
bility assessment of varieties of fields such as chemical process, maritime, aerospace, offshore system, etc.
For instance, Torres-Toledan and Sucar (Torres-Toledan and Sucar, 1998) used BNs for relaibility analysis
of complex systems and Bayesian reliability of gas network was studied in (Iesmantas and Alzbutas, 2016).
DBN was used for risk assessment of a technological system in (Ashrafi and Zadeh, 2017). A widespread
use of BNs in safety and reliability assessment is by translating other reliability models such as FTs into
Bayesian networks. In the pioneering work, Bobbio et al. (2001) have illustrated how fault trees can be
mapped into BNs for reliability evaluation of systems. As shown in Fig. 6, the translation was done in two
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Figure 5: A DBN model of the BN of Fig. 4 over a discretized timeline t ∈ [0,T ] (Khakzad, 2015)

phases: graphical mapping and numerical mapping. The BEs and intermediate events (logic gates) of the
fault trees are mapped to the root nodes and intermediate nodes of BNs, respectively in the graphical map-
ping phase. Contrarily, the TE is mapped to the leaf node of the BNs. In the numerical mapping phase, BEs’
failure probabilities are used to define the prior probabilities of the root nodes and Boolean logic is used to
define the conditional probability tables for the other nodes. Bayesian networks have also been used for the
quantitative analysis of dynamic and temporal FTs, e.g. in (Boudali and Dugan, 2005, 2006; Montani et al.,
2008; Kabir et al., 2018). BN-based approaches have been used for hazard analysis in process industries
such as in (Khakzad et al., 2011; Yazdi and Kabir, 2017; Deyab et al., 2018; Taleb-Berrouane et al., 2018).

Once an FT is mapped into a BN model, the predictive analysis could be done on the model to obtain
system reliability. Simultaneously, an observation about the status of the BEs could be put on the root nodes.
According to these observations, the criticality of BEs could be determined, i.e., the relative contribution
of the BEs to the TE occurrence probability could be measured. Utilising the ability to observe the status
of a node, diagnostic analysis can also be performed. In this case, the users can provide evidence about
the occurrence of the TE, and thereby users knowledge about the components failure probability is updated
according to the provided evidence.

3 Reliability Analysis of Flare Systems

3.1 Overview of Flare Systems
Gas flare systems (Baukal Jr, 2012) are structures used to collect and burn the disposable gases from dif-
ferent stages of the process plant. The combustion of these disposable gases is performed in a safe manner
far from the plant. A typical flare system is shown in Fig. 7. The flare stack collects the flare gases that
are to be flared. To improve combustion efficiency, the flare tip is designed to allow the entrance of air into
the flare. To prevent the flashback of the flare, seals are installed in the stack. The knock-out drum resides
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Figure 6: Fault tree to Bayesian network mapping procedure (Khakzad et al., 2011)

at the base of the stack, which operates at a relatively low pressure (Zadakbar et al., 2015). The knock-out
drum should be able to prevent liquid carryover into the flare while the flare operates with large gas and
liquid loads (Akeredolu and Sonibare, 2004).

Flare systems are safety barriers or layer of protection from overpressure. They allow pressure relief and
the safe disposal of toxic and/or flammable gases. During both normal operations and abnormal conditions,
such as plant upsets or emergency shutdowns, the flare system should be able to handle quick changes in gas
flow and maintain the flame. However, these flare systems can turn to a source of hazards if their operation
is not properly controlled. One of the hazardous operating conditions is when the gases are released from
the flare stack without being burned. This is known as “flame-out”. This incident can present human and
environmental toxicity and the release can lead to vapour cloud explosions (V.C.E). The scenarios leading
to this incident are studied and analysed in this paper. The analyses are based on probabilistic approaches
to calculate the occurrence probability of the flame-out and to identify the most critical events leading to
the flame-out incident.

3.2 Reliability Analysis using FTA
Fault tree analysis was performed to determine the primary causes of failure of the flare system. In this
study, we considered “flare-flameout” as the hazardous event (TE of the FT) and the fault tree of Fig.8
shows the logical causes of the occurrence of this event. The failure data of the BEs of this FT is presented
in Table 1. Many of these BEs have fixed failure probabilities, whereas some of the BEs have their lifetime
defined using Weibull distribution. After performing qualitative analysis on the FT of Fig. 8, we obtained
40 minimal cut sets (MCSs) as seen in Table 2. Each of these MCSs can independently cause the flare
flame-out.
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Figure 7: A classical flare system (Akeredolu and Sonibare, 2004)

The probability of the occurrence of the MCSs were calculated using Equation (4) and data from Table
1. Without loss of generality, and for the purposes of comparison, the calculation was performed for 10
years operating time with 1 year interval period. Table 3 presents the occurrence probability of the flare
flameout condition for different mission time.

It is worth noting that, the TE probability is obtained using rare event approximation by considering
that the MCSs are statistically independent. However, from Table 2, it is evident that MCSs share basic
events and they are therefore statistically dependent. Moreover, for the above mentioned mission time, the
probability of most of the BEs is greater than 0.1. That means, as suggested in Section 2.1, more accurate
approximation of top event probability is needed. Bayesian network is used in the following section for this
purpose.

3.3 Reliability Analysis using Bayesian Network
To perform the reliability analysis of the flare system using the DBN-based approach, we first translated the
FT of the failure behavior of the flare system into a discrete-time BN. In order to model the time dependent
behaviour of BEs 1, 2, 7, 8, 9, and 10, the DBN shown in Fig. 9 is formed. The prior probability tables
of the root nodes associated with the BEs with constant failure probaility are populated using the data
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Figure 8: FT of flare flameout condition of the flare system (Berrouane and Lounis, 2016)

Table 1: ID, Name, and failure rates of the BEs of the fault tree in Fig. 8
Event ID Event Name Failure Probability Shape (β ) Scale (η)
BE1 Mechanical Failure 2 30
BE2 Instrumentation failure 1.5 40
BE3 Valve blocked close 0.29×10−6

BE4 Operator fault 2.85×10−5

BE5 Fuel gas interrupted at source 3.80×10−5

BE6 Isolation of the FG line for works 1.14×10−4

BE7 Failure of ignition device 1.2 100
BE8 Ignition pipe clogged 3 50
BE9 Condensate presence in the FG 1.2 300
BE10 Pipe not drained 2 200
BE11 Relief PCVs closed 1.00×10−3

BE12 Switching to another flare 5.70×10−5

BE13 Nitrogen valve opened 3.80×10−5

BE14 Wind speed > 120 km/h 5.70×10−5

BE15 Pumping phenomenon 2.28×10−4

from table 1. On the other hand, the prior and the conditional probabilities, at different time slices, of the
nodes associated with the BEs with time-dependent failure behavior are populated based on the Weibull
distribution defined for them. The CPT of each of the intermediate nodes of the BN is generated according
to the behaviour of the logic gate it signifies.

The next step is to run a query on the DBN model, which would give us the occurrence probability
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Table 2: List of MCSs to Cause the Flare System Failure
Id MCS Id MCS
MCS01 BE1.BE11 MCS21 BE6. BE11
MCS02 BE1.BE12 MCS22 BE6. BE12
MCS03 BE1.BE14 MCS23 BE6. BE14
MCS04 BE1.BE15 MCS24 BE6. BE15
MCS05 BE2.BE11 MCS25 BE7. BE11
MCS06 BE2.BE12 MCS26 BE7. BE12
MCS07 BE2.BE14 MCS27 BE7. BE14
MCS08 BE2.BE15 MCS28 BE7. BE15
MCS09 BE3.BE11 MCS29 BE8. BE11
MCS10 BE3.BE12 MCS30 BE8. BE12
MCS11 BE3.BE14 MCS31 BE8. BE14
MCS12 BE3.BE15 MCS32 BE8. BE15
MCS13 BE4.BE11 MCS33 BE9.BE10. BE11
MCS14 BE4.BE12 MCS34 BE9.BE10. BE12
MCS15 BE4.BE14 MCS35 BE9.BE10. BE14
MCS16 BE4.BE15 MCS36 BE9.BE10. BE15
MCS17 BE5.BE11 MCS37 BE13. BE11
MCS18 BE5.BE12 MCS38 BE13. BE12
MCS19 BE5.BE14 MCS39 BE13. BE14
MCS20 BE5.BE15 MCS40 BE13. BE15

Table 3: Flare flameout occurrence probability based on FTA
Year Probability
1 9.23×10−4

2 9.59×10−4

3 1.00×10−3

4 1.06×10−3

5 1.13×10−3

6 1.20×10−3

7 1.28×10−3

8 1.36×10−3

9 1.45×10−3

10 1.54×10−3

of the flare flameout at different point in time. According to the DBN based technique, the probability
of the occurrence of the flare flameout after 10 years is 1.01× 10−3. If we compare this value with the
value estimated by the rare event approximation of FT, then we can notice that this value is 34.42% smaller.
This is because the DBN approach considers dependency among events and provides a global reliability
assessment, whereas the rare event approximation approach does not consider dependency among events,
which is not valid in this case. Fig. 10 shows the comparison between the occurrence probabilities of the
flare flameout at different operating time estimated by rare event approximation and DBN.

Until now, we used the failure probabilities of the BEs and used predictive analysis on the BN to evaluate
the unreliability of the system. By providing evidence on the Bayesian network model, diagnostic analysis
is also performed. For example, if there exists any evidence about the failure of flare system, then based
on this knowledge we can update our belief about the basic events failure probabilities. This will allow
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Figure 9: DBN of the FT in Fig. 8

calculating the posterior probability of the BEs given that the system has failed. For the flare system, we
obtained the posterior probability distribution of the BEs and the comparison between the prior and posterior
probabilities is shown in Fig. 11. Note that this chart uses logarithmic scale for Y-axis. Based on these
updated probabilities of the BEs, a new set of analyses could be performed.

3.3.1 Criticality analysis

In FTA, criticality analysis plays a vital role by identifying the critical events causing the TE of a FT.
Criticality is measured in terms of the relative contributions of the events to the occurrence probability of
the top event. Different approaches like the risk reduction worth (RRW) and Birnbaum importance measure
(BIM) are widely used (Vesely et al., 2002).

Note that in this paper BIM is used to measure the criticality of BEs as an illustrative purpose, however,
different other approaches can be used.BIM of a basic event, IBIM

BEi
, is evaluated as follows by taking the
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Figure 10: Comparison of flare flameout probability estimated by rare event approximation of FT and BN
methods

Figure 11: Comparison between prior and posterior probabilities of BEs (logarithmic scale used for Y-axis)
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difference between TE probabilities by considering the basic event’s probability as 1 and 0, respectively.

IBIM
BEi

= P(T E|P(BEi) = 1)−P(T E|P(BEi) = 0) (7)

where P(T E|P(BEi) = 1) and P(T E|P(BEi) = 0) are the TE probabilities while the probability of the BEi
is considered as 1 and 0, respectively.

Using the BN model, BIM of an event can be calculated as:

IBIM
BEi

= P(T E|BEi = True)−P(T E|BEi = False) (8)

Where P(T E|BEi = True) is the TE probability while observing the state of BEi as true and P(T E|BEi =
False) is the TE probability while observing the state of BEi as false. Once the BIM of all basic events are
determined, they are ranked according to their criticality. The higher the value of the IBIM

BEi
the greater the

importance of the event and vice versa.

Table 4: Criticality of the BEs based on the BN method
Event ID IBIM

BEi
Rank

BE1 0.00037336 8
BE2 0.00037625 7
BE3 0.00033188 11
BE4 0.00033189 10
BE5 0.00033189 10
BE6 0.00033192 9
BE7 0.00060346 5
BE8 0.00049964 6
BE9 0.00010330 13
BE10 0.00019455 12
BE11 0.75237228 1
BE12 0.75166276 3
BE13 0.00033189 10
BE14 0.75166276 4
BE15 0.75179132 2

As the BN approach can consider statistical dependency among the events and the probability of most
of the BEs is greater than 0.1, for more accurate estimation, we use BN based approach as described above
to calculate the importance of the BEs. The result is shown in Table 4. As seen from the table, BE11
and BE15 are recognized as the most critical events. These events correspond to Relief PCVs closed and
Pumping phenomenon. This information is particularly important in aiding the stakeholders to identify the
weakest part of the flare system, thus helping them to channelling their efforts to the identified part of the
system to improve the reliability of the flare system.

The primary goal of this article was to evaluate the reliability of flare systems. A previous study based on
FTA was found in the literature; and we have identified a number of limitations of that study. To overcome
these limitations, we translated a FT into a DBN, and thereby evaluated the occurrence probability of the
flare flameout condition and provided a solution for criticality analysis on a DBN model. Note that the
superiority of BN over FTA was highlighted in the comparative study performed in (Khakzad et al., 2011;
Taleb-Berrouane et al., 2019). In this study, we utilised the superiority of BN over FTA when it comes to
the modelling capacity, capability of integrating evidence and updating probabilities based on observations.
All these features of BN help to alleviate the limitations of the prior study based on FTA. Regarding the
aspects covered by the two studies, Table 5 presented a comparison between the past and the present study.

14



Table 5: Comparison between past and present study based on modelling aspects considered
Aspects considered Previous Study(Berrouane and Lounis, 2016) Current Study
Predictive analysis Yes Yes
Diagnostic analysis No Yes
Dynamic nature of system No Yes
Dependency among events No Yes
Time-dependent failure data No Yes
Criticality analysis No Yes
Uncertainty analysis No No

It can be seen that to perform more realistic analysis and to produce more reliable results, the present study
considers many aspects which were absent in the past study. Note that none of the study has performed
uncertainty analysis for the results. In the future, we have the plan to perform uncertainty analysis of the
results by considering different aspects that have the potential to affect the results.

4 Conclusion
Under flare flameout condition, toxic gases such as H2S can be emitted, which can have very adverse effects
on the ecosystem and human health. Considering the importance of maintaining efficient flaring throughout
the combustion process, in this paper we have analysed the reliability of a flare system using both FTA and
Bayesian network approaches. In the FT, we had 15 basic events, and from qualitative FTA, we determined
40 different combinations of basic events that can cause flare flameout. We also obtained the probability
of experiencing a flare flameout using both rare event approximation of FT and DBN approaches given the
failure data of the BEs. The rare event approximation of the FT approach obtained results by considering
the MCSs as statistically independent; on the other hand, the DBN approach produced results by taking
into account the dependencies among the events. During analysis, we found that many events in the current
study were statistically dependent. For this reason, we have noticed a significant difference between the
occurrence probabilities estimated by the approaches. Using DBN, we identified and reported the critical
basic events that contributed to the flare flameout condition.
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